
Advanced Analysis of Algorithms - Midterm (Solutions)

L. Kovalchick

LCSEE,

West Virginia University,

Morgantown, WV

{lynn@csee.wvu.edu}

1 Problems

1. Summation: Obtain asymptotic tight bounds (upper and lower) on

n
∑

k=1

k2 log k.

Solution:

Observe that
∑n

k=1
k2 log k is a monotonically increasing function; therefore, we can use approximation by

integrals.
Lower Bound:
Note that

∑n

k=1
k2 log k = 0+

∑n

k=2
k2 log k, since log 1 = 0. Using our formula for approximating the lower

bound of a monotonically increasing function by integrals, we have
∫ n

1
k2 · log k dk ≤

∑n

k=2
k2 log k. Using

integration by parts, we let dv = k2 dk ⇒ v =
∫

k2 dk = k
3

3
and u = log k ⇒ du = 1

k
dk. Performing the

integration, we have the following.

∫

k2 · log k dk =
k3

3
· log k −

∫

k3

3
·
1

k
dk

=
k3

3
· log k −

1

3

∫

k2 dk

=
k3

3
· log k −

k3

9
+ C

Using this antiderivative, we can evaluate the definite integral as follows.

∫ n

1

k2 · log k dk =

[

k3

3
· log k −

k3

9

]n

1

=
n3

3
· log n−

n3

9
−

13

3
· log 1 +

13

9

=
n3

3
· log n−

n3

9
+

1

9

Thus, we have
∑n

k=1
k2 log k ∈ Ω(n3 · log n).

Upper Bound:
Using our formula for approximating the upper bound of a monotonically increasing function by integrals,

1

we have
∑n

k=1
k2 log k ≤

∫ n+1

1
k2 · log k dk. Using the antiderivative obtained for the lower bound, we can

evaluate the definite integral as follows.

=

[

k3

3
· log k −

k3

9

]n+1

1

=
(n+ 1)3

3
· log(n+ 1)−

(n+ 1)3

9
−

13

3
· log 1 +

13

9

=
(n+ 1)3

3
· log(n+ 1)−

(n+ 1)3

9
+

1

9

Thus, we have
∑n

k=1
k2 log k ∈ O(n3 · log n).

Observe that
∑n

k=1
k2 log k is bounded below by Ω(n3 · log n) and it is bounded above by O(n3 · log n).

Therefore,
∑n

k=1
k2 log k ∈ Θ(n3 · log n).

Note: For an alternative solution to this problem, please see Appendix (A). 2

2. Convexity:

(a) Let S1 and S2 be 2 convex sets. Argue that S1 ∩ S2 is a convex set. (3 points.)

Proof:

Let S = S1 ∩ S2. Now, consider any 2 elements in S, namely x and y and the parametric point
z = λ ·x+(1−λ) · y, 0 ≤ λ ≤ 1, which represents the straight line joining x and y. Since S1 is convex,
z ∈ S1; likewise, since S2 is convex, z ∈ S2. Since z ∈ S1 and z ∈ S2, it follows that z ∈ S1 ∩ S2. In
other words, the set S is convex. 2

(b) What can you say about the function f(x) = sinx in the interval [0, π], as regards convexity? Justify
your answer mathematically (3 points)

Solution:

Observe that f ′(x) = cosx and f ′′(x) = − sinx. From first principles, we know that a function f(x)
is convex over a domain D, if and only if f ′′(x) ≥ 0, ∀x ∈ D. In our case, the domain D = [0, π] and
f ′′(π

2
) = − sin π

2
= −1, from which we can conclude that f(x) = sinx is not convex. In fact, f(x) is a

concave function, in the interval [0, π].

1

2

Figure 1: Graph of f(x) = sinx in the interval [0, π].

2

2

3. Probability: Consider a bin containing 5 red balls and 7 black balls. What is the probability of obtaining
2 red balls in a single draw of 2 balls, where a draw of 2 balls is defined as:

(a) One ball is drawn from the bin and then the second one is drawn, without replacing the first ball. (2
points)

Solution:

Let A be the event that the ball obtained in the first draw is red and B be the event that the ball
obtained in the second draw is red. Then, A∩B is the event that A occurs, and thenB occurs after A has
occurred. Observe that the probability of obtaining a red ball on the first draw is Pr{A} = 5

12
. Then,

the probability of obtaining a second red ball from the remaining balls in the bin is Pr{B|A} = 4

11
.

Thus, we have the following.

Pr{obtaining 2 red balls} = Pr{A ∩B}

= Pr{A} ·Pr{B|A}

=
5

12
·
4

11

=
5

3
·
1

11

=
5

33

2

(b) One ball is drawn from the bin and the second one is drawn, after replacing the ball drawn first in the
bin. (2 points)

Solution:

Let A be the event that the ball obtained in the first draw is red and B be the event that the ball
obtained in the second draw is red. Then, A ∩ B is the event that A occurs, and then B occurs after
A has occurred. Observe that since the first ball is replaced, our sample space for both the first and
second draw consists of 12 balls (i.e., 5 red balls and 7 black balls). Thus, the probability of obtaining
a red ball on the first draw is Pr{A} = 5

12
. Then, the probability of obtaining a second red ball is

Pr{B|A} = 5

12
. Thus, we have the following.

Pr{obtaining 2 red balls} = Pr{A ∩B}

= Pr{A} ·Pr{B|A}

=
5

12
·
5

12

=
25

144

2

(c) The two balls are selected at once from the bin. (2 points)

Solution:

Observe that the number of ways that we can choose 2 red balls from the 5 red balls that are in the
bin is

(

5

2

)

, and the number of ways that we can choose 2 balls from the total number of balls in the

bin is
(

12

2

)

. Now, the probability of choosing 2 red balls from the 12 balls in the bin is:

(

5

2

)

(

12

2

) =
5!

2!·3!

12!

2!·10!

=
5! · 2! · 10!

2! · 3! · 12!

3

=
5! · 10!

3! · 12!

=
5 · 4 · 3! · 10!

3! · 10! · 11 · 12

=
5 · 4

11 · 12

=
5

11 · 3

=
5

33

2

4. Search Trees: Argue that if a node in a binary search tree has 2 children, then its successor has no left
child, while its predecessor has no right child.

Proof: We shall show that if a node x in a binary search tree T has 2 children, then its successor has no
left child. The proof showing that its predecessor has no right child can be developed similarly. Without
loss of generality, we assume that all keys in the tree T are distinct.

Lemma 1.1 If node x has a right child y, then its successor must be located in the subtree rooted at y.

Proof: Consider the case, in which x is the root r of T ; in this case all nodes having keys greater than
key[x] and hence the successor of x are located in the subtree rooted at y. It follows that the lemma is
trivially true. (See Figure (2).)

x=r

y

Figure 2: Simple case for successor of x

Let x be a node in T , distinct from the root r of T and consider the unique path P from r to x in T . Unlike
the case in which x was the root, a node having key value greater than key[x] is not necessarily located
at the subtree rooted at y. Let S denote the set of all nodes in the subtree rooted at y. We consider the
following 2 cases:

4

(a) Node x is in the subtree rooted at the left child of r - Observe that the key[r] and the keys of all
the nodes in its right subtree are greater than the keys of any node in S ∪ {x} and therefore cannot
be candidates for the successor of x. This property continues along the path P , till such time as an
ancestor of x, viz. z, is reached, such that x is in the right subtree of z. Now, by the property of
binary search trees, key[z] and the keys of all the nodes in its left subtree are smaller than the key of
any node in S ∪{x}; thus they can also be excluded from the candidate list of possible successors of x.
The above two observations are recursively applied till we reach node x from r; at this point, we have
eliminated every node in T that is not in S, as a candidate for the successor of x.

(b) Node x is in the subtree rooted at the right child of r - Observe that the key[r] and the keys of all
the nodes in its left subtree are smaller than the keys of any node in S ∪ {x} and therefore cannot
be candidates for the successor of x. This property continues along the path P , till such time as an
ancestor of x, viz. z, is reached, such that x is in the left subtree of z. Now, by the property of binary
search trees, key[z] and the keys of all the nodes in its right subtree are greater than the key of any
node in S ∪ {x}; thus they can also be excluded from the candidate list of possible successors of x.
The above two observations are recursively applied till we reach node x from r; at this point, we have
eliminated every node in T that is not in S, as a candidate for the successor of x.

2

We have thus established that the succeesor of x, must lie in the subtree rooted at y. Let z denote the succes-
sor of x and let it have a left subchild, say p. By the property of binary search trees, key[x] < key[p] < key[z],
contradicting the choice of z, as the successor of x. 2

5. Dynamic Programming: Let S = {s1, s2, . . . , sn} denote a collection of n positive numbers, such that
∑n

i=1
si = N . Devise an algorithm that runs in time O(n ·N) to check if there is a set S ′ ⊆ S, such that

∑

si∈S
′ si =

∑

si∈S−S′ si. (Hint: 0/1 Knapsack!)

Solution: Observe that if
∑n

i=1
si = N is an odd number the answer is immediately “no”, since an odd

number cannot be broken into two equal integral parts.

Associate a decision variable xi with each si, where

xi = 1, if si ∈ S′

= 0, if si 6∈ S′

Thus, a sequence of decisions have to be made on variables x1 through xn.

We define m[i, j] to be T (true), if some subset of the elements in {s1, s2 . . . , si} has elements that add up
to j. In this notation, m[n, M

2
] is the answer to our question, i.e., the answer to the input problem is “yes”

if and only if m[n, M
2
] is T.

The key observation is that m[i, j] can be true if and only if one of the following holds:

• m[i−1, j] is T. Clearly if there is a subset of the first i−1 elements that sums to j, the same subset can
be used as the subset of the first i elements that sums to j. This corresponds to the case of assigning
xi = 0;

• m[i− 1, j − si] is T. If si is to be included in the subset of {s1, s2, . . . , si} that sums to j, then there
must exist some subset of the first i− 1 elements that sums to j − si. This corresponds to the case of
assigning xi = 1.

Proceeding this way, we can build a table m[1..n, 0..N
2
] and check whether m[n, M

2
] is T. Since each entry

can be filled in O(1) time, the total time taken is O(n ·N).

It is very important to note that the recursive algorithm developed above does not run in time that is
polynomial in the size of the input. The input size is log s1 + log s2 + . . .+ log sn, whereas the running time
is O(n ·

∑n

i=1
si).

2

5

A An Alternative Solution to Problem 1

Lower Bound:
Assume, without loss of generality, that n is even. Observe that we can obtain a lower bound on this series as
follows.

n
∑

k=1

k2 log k = 12 · log 1 + 22 · log 2 + . . .+ n2 · log n

≥

n
∑

k= n

2

k2 log k

= (
n

2
)2 · log(

n

2
) + (

n+ 1

2
)2 · log(

n+ 1

2
) + . . .+ n2 · log n

≥ (
n

2
)2 · log(

n

2
) + (

n

2
)2 · log(

n

2
) + . . .+ (

n

2
)2 · log(

n

2
)

=
n

2
· (
n

2
)2 · log(

n

2
)

=
n

2
·
n2

4
· (log n− log 2)

=
n3

8
· (log n− 1)

=
n3

8
· log n−

n3

8

≥
1

10
n3 log n (for n ≥ 32)

Note:

n3

8
· log n−

n3

8
≥

1

10
· n3 · log n

10 ·
n3

8
· log n− 10 ·

n3

8
≥ n3 · log n

5

4
· n3 log n−

5

4
· n3 ≥ n3 · log n

5

4
· n3 log n− n3 log n ≥

5

4
· n3

1

4
· n3 log n ≥

5

4
· n3

log n ≥ 5

n ≥ 25

n ≥ 32

We can choose n ≥ 32. Thus,
∑n

k=1
k2 · log k ∈ Ω(n3 · log n).

Upper Bound:
Observe that we can obtain an upper bound on this series by bounding each term of the series, by the largest
term (n2 · log n). From this, we have:

n
∑

k=1

k2 · log k = 12 · log 1 + 22 · log 2 + . . .+ n2 · log n

≤ n2 · log n+ n2 · log n+ . . .+ n2 · log n

6

= n · n2 log n

= n3 · log n

Thus,
∑n

k=1
k2 · log k ∈ O(n3 log n).

Observe that
∑n

k=1
k2 · log k is bounded below by Ω(n3 · log n) and it is bounded above by O(n3 · log n).

Therefore,
∑n

k=1
k2 · log k ∈ Θ(n3 log n).

7

