
Automata Theory - Midterm (Solutions)

K. Subramani
LCSEE,

West Virginia University,
Morgantown, WV

{ksmani@csee.wvu.edu}

1 Problems

1. Professor Chikovski wants to prove the conjecture, “If B then C”. After working for four hours, he succeeds in
proving the theorem, “If A then B and C”. His graduate student points out to him that the theorem, “If B then A” is
a well known fact. Can the Professor now claim that his conjecture,“If B then C” is a theorem? If so, provide a proof
of the same. If not, provide a counterexample.

Solution: We first write the problem in implication form. Accordingly, the hypotheses of the argument are:
(a) A→ (B ∧ C), and (b) B → A. From these hypotheses, we wish to conclude that B → C.

Formally, we wish to show that Conjecture (1) is a theorem, i.e., it is always true.

[[A→ (B ∧ C)] ∧ [B → A]]→ [B → C] (1)

The truth-table technique, while correct is too time consuming. Instead, we reason as follows:

[[A→ (B ∧ C)] ∧ [B → A]] (hypothesis)

⇒ [B → A] ∧ [[A→ (B ∧ C)] (Commutativity of ∧)

⇒ B → (B ∧ C) (Properties of Implication; See Homework I)

⇒ (B → B) ∧ (B → C) (Properties of Implication)

⇒ B → C (Properties of Conjunction)

Since we are able to logically deduce (B → C) from the hypothesis, the Professor can indeed claim that his conjecture
is a theorem. 2

An approach which is even more intuitive is as follows: Let B be false. In this case, the consequence of Conjecture
(1), viz., B → C is always true. The conjunct A→ (B ∧ C) is A→ false and the conjunct B → A is false→ A.
In other words, the hypothesis of Conjecture (1) is A→ false ∧ false→ A, which is just A→ A and hence always
true. Thus, when B is false, Conjecture (1) is saying that true→ true, which is true.

Now, let B be true. In this case, the consequence of Conjecture (1) is C, whereas the hypothesis is
(A → C) ∧ A. But from A ∧ (A → C), we can deduce C. Thus, when B is true, Conjecture (1) is asking whether
C → C is true. Since this is trivially true, the conjecture holds in this case as well.

Thus Conjecture (1) holds regardless of the value of B, and hence we can conclude that it is always true, i.e., “If B

then C” is a theorem.

1

2. Formally prove that the DFA described by the transition table below, accepts all and only those binary strings hichthat
do not contain two consecutive 0′s.

0 1

→ ∗ q0 q1 q0

∗ q1 q2 q0

q2 q2 q2

Proof: We begin by drawing the transition diagram, corresponding to the above transition table.

1

0 0

0,1

1

q0 q1 q2

Figure 1: Transition diagram of DFA in Table 1.

Observe that Σ = {0, 1} for this DFA. We need a few auxiliary results, before stating and proving the main result.

Claim 1.1 Let w be some string in Σ∗. If w contains a 0, then the first 0 in w causes the automaton to move to state
q1.

Proof: First observe that δ̂(q0, 1
∗) = q0, i.e., if the automaton has not seen a 0, it stays in state q0. We use induction

on the position of the first 0 in w. If this 0 is the first character (position 1) of w, then clearly, as per the transition
diagram, on seeing this character, the automaton will move to q1. Let the first 0 occur in position i of w. Then the
first (i− 1) characters of w are all 1′s. Hence δ̂(q0, w1w2 . . . wi−1) = δ̂(q0, 1

i−1) = q0, as per the above discussion.
Once again, the transition table establishes that on seeing the first 0, the automaton must move to state q1. 2

Claim 1.2 Let w ∈ Σ∗ be an arbitrary string. If every 0 in w is followed by a 1, then δ̂(q0, w) = q0.

Proof: From Claim 1.1, we know that when the first 0 is seen, the automaton moves to state q1. If the next character
is a 1, then as per the transition table, we are back in state q0 and the claim is inductively proven. 2

Claim 1.3 Let x ∈ Σ∗ be an arbitrary string. If every 0 in x is followed by a 1, then δ̂(q0, x0) = q1.

Proof: Follows immediately from Claim 1.2 and the transition diagram. 2

Claim 1.4 If δ̂(q0, w) = q2, then δ̂(q0, wx) = q2, for all x ∈ {0, 1}∗.

Proof: This is clear from the transition diagram, since we have δ(q2, 0) = δ(q2, 1) = q2. In other words, once the
automaton reaches q2, it stays in q2. Therefore, q2 is a dead state and wx cannot be accepted by the automaton. 2

Note that the automaton has two final states, viz., q0 and q1 and one non-final state, viz., q2.

2

As per the above discussion, we are required to prove that:

Conjecture 1.1

δ̂(q0, w) = q2 ⇔ w contains two consecutive 0′s.

Proof:

Only If: We need to show that

δ̂(q0, w) = q2 ⇒ w contains two consecutive 0′s.

Observe that if δ̂(q0, w) = q1, then w = x0 and δ(q0, x) = q0. This is because, as per the transition diagram, there is
exactly one way for the automaton to get to state q1 and that is on a 0, from state q0.

Now, if δ̂(q0, w) = q2, then as per the transition diagram, we must have w = xy, where, δ̂(q0, x) = q1 and
δ̂(q1, y) = q2. But if δ̂(q0, x) = q1, then x must be of the form u0, where δ̂(q0, u) = q0, as per the above discussion.
Likewise, if δ̂(q1, y) = q2, then y = 0v, as per the transition diagram. We thus see that the last character of x and the
first character of y must be 0′s, which establishes that w has two consecutive 0′s.

If: We need to show that:

w contains two consecutive 0′s⇒ δ̂(q0, w) = q2

Let w contain a pair of consecutive 0′s; without loss of generality, we focus on the first occurrence of such a pair and
use induction on the position of the first 0 in this pair.

If this first 0 occurs as the first character of w, then w = 00x, for some x ∈ Σ∗. From the transition diagram, it is
clear that δ̂(q0, w) = δ̂(q0, 00x) = q2 and the claim is proved.

Assume that the claim holds when the first 0, occurs in any position i, where i ≤ n. Now consider the case, in which
the first 0 occurs in position (n+ 1) of w. It is clear that in the string w1w2 ·wn, every 0 is immediately followed by
a 1. As per Claim 1.2, δ̂(q0, w1w2 . . . wn) = q0. From the transition diagram, the first 0 takes the automaton to state
q1 and the 0, immediately succeeding it, takes the automaton to state q2, which establishes the claim. 2

2

3. Suppose that you are given a DFA A = (Q,Σ, δ, q0, F), which accepts the language L ⊆ Σ∗. Let us say that we wish
to design a DFA that accepts the language Lc, where Lc = {w | w ∈ Σ∗ and w 6∈ L}.

(i) Argue using induction that the DFA Ac = (Q,Σ, δ, q0, Q− F) serves the purpose. (2 points)

(ii) Will the same trick work if A is an NFA. If so, provide a formal proof of the same. If not, provide a counterex-
ample. (3 points)

Solution:

(i) We will show that every string w which leads A to a final state leads Ac to a a non-final state and every string w

which leads A to a non-final state, leads Ac to a final state.
Consider a string w ∈ L(A). Let |w| = 0, which means that w = ε. Since w is accepted by A, it means that q0

is a final state of A and hence not a final state of Ac. Therefore w leads Ac to a non-final state. Assume that the
claim is true, for all strings of length at most n. Let w = xa, where x is a string of length n in Σ∗ and a is a
symbol in Σ. Since w is accepted by A, δ̂(q0, w) = δ̂(q0, xa) leads A to final state and hence Ac to a non-final
state, which proves the claim.
In identical fashion, we can argue that if w 6∈ L(A), then w ∈ L(Ac).

(ii) Consider the NFA in Figure 2, which accepts all binary strings that end in 01.
By complementing the final state, we get the NFA in Figure 3, which not only accepts binary strings that do not
end in 01, but also strings that do end in 01. In fact, it accepts {0, 1}∗!

3

0,1

0 1
A B C

Figure 2: NFA accepting all strings that end in 01.

A B C

0,1

0
1

Figure 3: Complement of the NFA

2

4. (a) Convert the regular expression 01∗ to a DFA. (2 points)

(b) Write a regular expression for the DFA described by the following transition table: (3 points)

Solution:

(a) Figure 4 is the required DFA.

(b) We represent the transition table as a transition diagram (Figure 5) and apply the State Elimination technique
discussed in class.

After crushing q2, we get the DFA, represented by Figure 6

We then apply the cookie-cutter approach (see Pg. 99 of [HMU01].) As per that approach, R = (1 + 01),
S = 00, T = 11 and U = 0 + 10 and the required regular expression is: (R+ SU ∗T)∗SU∗.

2

5. Prove or disprove the following laws on regular expressions:

(i) (R+ S)∗S = (R∗S∗)∗. (2 points)

(ii) R(S + T) = RS +RT . (3 points)

Solution: We use the Concretization theorem and substitute R = a, S = b and T = c.

(i) We have to show that

(a+ b)∗b = (a∗b∗)∗

Observe that a is a member of the language (a∗b∗)∗, but not a member of (a + b)∗b. It follows that the law is
incorrect.

0 1

→ q1 q2 q1

q2 q3 q1

∗ q3 q3 q2

4

0

1

0

1

0,1

Figure 4: DFA accepting 01∗.

q1 q2

q3

1

0 0

1

0

1

Figure 5: Original DFA

(ii) We are required to show that

a(b+ c) = ab+ ac

Observe that both a(b+ c) and ab+ ac denote precisely the same finite set, viz., {ab, ac}. It therefore follows
that the law holds, for all languages R, S and T .

2

6. Let Σ = {0, 1}. Argue that the language
L = {0i · 1j | i ≥ 0, i ≤ j} is not regular.

Solution: Let L be regular; therefore L = L(A), for some DFA A. Let n denote the integer of the Pumping Lemma.
Since L is an infinite language, I can choose w = 0n · 1n+1 as a member of L. As per the Pumping Lemma, I can
break up w into xyz, such that

(i) y 6= ε,

(ii) |xy| ≤ n, and

(iii) xykz ∈ L, ∀k ≥ 0.

Since |xy| ≤ n and y 6= ε, y must consist entirely of 0′s; additionally y must contain at least one 0. As per the
Pumping Lemma, xyn+2z ∈ L. However, this string clearly contains more 0′s than 1′s and hence cannot be in L, as
per the definition of L. This is the required contradiction, from which it follows that L cannot be regular. 2

q1 q2

00

11

1+01

0+10

Figure 6: DFA after crushing q2

5

References

[HMU01] J. E. Hopcroft, R. Motwani, and J. D. Ullman. “Introduction to Automata Theory, Language, and Computation”.
Addison–Wesley, 2nd edition edition, 2001.

6

