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1 Problems

1. We discussed the Hat Paradox problem in class. To recap, N men throw their hats in a ring and after a
random shuffling, each man draws out a hat. We showed that the expected number of people who get their
own hats is 1, irrespective of the number of people involved. Derive an upper bound on the probability that
all the men involved get their own hats?

Solution:
Let the random variable X represent the number of people that get their own hat. Observe that X ranges
from 0 to N . We want an upper bound on the probability that everyone gets his own hat (i.e., Pr{X = N}).
Using Markov’s Inequality, we have Pr{X ≥ N} ≤ E[X]

N . Observe that this system can be rewritten as
(Pr{X = N} + Pr{X > N}) ≤ E[X]

N . Notice that Pr{X > N} = 0, since it is not possible for more than
N men to get their own hats. Thus, we have the following.

(Pr{X = N}+ Pr{X > N}) ≤ E[X]
N

Pr{X = N} ≤ 1
N

, since E[X] = 1

2

2. Consider the Towers of Hanoi problem. There are 3 pegs, viz., P1, P2 and P3. On P1 there is collection of
N disks, such that the circumference of each disk is larger than the disk above it. The goal is to move the
N disks from P1 onto P2, subject to the following constraints:

(a) In one move, you can move precisely one disk from one peg to another peg.

(b) At no time, can a disk be placed on another disk with a smaller circumference.

Argue with an example, that the additional peg, P3, is necessary. Derive a recurrence relation for calculating
the number of moves required to move N disks from P1 onto P2. Solve the recurrence, i.e., obtain a closed-
form expression for the recurrence derived.

Solution:
Notice that when we have only one disk, since we do not need P3, we can move the disk directly from P1 to
P2.
Now, consider the case when we have 2 disks. If we are only allowed to use 2 pegs (i.e., P1 and P2) we
would first move the disk on the top of P1 to P2. Observe that this is the only choice that we could have
made because according to constraint (a), in a single move we can only move a single disk from one peg to
another. After the first move, according to the definition of the problem, we have the disk with the smaller
circumference on P2 and the disk with the larger circumference on P1. Now, we are stuck, because we
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cannot move the disk on P1 onto P2, on account of constraint (b). Thus, the only move that we can make
is to move the disk on P2 back onto P1, which gives us the same problem that we started with. Therefore,
P3 is necessary, if the number of disks is greater than 1.
Next, we must show that P3 is sufficient (i.e., we only need a total of 3 pegs to solve the problem for N
disks, N ≥ 1). Let T (N) be the minimum number of moves needed to solve the problem for N disks. Notice
that T (1) = 1 (i.e., if we have 1 disk, then only a single move is needed). The interesting case occurs when
N ≥ 2. Notice that when the number of disks is N such that N > 1, we must first move N − 1 disks from
P1 to P3 using P2 as an auxiliary peg. Then, we can move the Nth disk from P1 to P2 using only a single
move (i.e., T (1) = 1). We then move the remaining N − 1 disks from P3 to P2 using P1 as an auxiliary peg.
Therefore, the existence of one more peg (i.e., P3) is sufficient to solve the problem.
Observe that we have the following recurrence.

T (1) = 1
T (N) = 2 · T (N − 1) + 1, for N > 1

We will now guess that T (N) = 2N − 1. We will prove that our guess is correct using induction on N .
Base Case:
Our base case occurs when N = 1. Substituting N = 1 into T (N) = 2N − 1 we have the following.

T (1) = 21 − 1
= 2− 1
= 1

Thus, 2N − 1 = T (1) and the base case is true.
Inductive Hypothesis:
Assume that T (N − 1) is true, i.e., T (N − 1) = 2N−1 − 1.
Inductive Step:
We must prove that T (N) is true. Using our recurrence, we have the following.

T (N) = 2 · T (N − 1) + 1
= 2 · (2N−1 − 1) + 1 using our inductive hypothesis
= 2N − 2 + 1
= 2N − 1

Thus T (N − 1) → T (N); applying the principle of Mathematical Induction, we conclude that the closed
form expression for our recurrence is 2N − 1 for N ≥ 1. 2

3. Let A denote an array of n elements. Describe a strategy that finds the maximum and minimum of the
array, using at most 3

2n comparisons.

Solution:
Consider the array A of n elements. Assume first that n is even. We first break the array into n

2 pairs of 2
elements each. For each pair, we compare the elements to each other and place the smaller of the two into
the set Smin and the larger of the two into the set Smax. Observe that if the maximum element of A is
in Smin, then it is also in Smax since corresponding to each element in Smin, there is at least one element
in Smax that is greater than or equal to it. Accordingly, we can focus on Smax for finding the maximum
element of A. Using an identical argument, we can focus on Smin for finding the minimum element of A.
The process of building Smax and Smin requires exactly n

2 comparisons.

Finding the maximum element of Smax requires exactly n
2 − 1 comparisons; likewise finding the minimum

element of Smin requires exactly n
2 − 1 comparisons; thus the total number of comparisons to find both the
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maximum and minimum of A, when the number of elements is even, is at most n
2 +(n

2 −1)+(n
2 −1), which

is at most 3
2 · n− 2.

Now consider the case that n is odd. It follows that (n − 1) is even. Apply the same strategy discussed
above to obtain the maximum (xmax) and minimum (xmin) elements of the first (n − 1) elements, using
at most 3

2 (n− 1)− 2 comparisons. Then using at most 3 more comparisons, determine the maximum and
minimum elements of the set {xmax, xmin A[n]} to obtain the maximum and minimum elements of the
complete array A. The total number of comparisons needed is 3

2 (n− 1)− 2 + 3 which is at most 3
2 · n. 2

4. Show that for any integer n ≥ 0,

n∑
k=0

(
n

k

)
· k = n · 2n−1.

Hint: What is
∑n

k=0

(
n
k

)
?

Solution:
Let Sn =

∑n
k=0

(
n
k

)
· k, then we have the following.

n∑
k=0

(
n

k

)
· k =

n∑
k=1

(
n

k

)
· k, since for k = 0 we get 0

=
n∑

k=1

n! · k
k! · (n− k)!

=
n∑

k=1

n · (n− 1)! · k
k · (k − 1)! · (n− k)!

= n ·
n∑

k=1

(n− 1)!
(k − 1)! · (n− k)!

= n ·
n∑

k=1

(n− 1)!
(k − 1)! · (n− 1− (k − 1))!

= n ·
n−1∑
j=0

(n− 1)!
j! · ((n− 1)− j)!

, since j = k − 1

= n ·
n−1∑
j=0

(
n− 1

j

)
= n · 2n−1, since

∑n
k=0

(
n
k

)
= 2n

Thus,
∑n

k=0

(
n
k

)
· k = n · 2n−1. 2
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5. Professor Smith proposes a new sorting algorithm called Smith-Sort

Function Smith-Sort(A, i, j)
1: if (A[i] > A[j]) then
2: Exchange these elements in the array.
3: end if
4: if ((i + 1) ≥ j) then
5: return
6: end if
7: k ← b j−i+1

3 c
8: Smith-Sort(A, i, j − k)
9: Smith-Sort(A, i + k, j)

10: Smith-Sort(A, i, j − k)

Algorithm 1.1: Smith-Sort

Prove that Algorithm (1.1) correctly sorts an array of n elements provided in A[i] through A[j]. You may assume
that all elements are distinct.

Proof: We use mathematical induction on the number of elements in the array, i.e., n = |j − i + 1| to prove
its correctness.

We have two base cases, n = 1 and when n = 2. Consider the case when n = 1. The array A contains only
one element, thus i = j. The test (A[i] > A[j]) fails, since A[i] is equal to A[j]. The test (i + 1 ≥ j) succeeds,
since i = j. Thus, the algorithm correctly returns a sorted array when there is exactly one element.

Consider the case when n = 2. The test (A[i] > A[j]) will swap the elements of A if necessary and then the
test (i + 1 ≥ j) succeeds, since i = j − 1. Thus, the algorithm correctly sorts a 2 element array.

Accordingly, we have proved that Algorithm (1.1) works correctly for the base cases.
Inductive Hypothesis: Assume that Algorithm (1.1) correctly sorts the elements A[i] through A[j] of the array

A, when 3 ≤ |j − i + 1| ≤ n.
Consider the case when the array A contains n + 1 elements. Thus, i = 1 and j = n + 1, when Smith-Sort()

is called. The algorithm first calculates k = b j−i+1
3 c = bn+1−1+1

3 c = bn+1
3 c. Notice that i ≤ k ≤ j, when

|j − i + 1| ≥ 3.
We divide the array A[i · ·j] (conceptually) into the following regions: L1 : A[i · ·i + k], L2 : A[i + k + 1 · ·j− k]

and L3 : A[j − k + 1 · ·j]. Thus, the first recursive invocation, viz., Smith-Sort(A,i,j − k) is called on L1 ∪ L2,
the second recursive invocation is called on L2 ∪L3, and the third recursive invocation is called on L1 ∪L2 again.

By the inductive hypothesis, the first recursive invocation will return a correctly sorted array, since the number
of elements in A[i · · · j − k] is at most n, when n ≥ 3. It follows that after the first recursive invocation, each
element in L2 is at least as large as every element in L1. Arguing similarly, we observe that the second recursive
invocation correctly sorts the set L2 ∪ L3; further every element in L3 is at least as large as each element in L2.
From the correctness of the first recursive invocation, we can therefore conclude that each element in L3 is at
least as large as every element in L1 ∪ L2; further as per the inductive hypothesis, all the elements in L3 have
been correctly sorted. The third recursive invocation completes the sorting procedure, since as per the inductive
hypotheis, it correctly sorts L1 ∪ L2 and thus the set L1 ∪ L2 ∪ L3 is correctly sorted.
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