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1 Problems

1. Let A and B be propositions. Argue that the following two statements are tautologies:

(@) A— A4,
() [AN(A— B)— B

Solution: We use truth-tables to establish the above tautologies.
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2. Explain the difference between the converse of a theorem and its contra-positive.
Solution: A typical theorem has the form: If Ay, then A5, where A; and A, are boolean propositions. The contra-
positive of a theorem is a restatement of the above theorem as: If not A5, then not A, .
The converse of the above theorem, on the other hand is: If A5, then A;.
Observe that the contra-positive of a theorem is always true. However, depending upon the theorem in question, its
converse may or may not be true.
a
3. Use mathematical induction to show that 7 — 2™ is divisible by 5, for all n > 0.

Solution: Let S(n) denote the proposition that 7™ — 2™ is divisible by 5, for all n > 0.

Observe that S(0) is the statement that 70 — 20 = 1 — 1 = 0 is divisible by 5. Since every number other than zero
divides zero, it follows that 5 divides 0 and S(0) is true.



Assume that S(k) is true, for some k& > 0, i.e., assume that 7% — 2* is divisible by 5. Accordingly, we can write,
7ok =5.m, (1)

where m is some integer. (Note that this is the meaining of divisibility in the first place!)
Now we have to prove that S(k + 1) is true.
Observe that,
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(7—2)-2"+5.(7-m)
5.-28 4 5.(7-m)
= 5.
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where ¢ = 2F 4+ 5 (7 -m) is an integer, since k and m are integers. It follows that 7%+! — 2k+1 is divisible by 5, i.e.,
S(k+1)istrue. O

4. Let S and T denote two sets, which are subsets of a set U. Let S’ and T” denote the complements of S and T in U
respectively. Prove the following set equivalence:

(SuT)y =8nT'.

Solution: Let E denote the set (S UT)’ and let F' denote the set S’ N T".
Observe that,
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Likewise, observe that,
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It therefore follows that the set equivalence holds. O



5. Let X = {0, 1} denote an alphabet. Enumerate five elements of the following languages:

(@) Even binary numbers,
(b) The number of zeros is not equal to the number of ones in a binary string.

Solution:
(a) L = {0, 10, 100, 1000, 1010}
(b) L = {1, 100, 101, 110, 010}.
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