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1 Summation

1. Assume that 0 < |z| < 1. Derive closed forms for the following sums:

(a)

Do .
Solution: Observe that: > .-, 2P =14z +22+23+ ... =S. Multiplying S by = we get:
-8 = z(l+x+a®+23+..)
r+ai+ad+at+ ...

Observe that S —z-S = S(1—x) = 1 and by solving for S, we get S = -2—. Thus, > ;- 2" = . O

x’ 1—x
Yok - at.
Solution: Using the result of problem 1(a), we have: >~ a* = t2—. Differentiating both sides of
the above equation with respect to x and making use of the fact that the derivative of a sum is equal
to the sum of derivatives, we get:
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Multiplying both sides of the above equation by z, we get > po o k - 2F = - O

Do k2.
Solution: Using the result of problem 1(b), we have: Y ;= k- 2% = {i=myz - Differentiating both sides
of the above equation with respect to z and making use of the fact that the derivative of a sum is equal

to the sum of derivatives, we get:
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Multiplying both sides of the above equation by z, we get: Z;O:o k2. xk = =R O

2. Show that ", _, 37 = In(v/n) + O(1).
Solution: Observe that Y | 57— =145+ 4+...and that >, _, + = 1+3+35+3+.... By subtracting

1.y 1 noo1 ,
5D g1 % from Y+ we get:
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Using the fact that H,, = >, 1 = In(n) + O(1), we have:
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— In(n)+0(1) - %(ln(n) +0(1))
_ % In(n) + O(1)
— In(yi) +O()

Thus, Y20_, ooir = In(y) + O(1). O

3. Show that > 57 &L = 0.
Solution: Observe that we can rewrite the sum as,
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Notice that Y32 2 = Y po k- (3)*. Now, we can use the result obtained from problem 1(b) in order to
get
Z k)N = P
= 2 (1=3)
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Next, notice that Y- ) & = > pe(3)", which is an infinite decreasing geometric series. Thus, Y- ,(3)F =

2k
1
T =2

2
Now, by substituting back into our equation, we get

ko= 1
Do Dgr = 272

k=0 =0

2 Counting

Let C(n, k), k < n, denote the number of ways of selecting k objects from a set of n objects.

1. Show that C(n,k) =C(n—1,k) +C(n — 1,k —1).
Solution: Observe that

n—1)! (n—1)!
Cln=Lk)+Cn—Lk=-1) = k!-((n—l—lc)! k-1l (n— k)
_ (n—1)! n (n—1)!
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Thus, C(n,k)=C(n—1,k)+C(n—1,k—1) = k!-(gik)l' O

2. Show that C(n, k) = 2C(n — 1,k —1).
Solution: Observe that

n n (n—1)!
= —1.k=-1) = —.
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Thus, C(n,k) = -C(n—1,k—1). O
3. Prove that Y7 i=C(n+1,2).
Proof: Observe that ZLJZI—%Q-F?H-...:W. We also have that
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Cln+12) o0 (n—1)!
(1)
- 2-(n—-1)!
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Thus, Y i, i=C(n+1,2). O
3 Probability
Let X and Y random variables defined on a sample space S.
1. Show that E[a] = a, if a is a constant.
Solution: Let g(z) = a for all . Then
Ela] = E[g(2)]
= ) g@)-pa)
z-p(x)>0
= > a-p
z-p(x)>0
= a- ) pl)
z-p(x)>0
= a-1
= a

Thus, the expectation of a constant is the constant. O

2. If X and Y are non-negative, show that Elmax(X,Y)] = E[X] + E[Y].
Solution: Since X and Y are positive, we have max(X,Y) < X+Y. This gives us E[max(X,Y)] = E[X+Y]
and by linearity of expectation, we then have E[X +Y| = E[X]|+E[Y]. Thus, E[max(X,Y)] = E[X]|+E[Y].
O

3. Prove that Var[aX] = a®*Var[X], if a is a constant.
Proof: Let Y = aX. Then Var[aX]| = Var[Y]. Observe that

Var[Y] = E[Y? - (E[Y])? by definition of variance
~ Ele® X7 - (Ela- X))
= d® E[X?] - d*(E[X])?

By definition, a®-E[X?]—a?-(E[X])? = a?-(E[X?]—(E[X])?) = a*Var[X]. Therefore, Var[aX] = a*Var[X].
O

4. Assume that X can take on only two values, viz. 0 and 1. Show that Var[X] = E[X] - E[1 — X].
Solution: Let Pr{X = 0} = 1—p and let Pr{X = 1} = p. Then, by defintion, E[X] = 0-(1-p)+1-p = p and
E[X?] =0%-(1—-p)+1%-p = p, thus E[X?] = E[X]. Observe that, by definition, Var[X] = E[X?] - (E[X])?.
Since, E[X?] = E[X], we have

Var(X] = E[X]— (E[X]?
- B[] (1-E[X))
= E[X] -E[l - X] by linearity of expectation
Thus, Var[X] = E[X]-E[l — X]. O



5. Let X be non-negative. Show that Pr{X >t} < %, for t > 0. (Markov’s inequality.)
Proof: Let E[X]| =3, ;)50 2 P(x). By splitting the summation, we obtain >°, . oz p(x) =35,z
p(x) +> .., 2 p(x). Using the technique of bounding terms, we then obtain

dowepl@)+y wople) =) x-p)

>t <t >t

> t-plx)

>t

Since, >, 5 t-p(x) =t-3 5, p(x) =t -Pr{z >t}, we have that Pr{X >t} < % |

6. Let p and o denote the expectation and variance of X respectively. Prove that Pr{|X — p| > to} < t%
(Chebshev’s inequality.)
Proof: Observe that (X — u)? is a non-negative random variable, with expectation o (as per the definition
of variance), i.e., E[(X — u)?] = o2.

Therefore, we can use Markov’s Inequality, to get Pr{(X —u)? > o2 -1?} < E[(X;';V] = Ug_; = 5. Observe

that since (X —p)? is non-negative, (X —p)? > t?0% < | X —p| > t-o. Therefore, Pr{|X —pu| > t-0} < 5. O



