Analysis of Algorithms - Scrimmage IT (Solutions)

L. Kovalchick
LCSEE,
West Virginia University,
Morgantown, WV
{lynn@csee.wvu.edu}

1. Write down the order in which the nodes of tree T in Figure (1), will be visited, assuming an inorder
traversal.

Figure 1: Binary Tree T

Observe that in an inorder traversal, the left children of a node are visited before it is visited and the right
children of the node are visited after it is visited. Applying this recursively, we conclude that the nodes in
T would be visited in the following order: 1, 2, 3, 4, 5, 6, 7.

. A fair coin is flipped three times. What is the probability that you see more heads than tails?

Proof: The sample space for this experiment is:
S = {HHH,HTH,HHT,HTT,THH,TTH,TTT,THT}

Since the coin is fair, each of these outcomes will be equally likely to occur. Therefore, we assign a probability
of% to each outcome (remember, the sum of the outcomes must equal 1). Let A represent the event of seeing
more heads than tails, then:

A = {HHH HTH,HHT,THH}

So the probability of event A occurring (i.e., you seeing more heads than tails) is:

1 1 1 1
Pr(A) = —4+=4+-+=
r(4) sTsTsts
4
T8
1
T2
O
3. Solve the recurrence:
T1) = 1
T(n) = Th—-1)+n? n>1

Proof: Using expansion:

T(n)

T(n—1)+n?
[T(n—2)+ (n—1)%] +n?
= [T(n—-3)+n—-2)2%4+n-1)%*+n?

; [Tn—Mn-1))+n-n-2)]+n-n=-3) +...+(n—-1)2+n?
= T()+2°+3*+...+ (n—1)? +n?

n
= 1+Zi2
1=2
n
= 1P+> 7
=2
n
=) &
=1

n-(n+1)-(2n+1)
6

4. Write an algorithm for finding the second smallest element in a binary search tree? What is its worst-case
running time?

Let vpin denote the node in the binary search tree T, whose key is minimum and ¢, denote its parent, if

Umin 18 not the root of T. Without loss of generality, we assume that T has at least 2 elements (otherwise,
the second smallest element is undefined!). We now make the following observations:

(a) Umin can never be the right child of its parent. If v,,;, is the root of T, then it has no parent; otherwise
it does have a parent (viz. v% .) and if it is the right child of v% . . then v” . has a key which is
smaller than it, contradicting the minimality of vy, !

p

(b) If both the children of vy, are external, then the node with the second smallest key is clearly v ..

(Think carefully!)

(¢) If vin has a right child, then the node with the second smallest key is the minimum key node of
VUmin-rightchild().

Algorithms (0.1) and (0.2) put all these ideas together.

Function FIND-SECOND-MIN(T)

Let root = T.root

Let v =FIND-MIN(T, root)

if (T.isRoot(v)) then
return(FIND-MIN(T, v.rightchild()))

end if

if (ISEXTERNAL(T,v.rightchild())) then
return(v.parent())

else
return(FIND-MIN(T, v.rightchild()))

end if

—
@

Algorithm 0.1: Finding the smallest element in a binary search tree

Function FIND-MIN(T, v)

1: if (ISEXTERNAL(T,v.leftchild())) then
2: return(v)

3: else

4: return(FIND-MIN(T,v.leftchild()))
5. end if

Algorithm 0.2: Finding the smallest element in a binary search tree

In the worst-case, there could be 2 calls to FIND-MIN(), each taking time Q(n). Thus the running time of
FIND-SECOND-MIN() is O(n) in the worst case.

5. Show that the worst-case running time of MERGE-SORT() is O(nlogn), assuming that
T = 0@
n
T(n) = 2- T(f) +0(n)

Proof: Without loss of generality, assume that n = 2 and hence k = log, n.

Using expansion:

T(n) = 2-T(g)+0(n)
= 22-T(3) +0(3)] + O(n)
- 4-T(%)+2-O(n)
- 4[2-T(%)+O(%)]+2-0(n)
= 8-7(3)+3-0(n)

2) + k- O(n)

ok
logn . T(QIZLW) +logn-O(n)
n-T(1) +logn - O(n)
n-0(1) +logn - O(n)

O(n) + O(nlogn)

O(nlogn)

2k . 7(

6. Show that if f(n) = ©(g(n)) and g(n) = ©(h(n)), then f(n) = O(h(n)).
Proof: We want to show that f(n) = ©(h(n)), which implies that:

= O(h(n)), and
= 0(f(n))

By definition of ©, f(n) = ©(g(n)) implies that:

f(n)
g(n)

gin) = O(h(n)), and
h(n) = O(g(n))
Observe that:
f(n) = 0O(g(n))
= f(n) < c-g(n)
= ¢-0(h(n))
< c¢-c-h(n)
= " h(n)
Then, by definition of *O’, f(n) = O(h(n)).
Nezxt, observe that:
h(n) = O(g(n))
= h(n) < c-g(n)
= ¢ - O(f(n))
< e-c-f(n)
= - f)

Then, by definition of *O’, h(n) = O(

Then, by definition of ©, f(n) = O(

>

