
Automata Theory - Final (Solutions)

K. Subramani
LCSEE,

West Virginia University,
Morgantown, WV

{ksmani@csee.wvu.edu}

1 Problems

1. Let Σ = {a, b}. Write a CFG for the language L = {w | w = aib2i, i > 0}.

Solution: The following CFG represents L:

S → abb

S → aSbb

Note that ε 6∈ L, so S → ε should not be a production of this CFG. 2

2. (a) Argue that the following CFG is ambiguous.
(2 points)

E → E − E

E → 0 | 1 (1)

(b) Write an unambiguous CFG for the language represented by the CFG of System (1). (3 points)

Solution:

(a) Consider the string w = 1− 0− 1 ∈ L(E).

E ⇒ E − E

⇒ E − E − E

⇒ 1− E − E

⇒ 1− 0− E

⇒ 1− 0− 1

The above leftmost derivation represents a parse tree that will be evaluated as (1−0)−1 in a bottom-up evaluation.

E ⇒ E − E

⇒ 1−E

⇒ 1−E − E

⇒ 1− 0− E

⇒ 1− 0− 1

The above leftmost derivation represents a parse tree that will be evaluated as 1−(0−1) in a bottom-up evaluation.
Since there are two distinct leftmost derivations for the same string w, the CFG in System (2) is ambiguous.

1

(b) The following CFG represents the same language as System (2) and accounts for the ambiguity.

E → E − T | T

T → 0 | 1

2

3. Let Σ = {0, 1}. A string w ∈ Σ∗ is said to be balanced, if it contains an equal number of 0′s and 1′s. Consider the
CFG represented by System (2)

S → ε

S → SS

S → 0S1 | 1S0 (2)

Argue that this CFG represents the language of all and only balanced strings over the alphabet Σ.
Hint: Recall the Prefix Theorem proved in class.

Solution: The solution consists of two parts.

We first show that the language of the grammar represnts only balanced strings, i.e., every string w which is derived
from S is balanced.

Theorem 1.1 If S ⇒∗ w, then w is balanced.

Proof: We use induction on the number of steps used in the shortest, leftmost derivation of w from S.

BASIS: Let w be derived from S in exactly one step. From the production rules, it is clear that w must be ε and hence
w is indeed balanced.

INDUCTIVE STEP: Assume that the theorem is true for all strings w, whose shortest leftomost derivation from S,
takes at most n steps.

Now consider the case in which the shortest leftmost derivation of w from S take n+ 1 steps, where n ≥ 1. The first
step of the derivation must be one of S ⇒ SS, S ⇒ 0S1 or S ⇒ 1S0.

Assume that the first step of the derivation is S ⇒ 0S1. It follows that w = 0x1, where x is a string in Σ∗. Since
S ⇒∗ w, we must have S ⇒∗ x; however, the shortest leftmost derivation of x from S can take at most n steps. By
the inductive hypothesis, it follows that x is balanced. Consequently, w = 0x1 is also balanced.

An identical argument can be used for the case, in which the first step of the derivation is S ⇒ 1S0.

Finally, consider the case in which the first step of the derivation is S ⇒ SS. It follows that w can be broken up into
w1w2, such that S ⇒ w1 and S ⇒ w2. We cannot immediately apply the inductive hypothesis, since either w1 or w2
could be ε and therefore the length of w is not altered. However, observe that we are focussing on the shortest leftmost
derivation of w from S. If either w1 or w2 is ε, then we have needlessly used an extra step in the derivation and hence
our derivation could not have been the shortest one. It therefore follows that neither w1 nor w2 is ε. Now, the shortest
leftmost derivations of w1 and w2 from S take strictly less than n + 1 steps; as per the inductive hypothesis, w1 and
w2 are balanced. It therefore follows that w = w1 · w2 is also balanced. 2

We now show that if w is balanced then there is a derivation of w from S.

Theorem 1.2 Let w be a balanced binary string. Then, S ⇒∗ w.

Proof: We use induction on the length of w.

BASIS: Let |w| = 0; it follows that w = ε. Since S → ε is a production of the grammar, we have S ⇒ w and the
base case is proven.

INDUCTIVE STEP: Assume that the theorem is true, whenever |w| ≤ n. Now consider the case in which |w| = n+1.
The following cases need to be examined:

2

(i) w = 0x1 - Observe that x must be a balanced string and since it has length at most n, we must have S ⇒∗ x.
Now, w can be derived from S as follows: S ⇒ 0S1⇒∗ 0x1⇒ w.

(ii) w = 1x0 - This case is symmetric to the above case.

(iii) w = 0x0 - In class (Prefix Theorem), we showed that if a balanced binary string is of the form 0x0, then there
is some non-trivial prefix of this string that is also balanced. In other words, w can be broken up as w1 · w2,
where |w1| ≤ n and w1 is balanced. However, this immediately implies that w2 is balanced as well. Thus, w
can be derived from S as follows: S ⇒ SS ⇒∗ w1S ⇒

∗ w1w2 ⇒ w.

(iv) w = 1x1 - This case is symmetric to the above case.

2

2

4. In class, we proved that if Σ is a finite alphabet, then Σ∗ is a countable set. What can you say about the set 2Σ
∗

, as
regards countability?

Solution: The set P = 2Σ
∗

is uncountable. Assume the contrary and let P be countable. It is therefore denumerable
and I can enumerate the elements of P . Let O1 = {P0, P1, . . .} denote one such enumeration.

We know that Σ∗ is a countable set and hence there exists an enumeration O2 = {w0, w1, . . .} of the elements of Σ∗.

Accordingly, we can construct the table T = P × Σ∗, where the rows represent elements of P , as per O1, and the
columns represent the elements of Σ∗, as per O2. Note that T [i, j] represents the intersection of set Pi with string
wj . We set T [i, j] to 1, if wi ∈ Pj and to 0, otherwise. Now consider the set P ′ which is constructed as follows:
wi ∈ P ′, if and only if wi 6∈ Pi. Clearly, P ′ is a valid subset of Σ∗ and hence P ′ ∈ P . Accordingly, there is some
number k, such that P ′ = Pk. Let us try to assign a value to T [k, k]. If T [k, k] = 0, it means that wk 6∈ Pk. But as
per the definition of P ′, this means that wk ∈ P

′; however, P ′ = Pk and we have a contradiction. On the other hand,
if T [k, k] = 1, it means that wk ∈ Pk; therefore, wk cannot belong to P ′ and hence Pk! This contradiction has arisen
from the assumption that P is a countable set; it follows that P is uncountable.

2

5. Let Σ = {(,)}. A string w ∈ Σ∗ is said to be parenthetically balanced, if the following two conditions are met:

(a) The total number of left parentheses and right parentheses in w are equal, and

(b) In each prefix of w, the number of left parentheses is at least as large as the number of right parentheses.

For instance, “(((())))” is parenthetically balanced, whereas “)(” and “(()” are not. Design a Pushdown Automaton
that accepts the language of parenthetically balanced strings over the alphabet Σ.

Solution: We design a PDA P = (Q,Σ, T, δ, q0, Z0, F) that accepts by final state, the language Lbal of parentheti-
cally balanced strings.

Curiously enough, we do not need a PDA for this language; as will be seen, a DPDA suffices.

The idea behind the DPDA design is simple. Each time you see a left parenthesis, you push it onto the stack; likewise
each time you see a right parenthesis, you pop a left parenthesis from the stack. If this process succeeds in consuming
the entire input string, then the input string must be parenthetically balanced.

We thus have,

(i) Q = {q0, q1},

(ii) Σ = {(,)},

(iii) T = {(,), Z0},

(iv) F = {q1}

The transition function δ is defined as follows:

(a) δ(q0, ε, Z0) = (q1, Z0) - If the input is consumed and the marker on the stack is revealed, move to state q1 and
accept.

3

(b) δ(q0,
′ (′, Z0) = (q0,

′ (′ Z0) - Push the left parenthesis onto the stack.

(c) δ(q0,
′ (′,′ (′) = (q0,

′ (′ ′(′) - Continue to push the left parenthesis onto the stack.

(d) δ(q0,
′)′,′ (′) = (q0, ε) - Pop a left parenthesis, whenever you see a right parenthesis.

It is important to note that:

(i) The right parenthesis ′)′ never enters the stack.

(ii) If a right parenthesis is seen with Z0 on the stack, then the PDA simply stops, since no such transition is defined
and the string is rejected.

(iii) If the input is consumed and there still exist left parentheses on the stack, then the PDA stops in state q0 and
hence the input is rejected.

Based on the above observations, it is not hard (and not necessary!) to prove that

Theorem 1.3 w ∈ Lbal ⇔ (q0, w, Z0) `
∗ (q1, ε, Z0).

2

6. Design a Deterministic Turing Machine that decides the language L = {0n · 1n, n ≥ 0}.

Solution: We design a 2-tape Turing Machine to employ the following strategy:

(a) Assume that the input is given as .x on the first tape.

(b) Copy x in reverse onto the second tape, so that the second tape contains the string .xR.

(c) Make appropriate transitions so that both tape heads are at the leftmost ends of their respective tapes.

(d) In this configuration, sweep from left to right on both strings till a blank t is reached on both strings or it is
discovered that x is not of the form 0n · 1n, n ≥ 0.

The details of our Turing Machine M = (Q,Σ, δ, s) are as follows:

(i) Q = {s, q0, q1, q2, q3, “yes
′′, “no′′}.

(ii) Σ = {0, 1,t, .}.

(iii) The transition function δ() is defined by the table below:

It is important to note that there should be a total of 6 × 4 × 4 = 96 entries in the transition table. We impose
the condition that for all the missing entries, the Turing Machine enters state “no′′ and halts.

2

4

q ∈ Q σ1 ∈ Σ σ2 ∈ Σ δ(q, σ1, σ2)
s . t (s, .,→,t,→)
s 0 t (s, 0,→,t,→)
s 1 t (s, 1,→,t,→)
s t t (q0,t,←,t,←)
q0 0 t (q0, 0,←,t,−)
q0 1 t (q0, 1,←,t,−)
q0 . t (q1, .,→,t,−)
q1 0 t (q1, 0,→, 0,←)
q1 1 t (q1, 1,→, 1,←)
q1 t . (q2,t,←, .,−)
q2 0 . (q2, 0,←, .,−)
q2 1 . (q2, 1,←, .,−)
q2 . . (q3, .,→, .,→)
q3 t t (“yes′′,t,−,t,−)
q3 0 1 (q3, 0,→, 1,→)
q3 1 0 (q4, 1,→, 0,→)
q4 t t (“yes′′,t,−,t,−)
q4 1 0 (q4, 1,→, 0,→)

Table 1: A 2-tape DTM to accept 0n · 1n, n ≥ 0.

5

