Analysis of Algorithms - Scrimmage II (Solutions)

L. Kovalchick LCSEE, West Virginia University, Morgantown, WV {lynn@csee.wvu.edu}

1. Write down the order in which the nodes of tree T in Figure (1), will be visited, assuming an inorder traversal.

Figure 1: Binary Tree T

Observe that in an inorder traversal, the left children of a node are visited before it is visited and the right children of the node are visited after it is visited. Applying this recursively, we conclude that the nodes in **T** would be visited in the following order: 1, 2, 3, 4, 5, 6, 7.

2. A fair coin is flipped three times. What is the probability that you see more heads than tails?

Proof: The sample space for this experiment is:

$$S = \{HHH, HTH, HHT, HTT, THH, TTH, TTT, THT\}$$

Since the coin is fair, each of these outcomes will be equally likely to occur. Therefore, we assign a probability of $\frac{1}{8}$ to each outcome (remember, the sum of the outcomes must equal 1). Let A represent the event of seeing more heads than tails, then:

$$A = \{HHH, HTH, HHT, THH\}$$

So the probability of event A occurring (i.e., you seeing more heads than tails) is:

$$Pr(A) = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}$$
$$= \frac{4}{8}$$
$$= \frac{1}{2}$$

3. Solve the recurrence:

$$T(1) = 1$$

 $T(n) = T(n-1) + n^2, n > 1$

Proof: Using expansion:

$$T(n) = T(n-1) + n^{2}$$

$$= [T(n-2) + (n-1)^{2}] + n^{2}$$

$$= [T(n-3) + (n-2)^{2}] + (n-1)^{2} + n^{2}$$

$$\vdots$$

$$= [T(n-(n-1)) + (n-(n-2))^{2}] + (n-(n-3))^{2} + \dots + (n-1)^{2} + n^{2}$$

$$= T(1) + 2^{2} + 3^{2} + \dots + (n-1)^{2} + n^{2}$$

$$= 1 + \sum_{i=2}^{n} i^{2}$$

$$= 1^{2} + \sum_{i=2}^{n} i^{2}$$

$$= \sum_{i=1}^{n} i^{2}$$

$$= \frac{n \cdot (n+1) \cdot (2n+1)}{6}$$

4. Write an algorithm for finding the second smallest element in a binary search tree? What is its worst-case running time?

Let v_{min} denote the node in the binary search tree **T**, whose key is minimum and v_{min}^p denote its parent, if v_{min} is not the root of **T**. Without loss of generality, we assume that **T** has at least 2 elements (otherwise, the second smallest element is undefined!). We now make the following observations:

(a) v_{min} can never be the right child of its parent. If v_{min} is the root of **T**, then it has no parent; otherwise it does have a parent (viz. v_{min}^p) and if it is the right child of v_{min}^p , then v_{min}^p has a key which is smaller than it, contradicting the minimality of v_{min} !

- (b) If both the children of v_{min} are external, then the node with the second smallest key is clearly v_{min}^p (Think carefully!)
- (c) If v_{min} has a right child, then the node with the second smallest key is the minimum key node of $v_{min}.rightchild()$.

Algorithms (0.1) and (0.2) put all these ideas together.

```
Function FIND-SECOND-MIN(T)

1: Let root = T.root

2: Let v = FIND-MIN(T, root)

3: if (T.isRoot(v)) then

4: return(FIND-MIN(T, v.rightchild()))

5: end if

6: if (ISEXTERNAL(T, v.rightchild())) then

7: return(v.parent())

8: else

9: return(FIND-MIN(T, v.rightchild()))

10: end if
```

Algorithm 0.1: Finding the smallest element in a binary search tree

```
Function FIND-MIN(\mathbf{T}, v)

1: if ( ISEXTERNAL(\mathbf{T}, v.leftchild())) then

2: return(v)

3: else

4: return(FIND-MIN(\mathbf{T}, v.leftchild()))

5: end if
```

Algorithm 0.2: Finding the smallest element in a binary search tree

In the worst-case, there could be 2 calls to FIND-MIN(), each taking time $\Omega(n)$. Thus the running time of FIND-SECOND-MIN() is O(n) in the worst case.

5. Show that the worst-case running time of MERGE-SORT() is $O(n \log n)$, assuming that

$$T(1) = O(1)$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + O(n)$$

<u>Proof</u>: Without loss of generality, assume that $n = 2^k$ and hence $k = \log_2 n$. Using expansion:

$$T(n) = 2 \cdot T(\frac{n}{2}) + O(n)$$

$$= 2[2 \cdot T(\frac{n}{4}) + O(\frac{n}{2})] + O(n)$$

$$= 4 \cdot T(\frac{n}{4}) + 2 \cdot O(n)$$

$$= 4[2 \cdot T(\frac{n}{8}) + O(\frac{n}{4})] + 2 \cdot O(n)$$

$$= 8 \cdot T(\frac{n}{8}) + 3 \cdot O(n)$$
:

$$= 2^k \cdot T(\frac{n}{2^k}) + k \cdot O(n)$$

$$= 2^{\log n} \cdot T(\frac{n}{2^{\log n}}) + \log n \cdot O(n)$$

$$= n \cdot T(1) + \log n \cdot O(n)$$

$$= n \cdot O(1) + \log n \cdot O(n)$$

$$= O(n) + O(n \log n)$$

$$= O(n \log n)$$

6. Show that if $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$, then $f(n) = \Theta(h(n))$.

Proof: We want to show that $f(n) = \Theta(h(n))$, which implies that:

$$f(n) = O(h(n)), and$$

 $h(n) = O(f(n))$

By definition of Θ , $f(n) = \Theta(g(n))$ implies that:

$$\begin{array}{lcl} f(n) & = & O(g(n)), \ and \\ g(n) & = & O(f(n)) \end{array}$$

Also, by definition of Θ , $g(n) = \Theta(h(n))$ implies that:

$$g(n) = O(h(n)), and$$

 $h(n) = O(g(n))$

Observe that:

$$\begin{array}{rcl} f(n) & = & O(g(n)) \\ \Rightarrow f(n) & \leq & c \cdot g(n) \\ & = & c \cdot O(h(n)) \\ & \leq & c \cdot c' \cdot h(n) \\ & = & c'' \cdot h(n) \end{array}$$

Then, by definition of 'O', f(n) = O(h(n)).

Next, observe that:

$$\begin{array}{rcl} h(n) & = & O(g(n)) \\ \Rightarrow h(n) & \leq & c \cdot g(n) \\ & = & c \cdot O(f(n)) \\ & \leq & c \cdot c' \cdot f(n) \\ & = & c'' \cdot f(n) \end{array}$$

Then, by definition of 'O', h(n) = O(f(n)). Then, by definition of Θ , $f(n) = \Theta(h(n))$. \square