Automata Theory - Midterm

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Instructions

- 1. The midterm should be returned by 9:15 am on 10/7/04.
- 2. Each question is worth 5 points.
- Attempt as many problems as you can. You will be given partial credit, as per the policy discussed in class.
- 4. Feel free to quote any Theorem from the book; however, any "law" that you use, must be proved.

2 Problems

- 1. Professor Chikovski wants to prove the conjecture, "If *B* then *C*". After working for four hours, he succeeds in proving the theorem, "If *A* then *B* and *C*". His graduate student points out to him that the theorem, "If *B* then *A*" is a well known fact. Can the Professor now claim that his conjecture, "If *B* then *C*" is a theorem? If so, provide a proof of the same. If not, provide a counterexample.
- 2. Formally prove that the DFA described by the transition table below, accepts all and only those binary strings which do not contain two consecutive 0's.

	0	1
$\rightarrow * q_0$	q_1	q_0
$* q_1$	q_2	q_0
q_2	q_2	q_2

- Suppose that you are given a DFA A = (Q, Σ, δ, q₀, F), which accepts the language L ⊆ Σ*. Let us say that we wish to design a DFA that accepts the language L^c, where L^c = {w | w ∈ Σ* and w ∉ L}.
 - (i) Argue using induction that the DFA
 A^c = (Q, Σ, δ, q₀, Q - F) serves the purpose.
 (2 points)

- (ii) Will the same trick work if A is an NFA. If so, provide a formal proof of the same. If not, provide a counterexample. (3 points)
- 4. (a) Convert the regular expression 01* to a DFA. (2 points)
 - (b) Write a regular expression for the DFA described by the following transition table: (3 points)

	0	1
$\rightarrow q_1$	q_2	q_1
q_2	q_3	q_1
$* q_3$	q_3	q_2

- 5. Prove or disprove the following laws on regular expressions:
 - (i) $(R+S)^*S = (R^*S^*)^*$. (2 points)
 - (ii) R(S+T) = RS + RT. (3 points)
- 6. Let $\Sigma = \{0, 1\}$. Argue that the language $L = \{0^i \cdot 1^j \mid i \ge 0, i \le j\}$ is not regular.