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Problems

. Sort the sequence S = {(3,3),(1,5),(2,5),(1,2),(2,3),(1,7),(3,2),(2,2)}, in increasing lexicographic or-

der, using Radix sort, showing all the intermediate steps. Note that in lexicographic ordering (z1,y1) <
(72,Y2), if x1 < T2, or 11 =73 and y1 < Yo

Radiz sort is a Stable Sort procedure (2 points).

Solution: From page 242 and 243 of [GT02], we know that the Radix Sort algorithm sorts a sequence
of pairs as defined by S, by applying a stable bucket sort on the sequence twice; first using the second
component and then using the first component.

Performing a bucket sort on the second component of S results in the sequence S’
S = {(1,2),(3,:2),(2,2),(3,3),(2,3),(1,5),(2,5), (1, 7)}
Likewise, performing a bucket sort on the first component of S’ results in the sequence S”

§" = {(1,2),(1,5),(1,7),(2,2),(2.3),(2,5),(3,2),(3,3)}

It follows that S” is our sorted order output from Radix Sort. O

. The coin changing problem is concerned with making change for n cents (n integral) using the fewest number
of coins, where the coins are quarters (25 cents), dimes (10 cents), nickels (5 cents) and pennies (1 cent).
For instance, we can make change for 10 cents using either 10 pennies or 2 nickels or 1 dime; clearly using
1 dime is the optimal solution, since it uses the fewest number of coins. Describe a greedy strategy for the
coin changing problem. Argue that your strategy always derives the optimal solution for arbitrary n, i.e.,
it changes n into the fewest number of coins? (5 points)

Solution: Our greedy strategy consists of changing as much of n into quarters as possible, followed by
changing as much of the rest into dimes as possible and so on.

Let x25 indicate the number of quarters created by the greedy strategy. x19, x5 and x; are defined similarly.
Note that the greedy strategy gives rise to Algorithm (1.1).

Let us say that the solution returned by Algorithm (1.1), i.e., X is not optimal for some n and that there
exists an algorithm OPT that returns the optimal solution ¥ = [y25 y10 ys y1]T, for the same n.



Function COIN-CHANGER(n)

1:

For positive numbers a and b, we define | #] as the quotient when b divides a and a mod b as the remainder
that results when b divides a.

Tas = |38 ]; T25 = n.mod 25
T10 = L%J, 10 = T25 mod 10
x5 = | |5 r5 = rip mod 5
1 =T5

Set X = [£E25 Tr10 Ts Zl]T
return(X)

Algorithm 1.1: Greedy Strategy for coin changing

We first show that if yo5 # w25, then ¥ cannot be optimal. Observe that, as per the greediness of
Algorithm (1.1), yo5 < 25, since Algorithm (1.1) assigns the maximum possible number of quarters to
Io5. It follows that if Y25 ;é T25, then we must have Y25 < T25. Let Co5 = (I25 — y25) and Vo5 = 25- C25. This
means that change valued at va5 cents has been distributed among the dimes, nickels and pennies of OPT’s
solution. Clearly, the optimal way to convert the amount vs5 into change is by using precisely cs5 quarters
since converting 25 cents into change requires precisely 1 quarter but at least 2 coins, using any combination
of dimes, nickels and pennies. Any other method will result in a number of coins strictly greater than cas.
It follows that we can take an amount ves from (Y10, ys,y1) and convert it into quarters; doing so strictly
decreases the number of coins in OPT’s solution, thereby contradicting the optimality of ¥.

Thus, if y is to be optimal, then we must have o5 = z25. Given that ys5 = x5, we are now faced with the
problem of showing that x’ = [z19 25 ]7 is optimal for the amount n — (25 - 95). We can repeat the
above argument to show that either y19 = 219 or y is not optimal. If y19 = z19, then the problem is reduced
to showing that x” = [z5 1] is optimal for the amount n — (25 - 225 + 10 - 219). An identical argument
shows that if y5 # x5, then y cannot be optimal. Finally, since we must have x25 = 25, 190 = Y10 and
x5 = ys, in order for ¥ to be optimal, it is clear that y1 = 21 = n — (25225 + 10 - 219 + 5 - 5). In other
words, if ¥ # X, then ¥ is not optimal, i.e., X is the optimal solution for n.

It is very important to note that the correctness of the above proof is contingent on comparing the pairs
(225, Y25) first, followed by (z10, y10), (5,¥s5) and (x1,y1); altering this strict order destroys the correctness
of the proof. O

. Characterize the following recurrence (3 points):

T(n) = 1,ifn=1
= 2-T(g)—|—logn,n>1

Hint: Use Master’s Theorem

Solution: As per the specification on Page 268 of [GT02], we have: a = 2, b =2,d =1, ¢ = 1 and
f(n) =logn. Tt is clear that the prerequisites of the Master’s Theorem, viz., a > 0, ¢ > 0, b > 1 and f(n)
being a positive function are satisfied. Note that n'°8t @ = n and that f(n) = O(n'°8t =€) for any 0 < e < 1.
So, we can apply Case 1 of the Master’s Theorem to obtain T'(n) = ©(n). (What happens if ¢ = 0?) O
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