Automata Theory - Quiz II (Solutions)

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Problems

1. Let L be a language over $\Sigma = \{0, 1\}$ defined as follows: $L = \{w \mid w \in \Sigma^* \text{ and } w \text{ ends in } 01 \text{ or } 10 \text{ or } 00 \text{ or } 11 \}$. Is L regular?

Solution: There are two approaches to this problem.

In the first approach, we observe that the strings that end in 01 can be represented by the regular expression $(0+1)^*01$. Likewise, strings that end in 10, 00 and 11 can be represented by the regular expressions $(0+1)^*10$, $(0+1)^*00$ and $(0+1)^*11$ respectively. Since L is the union of these regular languages, L must be regular.

Alternatively, we can observe that every string in Σ^* , which has length at least 2, *must* end with 01, 10, 00 or 11. In other words, L includes all strings in Σ^* which have length at least two. Now, the language L' which is constituted of strings which have length strictly less than two is finite ($\{\epsilon, 0, 1\}$) and therefore regular. Since $L = \Sigma^* - L'$, it follows that L is regular. \Box

2. Let L be a regular language over an alphabet Σ . Let L_1 and L_2 denote two languages over the same alphabet, such that $L = L_1 \cup L_2$. Should each of L_1 and L_2 also be regular?

Solution: This is somewhat of a trick question. We know that if L_1 and L_2 are regular, then so is $L_1 \cup L_2$. But the converse is not true. For instance, Σ^* is a regular language; but it can be decomposed into two languages $L_1 = \{w \mid w \text{ has an equal number of 0's and 1's}\}$ and $L_2 = \{w \mid w \text{ has an unequal number of 0's and 1's}\}$, both of which are not regular.

In similar fashion, consider the language $L = 0^*1^*$, which is clearly a regular language. But L can be written as $L_1 \cup L_2$, where $L_1 = \{0^i 1^i, i \ge 0\}$ and $L_2 = \{0^i 1^j, i \ne j, i, j \ge 0\}$. We have already shown (in class) that neither L_1 nor L_2 is regular. \Box

3. Let L be a regular language over an alphabet Σ . Assume that you are given the DFA D of L. How would you *efficiently* check that $L = \Sigma^*$?

Solution: Interchange the final and non-final states of D to get a new DFA D'. Observe that D' the complement of L, i.e., L^c . The crucial observation is that $L = \Sigma^*$ if and only if $L^c = \phi$. Using simple breadth-first search (polynomial time and hence efficient), check if there exists a path from the start state of D' to any final state. If there exists even one such path, it means that L^c contains at least one string and is therefore non-empty. Since $L^c \neq \phi$, $L \neq \Sigma^*$. Likewise, if there does not exist a path from the start state of D' to a final state, then $L^c = \phi$ and hence $L = \Sigma^*$. \Box

4. Write a Context-Free Grammar for the language L defined as follows: $L = \{w \mid w \in \{0, 1\}^* \text{ and } w \text{ contains two consecutive 0's. } \}$

Solution: One approach to this problem is through recognizing that *L* is defined by the regular expression $(0+1)^*00(0+1)^*$.

Note that $(0+1)^*$ can be captured by the following grammar

S	\rightarrow	0S
S	\rightarrow	1S
S	\rightarrow	ϵ

Therefore, a CFG for L is given as:

$$\begin{array}{rccc} S & \to & S_1 00 S_1 \\ S_1 & \to & 0 S_1 \mid 1 S_1 \mid \epsilon \end{array}$$

5. Consider the CFG defined by:

Argue that no string derived from S can have ba as a substring. *Hint: Use induction on the length of the strings derived from* S.

Solution: Let w denote a string derived from S. Consider the case in which |w| = 1. As per the grammar, it is clear that w = a or w = b and hence ba is not a substring of w. Assume that if w is derived from S and $|w| \le n$, then ba is not a substring of w. Now consider the case, in which w is a string of length n + 1. Since $S \Rightarrow^* w$, it must be the case that the first step in the derivation used the production $S \to aS$ or the production $S \to Sb$. In the former case, w must have the form $a \cdot x$, where $S \to x$ and |x| = n. As per the inductive hypothesis, x cannot contain ba as a substring. But if ba is not a substring of x, then it is not a substring of $a \cdot x$ either and the claim holds. In the latter case, w must be of the form $x \cdot b$, where $S \to x$ and |x| = n. Once again, as per the inductive hypothesis, x does not contain ba as a substring and hence neither does $wx \cdot b$. We apply the principle of mathematical induction to conclude that no string derived from S can have ba as a substring. \Box