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1 Summation

1. Assume that 0 < |x| < 1. Derive closed forms for the following sums:

(a)
∑∞

k=0 xk.
Solution: Observe that:

∑∞
k=0 xk = 1 + x + x2 + x3 + . . . = S. Multiplying S by x we get:

x · S = x(1 + x + x2 + x3 + . . .)
= x + x2 + x3 + x4 + . . .

Observe that S−x ·S = S(1−x) = 1 and by solving for S, we get S = 1
1−x . Thus,

∑∞
k=0 xk = 1

1−x . 2

(b)
∑∞

k=0 k · xk.
Solution: Using the result of problem 1(a), we have:

∑∞
k=0 xk = 1

1−x . Differentiating both sides of
the above equation with respect to x and making use of the fact that the derivative of a sum is equal
to the sum of derivatives, we get:

(
∞∑

k=0

xk)′ = (
1

1− x
)′

∞∑
k=0

k · xk−1 =
0 · (1− x)− (1) · (−1)

(1− x)2

∞∑
k=0

k · xk−1 =
0 + 1

(1− x)2

∞∑
k=0

k · xk−1 =
1

(1− x)2

Multiplying both sides of the above equation by x, we get
∑∞

k=0 k · xk = x
(1−x)2 . 2

(c)
∑∞

k=0 k2 · xk.
Solution: Using the result of problem 1(b), we have:

∑∞
k=0 k · xk = x

(1−x)2 . Differentiating both sides
of the above equation with respect to x and making use of the fact that the derivative of a sum is equal
to the sum of derivatives, we get:

(
∞∑

k=0

k · xk)′ = (
x

(1− x)2
)′

∞∑
k=0

k2 · xk−1 =
1 · (1− x)2 − x · (2 · (1− x) · (−1))

(1− x)4
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∞∑
k=0

k2 · xk−1 =
(1− x)2 + 2 · x · (1− x)

(1− x)4

∞∑
k=0

k2 · xk−1 =
(1− x)[1− x + 2 · x]

(1− x)4

∞∑
k=0

k2 · xk−1 =
1 + x

(1− x)3

Multiplying both sides of the above equation by x, we get:
∑∞

k=0 k2 · xk = x(1+x)
(1−x)3 . 2

2. Show that
∑n

k=1
1

2·k−1 = ln(
√

n) + O(1).
Solution: Observe that

∑n
k=1

1
2·k−1 = 1+ 1

3 + 1
5 + . . . and that

∑n
k=1

1
k = 1+ 1

2 + 1
3 + 1

4 + . . .. By subtracting
1
2 ·

∑n
k=1

1
k from

∑n
k=1

1
k we get:

n∑
k=1

1
k
− 1

2
·

n∑
k=1

1
k

= 1 +
1
3

+
1
5

+ . . .

=
n∑

k=1

1
2 · k − 1

Using the fact that Hn =
∑n

i=1
1
i = ln(n) + O(1), we have:

n∑
k=1

1
2 · k − 1

= Hn −
1
2
·Hn

= ln(n) + O(1)− 1
2
(ln(n) + O(1))

=
1
2
· ln(n) + O(1)

= ln(
√

n) + O(1)

Thus,
∑n

k=1
1

2·k−1 = ln(
√

n) + O(1). 2

3. Show that
∑∞

k=0
k−1
2k = 0.

Solution: Observe that we can rewrite the sum as,

∞∑
k=0

k − 1
2k

=
∞∑

k=0

(
k

2k
− 1

2k
)

=
∞∑

k=0

k

2k
−

∞∑
k=0

1
2k

Notice that
∑∞

k=0
k
2k =

∑∞
k=0 k · ( 1

2 )k. Now, we can use the result obtained from problem 1(b) in order to
get

∞∑
k=0

k · (1
2
)k =

1
2

(1− 1
2 )2

=
1
2

( 1
2 )2

=
1
2
1
4
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=
4
2

= 2

Next, notice that
∑∞

k=0
1
2k =

∑∞
k=0(

1
2 )k, which is an infinite decreasing geometric series. Thus,

∑∞
k=0(

1
2 )k =

1
1− 1

2
= 2.

Now, by substituting back into our equation, we get

∞∑
k=0

k

2k
−

∞∑
k=0

1
2k

= 2− 2

= 0

2

2 Counting

Let C(n, k), k ≤ n, denote the number of ways of selecting k objects from a set of n objects.

1. Show that C(n, k) = C(n− 1, k) + C(n− 1, k − 1).
Solution: Observe that

C(n− 1, k) + C(n− 1, k − 1) =
(n− 1)!

k! · (n− 1− k)!
+

(n− 1)!
(k − 1)! · (n− k)!

=
(n− 1)!

(k − 1)! · k · (n− 1− k)!
+

(n− 1)!
(k − 1)! · (n− 1− k)! · (n− k)

=
(n− 1)! · (n− k) + (n− 1)! · k

(k − 1)! · k · (n− 1− k)! · (n− k)

=
(n− 1)! · n

(k − 1)! · k · (n− 1− k)! · (n− k)

=
n!

k! · (n− k)!

Thus, C(n, k) = C(n− 1, k) + C(n− 1, k − 1) = n!
k!·(n−k)! . 2

2. Show that C(n, k) = n
k C(n− 1, k − 1).

Solution: Observe that

n

k
· C(n− 1, k − 1) =

n

k
· (n− 1)!
(k − 1)! · (n− k)!

=
n · (n− 1)!

k · (k − 1)! · (n− k)!

=
n!

k! · (n− k)!

Thus, C(n, k) = n
k · C(n− 1, k − 1). 2

3. Prove that
∑n

i=1 i = C(n + 1, 2).
Proof: Observe that

∑n
i=1 i = 1 + 2 + 3 + . . . = n·(n+1)

2 . We also have that

C(n + 1, 2) =
(n + 1)!

2! · (n− 1)!

=
(n + 1)!

2 · (n− 1)!
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=
(n + 1) · n · (n− 1)!

2 · (n− 1)!

=
(n + 1) · n

2

Thus,
∑n

i=1 i = C(n + 1, 2). 2

3 Probability

Let X and Y random variables defined on a sample space S.

1. Show that E[a] = a, if a is a constant.
Solution: Let g(x) = a for all x. Then

E[a] = E[g(x)]

=
∑

x·p(x)>0

g(x) · p(x)

=
∑

x·p(x)>0

a · p(x)

= a ·
∑

x·p(x)>0

p(x)

= a · 1
= a

Thus, the expectation of a constant is the constant. 2

2. If X and Y are non-negative, show that E[max(X, Y )] = E[X] + E[Y ].
Solution: Since X and Y are positive, we have max(X, Y ) ≤ X+Y . This gives us E[max(X, Y )] = E[X+Y ]
and by linearity of expectation, we then have E[X +Y ] = E[X]+E[Y ]. Thus, E[max(X, Y )] = E[X]+E[Y ].
2

3. Prove that Var[aX] = a2Var[X], if a is a constant.
Proof: Let Y = aX. Then Var[aX] = Var[Y ]. Observe that

Var[Y ] = E[Y 2]− (E[Y ])2 by definition of variance

= E[a2 ·X2]− (E[a ·X])2

= a2 ·E[X2]− a2(E[X])2

By definition, a2·E[X2]−a2·(E[X])2 = a2·(E[X2]−(E[X])2) = a2Var[X]. Therefore, Var[aX] = a2Var[X].
2

4. Assume that X can take on only two values, viz. 0 and 1. Show that Var[X] = E[X] ·E[1−X].
Solution: Let Pr{X = 0} = 1−p and let Pr{X = 1} = p. Then, by defintion, E[X] = 0·(1−p)+1·p = p and
E[X2] = 02 ·(1−p)+12 ·p = p, thus E[X2] = E[X]. Observe that, by definition, Var[X] = E[X2]−(E[X])2.
Since, E[X2] = E[X], we have

Var[X] = E[X]− (E[X])2

= E[X] · (1−E[X])
= E[X] ·E[1−X] by linearity of expectation

Thus, Var[X] = E[X] ·E[1−X]. 2
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5. Let X be non-negative. Show that Pr{X ≥ t} ≤ E[X]
t , for t > 0. (Markov’s inequality.)

Proof: Let E[X] =
∑

x·p(x)>0 x · p(x). By splitting the summation, we obtain
∑

x·p(x)>0 x · p(x) =
∑

x≥t x ·
p(x) +

∑
x<t x · p(x). Using the technique of bounding terms, we then obtain∑

x≥t

x · p(x) +
∑
x<t

x · p(x) ≥
∑
x≥t

x · p(x)

≥
∑
x≥t

t · p(x)

Since,
∑

x≥t t · p(x) = t ·
∑

x≥t p(x) = t ·Pr{x ≥ t}, we have that Pr{X ≥ t} ≤ E[X]
t . 2

6. Let µ and σ denote the expectation and variance of X respectively. Prove that Pr{|X − µ| ≥ tσ} ≤ 1
t2 .

(Chebshev’s inequality.)
Proof: Observe that (X −µ)2 is a non-negative random variable, with expectation σ (as per the definition
of variance), i.e., E[(X − µ)2] = σ2.

Therefore, we can use Markov’s Inequality, to get Pr{(X−µ)2 ≥ σ2 · t2} ≤ E[(X−µ)2]
σ2·t2 = σ2

σ2·t2 = 1
t2 . Observe

that since (X−µ)2 is non-negative, (X−µ)2 ≥ t2σ2 ⇔ |X−µ| ≥ t·σ. Therefore, Pr{|X−µ| ≥ t·σ} ≤ 1
t2 . 2
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