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1 Problems

1. Professor Sikorski claims to have an inductive proof for the following hypothesis: S(n) : n = n + 1, ∀n ≥ 1. His
proof is as follows: Assume that S(k) is true. Therefore, k = k + 1. Now, consider S(k + 1). We need to show that
k + 1 = k + 2. From, the inductive hypothesis, k = k + 1. So we can substitute k + 1 for k in the hypothesis of
S(k+1), which means that we have to show (k+1)+ 1 = k+2. But this is trivially true, so S(k+1) holds. Since,
we have established that S(k) → S(k + 1), it follows that S(n) is true, i.e., n = n + 1, ∀n ≥ 1. Can you spot the
flaw in the Professor’s argument?

Solution: The Professor did not prove the base case. Indeed, 1 6= 2 and hence, the principle of mathematical induction
does not apply. 2

2. Design a DFA to accept the following language:
L = {w | w ∈ {0, 1}∗ and w when interpreted as a number is not divisible by 3. }

Solution: We make the following observations:

(i) Any binary string, when interpreted as a number is either exactly divisible by 3, or 1 mod 3, or 2 mod 3.

(ii) When a 0 is added to the right of a binary string, its value is doubled. Likewise, when a 1 is added to the right
of a binary string, the value of the new number, is the sum of 1 and twice the value of the old number. (Work
out a few examples and convince yourself, that this is true!)

(iii) If a number which is divisible by 3 is doubled, the resultant number stays divisible by 3; on the other hand if 1
is added after the doubling, then the resultant number is 1 mod 3.

(iv) If a number which is 1 mod 3 is doubled, the resultant number becomes 2 mod 3 and if 1 is added after the
doubling, the resultant number is exactly divisible by 3.

(v) If a number is 2 mod 3, then doubling it, results in a number which is 1 mod 3 and adding 1 to this number,
gives a number which is 2 mod 3.

(vi) If a given DFA A, accepts a language L, then we can design a DFA to accept the complement of L, merely by
switching the final and non-final states of A.

Figure 1 represents a DFA that accepts the language consisting of binary strings, which when interpreted as a number
are not divisible by 3.
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Figure 1: DFA accepting binary strings, which when interpreted as numbers are not divisible by 3.
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3. Informally, describe the language accepted by the following DFA.

0 1

→ ∗ A B A

∗ B C A

C C C

Solution: The above DFA accepts all and only strings that do not contain two consecutive 0′s. 2

4. Convert the following NFA to a DFA.

0 1

→ p {p, q} {p}
q {r} {r}
r {s} φ

∗ s {s} {s}

Solution: We apply the subset construction algorithm discussed in class and described in Section 2.3.5 of [HMU01].
Accordingly, the constructed DFA has 16 states, viz., φ, {p} and so on. Step 3 of the subset construction algorithm
permits us to construct the transition table for the DFA. Finally, we remove unreachable states to get the following
DFA:
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Figure 2: NFA to DFA Conversion
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where A = {p}, B = {p, q}, C = {p, r}, D = {p.q.r}, E = {p, q, s}, F = {p, q, r, s}, G = {p, r, s} and
H = {p, s}. 2

5. Formally argue that the NFA in Figure 3 accepts the language L, where,
L = {w | w ∈ {a, b}∗ and x consists of 0 or more a′s, followed by a b }.
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b

Figure 3: NFA accepting 0 or more a′s, followed by a b

Solution: We use the notation a∗ to represent a string that is constituted of zero or more a′s only. Note that the
alphabet for this NFA is Σ = {a, b}.

Observe that we need to prove the following claim.

Claim 1.1 δ̂(q0, w) = q1, if and only if w = a∗b.

In order to prove Claim 1.1, it is helpful to prove the following lemma first.

Lemma 1.1 δ̂(q0, w) = q0, if and only if w = a∗

Proof:
If: We need to show that if w = a∗, then δ̂(q0, w) = q0.

BASIS: Let |w| = 0; this implies that w = ε. For any state q in any NFA A, we know that δ̂(q, ε) = q. Accordingly,
δ̂(q0, ε) = q0, which proves the base case.

INDUCTIVE STEP: Assume that δ̂(q0, w) = q0, if |w| ≤ n. Let |w| = n+ 1, where w = x · a and |x| = n. From the
inductive hypothesis, we know that δ̂(q0, x) = q0, whereas, from the transition diagram, we know that δ(q0, a) = q0.
Now observe that from the definition of δ̂,

δ̂(q0, w) = δ̂(q0, x · a)

= δ(δ̂(q0, x), a)

= δ(q0, a) (from the inductive hypothesis)

= q0.

Only-If: We need to show that if δ̂(q0, w) = q0, then w = a∗.

Once again, we use induction on the length of w.

BASIS: Let |w| = 0, which implies that w = ε. Clearly, δ̂(q0, ε) = q0 and ε ∈ a∗. It follows that the base case is
proven.

INDUCTIVE STEP: Assume that if δ̂(q0, w) = q0 and |w| ≤ n, then w = a∗. Let |w| = n + 1 and w = x · c, where
|x| = n and c = {a, b}. Now δ̂(q0, x) is one of {φ, q0, q1}, where φ denotes the “dead state”. If δ̂(q0, x) is either
φ or q1, then as per the transition diagram, δ̂(q0, x · c) = δ̂(q0, w) = φ. Hence, the hypothesis of the statement “If
δ̂(q0, w) = q0, then w = a∗” is false, making the statement true.

Now, consider the case in which δ̂(q0, x) = q0. From the inductive hypothesis, we know that x ∈ a∗. Now δ̂(q0, w) =

δ̂(q0, x · c) = q0. Therefore, we have, δ(δ̂(q0, x), c) = q0. From the above discussion, it follows that δ(q0, c) = q0.
The transition diagram indicates that c must be a. Accordingly, w = a∗ · a = a∗, thereby proving the inductive step.
2
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We are now ready to prove Claim 1.1.

Proof (of Claim 1.1):
If: We are required to show that if w = a∗b, then δ̂(q0, w) = q1. Observe that

δ̂(q0, w) = δ̂(q0, a
∗ · b)

= δ(δ̂(q0, a
∗), b)

= δ(q0, b) (from Lemma 1.1)

= q1 (from the transition diagram)

Only-If: We are required to show that if δ̂(q0, w) = q1, then w = a∗b.

We use induction on the length of w.

Let |w| = 0; it follows that w = ε.

BASIS: Since δ̂(q0, ε) = q0 6= q1, the hypothesis is false, making the statement true, thereby proving the base case.

INDUCTIVE STEP: Assume that if δ̂(q0, w) = q1 and |w| ≤ n, then w = a∗b. Now consider a string w = x · c, where
|w| = n+ 1, |x| = n and c ∈ {a, b}. We consider the following cases:

(i) δ̂(q0, x) = q0 - From Lemma 1.1, we know that x = a∗. Hence, if δ̂(q0, w) = δ̂(q0, x · c) = q1, then it must be
the case that c = b, as per the transition diagram. In other words, w = a∗b, proving the inductive step.

(ii) δ̂(q0, x) = q1 - In this case, δ̂(q0, w) = δ̂(q0, x · c) = φ, regardless of whether c is a or b, as per the transition
diagram. Since the hypothesis is false, the statement is true and the inductive step is proven.

(iii) δ̂(q0, x) = φ - This case is identical to the case above.
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