
Advanced Analysis of Algorithms - Final (Solutions)

L. Kovalchick

LCSEE,

West Virginia University,

Morgantown, WV

{lynn@csee.wvu.edu}

1 Problems

1. Let A[1..n] be an array of n distinct numbers. If i < j and A[i] > A[j], then pair (i, j) is called an inversion
of A. Design an algorithm that takes as input such an array and outputs the number of inversions of the
array. Your algorithm should run in time O(n · log n) in the worst case. (Hint: Merge-Sort.)

Solution:

Algorithm (1.1) represents a divide-and-conquer algorithm for the inversion-pair problem; note that the
algorithm also sorts the input array A.

Function Number-Inversion-Pairs(A, low, high)

1: if (low < high) then

2: mid = low+high

2

3: cl = Number-Inversion-Pairs(A, low,mid)
4: cu =Number-Inversion-Pairs(A,mid+ 1, high)
5: cm =Merge-Inversion-Pairs(A, low,mid, high)
6: return(cl + cu + cm)
7: else

8: return(0)
9: end if

Algorithm 1.1: Algorithm for determining the number of inversion pairs in the sub-array
{A[low], A[low + 1], . . . , A[high]}.

1.1 Correctness

We prove the correctness of Algorithm (1.1), by using induction on the number of elements in the array A.
Note that the number of elements in {A[low], A[low + 1], . . . , A[high]} is (high− low + 1) and is denoted
by |A|.

(a) Observe that the number of inversion pairs in A is 0, when |A| ≤ 1. When A has at most one
element, (high ≤ low) and Step (8) of Algorithm (1.1) is executed. It follows that Algorithm (1.1)
works correctly when |A| ≤ 1.

(b) Assume that Algorithm (1.1) returns the correct number of inversion pairs when |A| ≤ k, for all
k = 2, 3, . . . , (n− 1) and also sorts A. Now consider the case, when |A| = n. Step (2) of Algorithm (1.1)
breaks up the array into 2 sub-arrays. Let Al denote the sub-array {A[low], A[low + 1], . . . , A[mid]}
and Ah denote the sub-array {A[mid+ 1], A[mid+ 2], . . . , A[high]}. Clearly |Al| < n and |Ah| < n.

1

Function Merge-Inversion-Pairs(A, low,mid, high)

1: {We assume that the sub-arrays {A[low], A[low + 1], . . . , A[mid]} and {A[mid+ 1], A[mid+ 2], . . . , A[high]}
have been sorted.}

2: p = low; q = (mid+ 1); index = low; cm = 0.
3: while (p ≤ mid) and (q ≤ high) do

4: if (A[p] ≤ A[q]) then

5: C[index] = A[p]
6: {A[p] does not form an inversion pair with an element of Ah.}
7: p++
8: else

9: C[index] = A[q]
10: {A[q] forms an inversion pair with each of the elements {A[p], A[p+ 1], . . . , A[mid]}}
11: q ++
12: cm+ = (mid− p+ 1)
13: end if

14: index++
15: end while

16: if (p > mid) then

17: {All the elements in Al have been processed; copy the elements in Ah into C.}
18: for (i = q to high) do

19: C[index] = A[i]
20: index++
21: end for

22: else

23: {All the elements in Ah have been processed; copy the elements in Al into C.}
24: for (i = p to mid) do

25: C[index] = A[i]
26: index++
27: end for

28: end if

29: {Now copy the elements in C back into A.}
30: for (i = low to high) do

31: A[i] = C[i]
32: end for

33: {{A[low], A[low + 1], . . . , A[high]} is now in sorted order}
34: return(cm)

Algorithm 1.2: The Merge Procedure.

2

Hence, we can apply the inductive hypothesis to conclude that the number of inversion pairs com-
puted in Steps (3) and (4) are correct, i.e., cl stores the correct number of inversion pairs in Al and
ch stores the correct number of inversion pairs in Ah. Further Al and Ah are sorted. We now an-
alyze the Merge-Inversion-Pairs() procedure. An element of Al that is moved into C, does not
form inversion pairs with any of the elements in {Ah[q], Ah[q + 1], . . . , Ah[high]}. However, an ele-
ment of Ah that is moved into C forms inversion pairs with all the elements in Al that have not
been processed, i.e., {Al[p], Al[p+ 1], . . . , Al[mid]}. Since we are only concerned with the number
of inversion pairs, we update the inversion pair count by (mid− p+ 1). An inversion pair (i, j) in
{A[low], A[low + 1], . . . , A[high]} must have one of the following forms:

i. i < j, A[i] > A[j], and i, j ∈ {low, (low + 1), . . . ,mid} - This case is recursively handled (Step (3)
of Algorithm (1.1));

ii. i < j, A[i] > A[j], i, j ∈ {(mid+ 1), (mid+ 2), . . . , high} - This case is also recursively handled
(Step (4) of Algorithm (1.1));

iii. i < j, A[i] > A[j], i ∈ {low, (low + 1), . . . ,mid} - and j ∈ {(mid+ 1), (mid+ 2), . . . , high} - This
case is handled by the Merge-Inversion-Pairs() procedure.

Thus, we have accounted for all the inversion pairs in {A[low], A[low + 1], . . . , A[high]}, thereby prov-
ing that if Algorithm (1.1) is correct when |A| = k, k = 2, 3, . . . , (n− 1), then it must be correct for
|A| = n. Applying the principle of mathematical induction, we conclude that Algorithm (1.1) is cor-
rect.

1.2 Analysis

Let T (n) denote the running time of Algorithm (1.1) on an array of n elements. It is not hard to see that
(exactly as in Merge-Sort())

T (n) = 1, if n = 1

= 2 · T (
n

2
) + Θ(n), otherwise

It follows that T (n) = Θ(n · log n), as per the Master Theorem. 2

2. Let P be a convex polygon in 2-dimensional space, having n vertices. A triangulation of P is an addition of
diagonals connecting the vertices of P , so that each interior face is a triangle. The weight of a triangulation
is the sum of the lengths of the diagonals. Assuming that we can compute lengths, add, and compare them
in constant time, give an efficient algorithm for calculating the minimum weight triangulation of P .
(Hint: Dynamic Programming.)

Solution: Observe that any optimal triangulation (indeed, any triangulation) of P consists of a “first” diag-
onal, which partitions the polygon into 2 parts; these parts are also polygons which need to be triangulated
(See Figure (1)).

The key observation is that in any optimal triangulation, once the first diagonal is chosen for a polygon, the
2 sub-polygons (sub-problems) that result must also be triangulated optimally; otherwise, we can combine
optimal solutions to the sub-problems and get a better solution to the initial problem, thereby contradicting
the optimality of the initial triangulation. In other words, the principle of optimality applies and we can
use Dynamic Programming.

The Dynamic Program is based on the following sequence of decisions that need to be made:

(a) Make a decision on the first diagonal, creating 2 sub-polygons.

(b) Make a decision on the first diagonals of the created sub-polygons, thereby creating 4 sub-polygons
and so on.

(c) The recursion bottoms out, when the created sub-polygon is a triangle; in this case the sub-polygon is
already a triangulation, with cost of triangulation 0.

3

1

2

3

n

k

first diagonal

Figure 1: Optimal triangulation

Observe that given a polygon on k points, there are at most O(k2) choices for the first diagonal. Accordingly,
we use the bottom-up procedure, described by Algorithm (1.3).

Function Optimal-Triangulate(P)

1: for (k = 4 to n) do

2: Compute the optimal triangulations for all k-gons of the initial polygon, formed by (k − 1) edges of the
original polygon and one chord, connecting the kth vertex to the first vertex.

3: end for

Algorithm 1.3: Algorithm for optimal polygon triangulation

Note that there are at most n, k-gons, for any k = 4, 5, . . . , n. (Why?) Thus, we begin by computing
the optimal triangulations of all the 4-gons, then use these results to compute the triangulations of all the
5-gons and so on. The crucial observation is that when we wish to calculate the optimal triangulation of
a given k-gon, the optimal triangulation of all v-gons v < k, have already been calculated. Accordingly,
computing the optimal triangulation of a k-gon, consists of the following steps:

(a) For each of the O(k2) pairs of vertices between which the first diagonal can be drawn,

i. Look up the costs of the optimal triangulations of the resulting sub-polygons, say s1 and s2.

ii. Compute the cost of this triangulation, by summing up the cost of the diagonal, s1 and s2.

(b) Take the minimum cost over all these O(k2) first diagonals.

The total time taken by the above strategy is computed as follows: For a given k, there are at most O(n)
distinct k-gons. For a given k-gon, there are at most O(k2) first diagonal choices. Corresponding to each of
these choices, the optimal triangulation can be computed in O(1) time. Thus for a given k, the total time
spent is at most O(n · k2). Thus, the total time taken by the algorithm is at most

∑n

k=4
O(n · k2) = O(n4).

4

The space requirement for the algorithm is O(n2), since for each k, we need O(n) space, to store the costs
of the optimal triangulations of the n, k-gons corresponding to that k.

For a slightly more efficient (and less intuitive!) approach in terms of running time, see [CLR92]. 2

3. Let T = {T1, T2, . . . , Tn} denote a collection of n tasks. Task Ti has start time si and finish time fi, with
si ≤ fi, i.e., task Ti must start at time si and it will finish at time fi. Two tasks Ti and Tj are non-
conflicting, if either fi ≤ sj or fj ≤ si. The tasks in T are to be assigned to machines, so that the resultant
schedule is non-conflicting. Design an algorithm that schedules the tasks in T using the fewest number of
machines. Clearly, I can obtain a non-conflicting schedule, by assigning each job to a different machine!
(Hint: Use a greedy strategy that sorts the tasks in T by their start times.)

Solution:

We will assume that the tasks in T are sorted in order by increasing start times. Observe that if they
were not sorted, then we could sort them into this order in time O(n · log n), breaking ties arbitrarily.
Algorithm (1.4) represents a greedy algorithm for this problem.

Function Task-Schedule(A set T of tasks, such that each task has a start time si and a finish time
fi)

1: m = 0
2: while (T 6= ∅) do

3: Remove from T the task i with smallest start time si

4: if (there is a machine j with no task conflicting with task i) then

5: schedule task i on machine j
6: else

7: m = m+ 1
8: schedule task i on machine m
9: end if

10: end while

11: return(m)

Algorithm 1.4: A greedy algorithm for the task scheduling problem.

1.3 Correctness

We must prove that Algorithm (1.4) always produces the optimal solution.

Theorem 1.1 Given a set of n tasks specified by their start and finish times, Algorithm (1.4) produces a
schedule of the tasks with the minimum number of machines.

Proof: Suppose that Algorithm (1.4) does not work; that is, it finds a non-conflicting schedule using k

machines. Now, suppose that there is another non-conflicting schedule that uses only (k − 1) machines.
Let k be the last machine allocated by our algorithm, and let i be the first task scheduled on k. By the
structure of the algorithm, when we scheduled i, each of the machines 1 through (k − 1) contained tasks
that conflict with i. Since they conflict with i and because we consider tasks ordered by their start times,
all the tasks currently conflicting with task i must have start times less than or equal to si and have finish
times after si. In other words, these tasks not only conflict with task i, they all conflict with each other,
which implies it is impossible for us to schedule all the tasks in T using only (k − 1) machines. Therefore,
k is the minimum number of machines needed to schedule all the tasks in T . 2

2

4. In class, we showed that the MAX2SAT problem is NP-complete. What is the complexity of the MAX1SAT
problem? Either design a polynomial time algorithm for MAX1SAT or show that the problem is NP-complete.

5

Proof: Observe that the MAX1SAT problem is defined as follows, given a 1SAT formula φ and a number
k, is there an assignment to the literals {x1, x2, . . . , xn} such that the number of satisfied clauses is greater
than or equal to k? This problem is trivial since every clause of a 1SAT formula has exactly 1 literal. We
are given a set of n literals where {x1, x2, . . . , xn} and a set of m clauses; note that m ≤ 2 · n, because for
each literal only xi and x′

i can exist for i = 1, 2, . . . , n. The algorithm to solve MAX1SAT is easy; we will
create a counter and initialize it to 0. Observe that if a literal xi, exists in one clause and the negation of
that literal (i.e., x′

i) exists in another clause, then only one of these clauses is true at any given time; so, we
will increment our counter by 1 each time a pair of literals is encountered. On the other hand, if the literal
xi exists in one clause, but its negation (i.e., x′

i) does not exist in any clause, then we can immediately
assign xi to true and increment our counter by 1. A similar argument holds when x′

i exists in a clause, but
xi does not exist in any clause. Observe that this problem can be solved in polynomial time (actually it is
solved in linear time). 2

5. The Satisfiability problem (SAT) is concerned with a finding a satisfying assignment to a conjunction of
clauses. kSAT is defined as the restriction of SAT in which each clause has exactly k literals. HornSAT
is the restriction of SAT in which each clause is Horn, i.e., each clause has at most one positive literal.
In class, we showed that 3SAT is NP-complete, whereas, 2SAT and HornSAT are decidable in polynomial
time. The HornSAT⊕2SAT problem is the restriction of SAT in which each clause is either Horn or has
exactly 2 literals. Argue that the HornSAT⊕2SAT problem is NP-complete. (Hint: Use a reduction from
3SAT.)

Proof: First note that the HornSAT⊕2SAT problem is clearly in NP, since a Non-deterministic Turing
machine can guess an assignment from {0, 1}n and output true if the input instance is satisfied and false

otherwise, i.e., the verification of instances can be carried out in polynomial time.

We now reduce the 3SAT problem to the HornSAT⊕2SAT problem to establish its NP-Hardness.

Let φ = C1 ∧ C2 . . . Cm denote an instance of 3SAT on the variables {x1, x2, . . . , xn}. We transform each
clause Ci into a collection of one or more clauses Si, such that

(a) Each clause in Si is either a 2SAT clause or a Horn clause, and

(b) The 3SAT formula φ is satisfiable if and only if the conjunction of all the clauses in S1 through Sm is
satisfiable.

Clause Ci is transformed into Si as follows.

(a) Ci has 2 or more negative literals - Si = {Ci}, i.e., nothing needs to be done, since Ci is already Horn.
It is also trivially true, that an assignment to φ that satisfies Ci must satisfy Si and vice versa.

(b) Ci has exactly 2 positive literals - Let Ci = (xi, xj , x̄k). Si is {(xi, w̄i1, x̄k), (xj , wi1)}. Consider an
assignment to φ that satisfies Ci; it is not hard to see that we can choose wi1 appropriately to ensure
that (xi, w̄i1, x̄k)∧(xj , wi1) is satisfied. Likewise, if (xi, w̄i1, x̄k)∧(xj , wi1) is satisfied by an assignment,
then one of {xi, xj} must be set to true or xk must be set to false in this assignment. If this is not the
case, then Si simplifies to (wi1)(w̄i1), which is unsatisfiable, contradicting the hypothesis!

(c) Ci has all 3 literals positive - Let Ci = (xi, xj , xk). Si is {(xi, w̄i1, w̄i2), (xj , wi1), (xk, wi2)}. We use
an argument similar to the above case that establishes that if Ci is satisfied by an assignment to φ,
then the conjunction of the clauses in Si is satisfiable and vice versa.

Let φ′ denote the formula created by taking the conjunction of the clauses in Si, i = 1, 2, . . . ,m. We
have thus established that φ is satisfiable, if and only if φ′ is; it follows that the Horn⊕2SAT problem is
NP-complete. 2

6

References

[CLR92] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press and McGraw-
Hill Book Company, 6th edition, 1992.

7

