Automata Theory - Quiz II

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Instructions

- 1. The quiz should be returned by 9:15 am on 11/9/04.
- 2. Each question is worth 2 points.
- 3. Attempt as many problems as you can. You will be given partial credit, as per the policy discussed in class.

2 Problems

- 1. Let L be a language over $\Sigma = \{0, 1\}$ defined as follows: $L = \{w \mid w \in \Sigma^* \text{ and } w \text{ ends in } 01 \text{ or } 10 \text{ or } 00 \text{ or } 11 \}$. Is L regular?
- 2. Let L be a regular language over an alphabet Σ . Let L_1 and L_2 denote two languages over the same alphabet, such that $L = L_1 \cup L_2$. Should each of L_1 and L_2 also be regular?
- 3. Let L be a regular language over an alphabet Σ . Assume that you are given the DFA D of L. How would you *efficiently* check that $L = \Sigma^*$?
- 4. Write a Context-Free Grammar for the language L defined as follows: $L = \{w \mid w \in \{0, 1\}^* \text{ and } w \text{ contains two consecutive 0's. } \}$
- 5. Consider the CFG defined by:

S	\rightarrow	aS
S	\rightarrow	Sb
S	\rightarrow	a
S	\rightarrow	b

Argue that no string derived from S can have ba as a substring. *Hint: Use induction on the length of the strings derived from* S.