
Advanced Analysis of Algorithms - Final

K. Subramani
LCSEE,

West Virginia University,
Morgantown, WV

{ksmani@csee.wvu.edu}

1 Instructions

1. Attempt as many problems as you can. You will be given partial credit.

2. The duration of this final is 2 hours, i.e., 3 : 00-5 : 00 PM.

3. Each question is worth 6 points for a total of 30 points.

2 Problems

1. Let A[1..n] be an array of n distinct numbers. If i < j and A[i] > A[j], then pair (i, j) is called an inversion
of A. Design an algorithm that takes as input such an array and outputs the number of inversions of the
array. Your algorithm should run in time O(n · log n) in the worst case. (Hint: Merge-Sort.)

2. Let P be a convex polygon in 2-dimensional space, having n vertices. A triangulation of P is an addition of
diagonals connecting the vertices of P , so that each interior face is a triangle. The weight of a triangulation
is the sum of the lengths of the diagonals. Assuming that we can compute lengths, add, and compare them
in constant time, give an efficient algorithm for calculating the minimum weight triangulation of P . (Hint:
Dynamic Programming.)

3. Let T = {T1, T2, . . . , Tn} denote a collection of n tasks. Task Ti has start time si and finish time fi, with
si ≤ fi, i.e., task Ti must start at time si and it will finish at time fi. Two tasks Ti and Tj are non-
conflicting, if either fi ≤ sj or fj ≤ si. The tasks in T are to be assigned to machines, so that the resultant
schedule is non-conflicting. Design an algorithm that schedules the tasks in T using the fewest number of
machines. Clearly, I can obtain a non-conflicting schedule, by assigning each job to a different machine!
(Hint: Use a greedy strategy that sorts the tasks in T by their start times.)

4. In class, we showed that the MAX2SAT problem is NP-complete. What is the complexity of the MAX1SAT
problem? Either design a polynomial time algorithm for MAX1SAT or show that the problem is NP-complete.

5. The Satisfiability problem (SAT) is concerned with a finding a satisfying assignment to a conjunction of
clauses. kSAT is defined as the restriction of SAT in which each clause has exactly k literals. HornSAT
is the restriction of SAT in which each clause is Horn, i.e., each clause has at most one positive literal.
In class, we showed that 3SAT is NP-complete, whereas, 2SAT and HornSAT are decidable in polynomial
time. The HornSAT⊕2SAT problem is the restriction of SAT in which each clause is either Horn or has
exactly 2 literals. Argue that the HornSAT⊕2SAT problem is NP-complete. (Hint: Use a reduction from
3SAT.)

1


