Automata Theory - Quiz I (Solutions)

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Problems

Professor Sikorski claims to have an inductive proof for the following hypothesis: S(n) : n = n + 1, ∀n ≥ 1. His proof is as follows: Assume that S(k) is true. Therefore, k = k + 1. Now, consider S(k + 1). We need to show that k + 1 = k + 2. From, the inductive hypothesis, k = k + 1. So we can substitute k + 1 for k in the hypothesis of S(k + 1), which means that we have to show (k + 1) + 1 = k + 2. But this is trivially true, so S(k + 1) holds. Since, we have established that S(k) → S(k + 1), it follows that S(n) is true, i.e., n = n + 1, ∀n ≥ 1. Can you spot the flaw in the Professor's argument?

Solution: The Professor did not prove the base case. Indeed, $1 \neq 2$ and hence, the principle of mathematical induction does not apply. \Box

2. Design a DFA to accept the following language:

 $L = \{w \mid w \in \{0,1\}^* \text{ and } w \text{ when interpreted as a number is not divisible by 3. } \}$

Solution: We make the following observations:

- (i) Any binary string, when interpreted as a number is either exactly divisible by 3, or 1 mod 3, or 2 mod 3.
- (ii) When a 0 is added to the right of a binary string, its value is doubled. Likewise, when a 1 is added to the right of a binary string, the value of the new number, is the sum of 1 and twice the value of the old number. (Work out a few examples and convince yourself, that this is true!)
- (iii) If a number which is divisible by 3 is doubled, the resultant number stays divisible by 3; on the other hand if 1 is added after the doubling, then the resultant number is $1 \mod 3$.
- (iv) If a number which is 1 mod 3 is doubled, the resultant number becomes 2 mod 3 and if 1 is added after the doubling, the resultant number is exactly divisible by 3.
- (v) If a number is 2 mod 3, then doubling it, results in a number which is 1 mod 3 and adding 1 to this number, gives a number which is 2 mod 3.
- (vi) If a given DFA A, accepts a language L, then we can design a DFA to accept the complement of L, merely by switching the final and non-final states of A.

Figure 1 represents a DFA that accepts the language consisting of binary strings, which when interpreted as a number are not divisible by 3.

Figure 1: DFA accepting binary strings, which when interpreted as numbers are not divisible by 3.

3. Informally, describe the language accepted by the following DFA.

	0	1
$\rightarrow *A$	B	A
*B	C	A
C	C	C

Solution: The above DFA accepts all and only strings that do not contain two consecutive 0's. \Box

4. Convert the following NFA to a DFA.

	0	1
$\rightarrow p$	$\{p,q\}$	$\{p\}$
q	$\{r\}$	$\{r\}$
r	$\{s\}$	ϕ
* s	$\{s\}$	$\{s\}$

Solution: We apply the subset construction algorithm discussed in class and described in Section 2.3.5 of [HMU01]. Accordingly, the constructed DFA has 16 states, viz., ϕ , $\{p\}$ and so on. Step 3 of the subset construction algorithm permits us to construct the transition table for the DFA. Finally, we remove unreachable states to get the following DFA:

Figure 2: NFA to DFA Conversion

where $A = \{p\}, B = \{p,q\}, C = \{p,r\}, D = \{p.q.r\}, E = \{p,q,s\}, F = \{p,q,r,s\}, G = \{p,r,s\}$ and $H = \{p,s\}$. \Box

5. Formally argue that the NFA in Figure 3 accepts the language L, where, $L = \{w \mid w \in \{a, b\}^* \text{ and } x \text{ consists of } 0 \text{ or more } a's, \text{ followed by a } b\}.$

Figure 3: NFA accepting 0 or more a's, followed by a b

Solution: We use the notation a^* to represent a string that is constituted of zero or more a's only. Note that the alphabet for this NFA is $\Sigma = \{a, b\}$.

Observe that we need to prove the following claim.

Claim 1.1 $\hat{\delta}(q_0, w) = q_1$, if and only if $w = a^*b$.

In order to prove Claim 1.1, it is helpful to prove the following lemma first.

Lemma 1.1 $\hat{\delta}(q_0, w) = q_0$, if and only if $w = a^*$

Proof:

If: We need to show that if $w = a^*$, then $\hat{\delta}(q_0, w) = q_0$.

BASIS: Let |w| = 0; this implies that $w = \epsilon$. For any state q in any NFA A, we know that $\hat{\delta}(q, \epsilon) = q$. Accordingly, $\hat{\delta}(q_0, \epsilon) = q_0$, which proves the base case.

INDUCTIVE STEP: Assume that $\hat{\delta}(q_0, w) = q_0$, if $|w| \le n$. Let |w| = n + 1, where $w = x \cdot a$ and |x| = n. From the inductive hypothesis, we know that $\hat{\delta}(q_0, x) = q_0$, whereas, from the transition diagram, we know that $\delta(q_0, a) = q_0$. Now observe that from the definition of $\hat{\delta}$,

$$\begin{split} \hat{\delta}(q_0, w) &= \hat{\delta}(q_0, x \cdot a) \\ &= \delta(\hat{\delta}(q_0, x), a) \\ &= \delta(q_0, a) \quad \text{(from the inductive hypothesis)} \\ &= q_0. \end{split}$$

Only-If: We need to show that if $\hat{\delta}(q_0, w) = q_0$, then $w = a^*$.

Once again, we use induction on the length of w.

BASIS: Let |w| = 0, which implies that $w = \epsilon$. Clearly, $\hat{\delta}(q_0, \epsilon) = q_0$ and $\epsilon \in a^*$. It follows that the base case is proven.

INDUCTIVE STEP: Assume that if $\hat{\delta}(q_0, w) = q_0$ and $|w| \le n$, then $w = a^*$. Let |w| = n + 1 and $w = x \cdot c$, where |x| = n and $c = \{a, b\}$. Now $\hat{\delta}(q_0, x)$ is one of $\{\phi, q_0, q_1\}$, where ϕ denotes the "dead state". If $\hat{\delta}(q_0, x)$ is either ϕ or q_1 , then as per the transition diagram, $\hat{\delta}(q_0, x \cdot c) = \hat{\delta}(q_0, w) = \phi$. Hence, the hypothesis of the statement "If $\hat{\delta}(q_0, w) = q_0$, then $w = a^*$ " is **false**, making the statement **true**.

Now, consider the case in which $\hat{\delta}(q_0, x) = q_0$. From the inductive hypothesis, we know that $x \in a^*$. Now $\hat{\delta}(q_0, w) = \hat{\delta}(q_0, x \cdot c) = q_0$. Therefore, we have, $\delta(\hat{\delta}(q_0, x), c) = q_0$. From the above discussion, it follows that $\delta(q_0, c) = q_0$. The transition diagram indicates that c must be a. Accordingly, $w = a^* \cdot a = a^*$, thereby proving the inductive step. \Box

We are now ready to prove Claim 1.1.

Proof (of Claim 1.1):

If: We are required to show that if $w = a^*b$, then $\hat{\delta}(q_0, w) = q_1$. Observe that

$$\delta(q_0, w) = \delta(q_0, a^* \cdot b)$$

= $\delta(\hat{\delta}(q_0, a^*), b)$
= $\delta(q_0, b)$ (from Lemma 1.1)
= q_1 (from the transition diagram)

Only-If: We are required to show that if $\hat{\delta}(q_0, w) = q_1$, then $w = a^*b$.

We use induction on the length of w.

Let |w| = 0; it follows that $w = \epsilon$.

BASIS: Since $\hat{\delta}(q_0, \epsilon) = q_0 \neq q_1$, the hypothesis is **false**, making the statement **true**, thereby proving the base case.

INDUCTIVE STEP: Assume that if $\hat{\delta}(q_0, w) = q_1$ and $|w| \le n$, then $w = a^*b$. Now consider a string $w = x \cdot c$, where |w| = n + 1, |x| = n and $c \in \{a, b\}$. We consider the following cases:

- (i) $\hat{\delta}(q_0, x) = q_0$ From Lemma 1.1, we know that $x = a^*$. Hence, if $\hat{\delta}(q_0, w) = \hat{\delta}(q_0, x \cdot c) = q_1$, then it must be the case that c = b, as per the transition diagram. In other words, $w = a^*b$, proving the inductive step.
- (ii) $\hat{\delta}(q_0, x) = q_1$ In this case, $\hat{\delta}(q_0, w) = \hat{\delta}(q_0, x \cdot c) = \phi$, regardless of whether c is a or b, as per the transition diagram. Since the hypothesis is **false**, the statement is **true** and the inductive step is proven.
- (iii) $\hat{\delta}(q_0, x) = \phi$ This case is identical to the case above.

References

[HMU01] J. E. Hopcroft, R. Motwani, and J. D. Ullman. "Introduction to Automata Theory, Language, and Computation". Addison–Wesley, 2nd edition edition, 2001.