
Analysis of Algorithms - Homework I (Solutions)

K. Subramani
LCSEE,

West Virginia University,
Morgantown, WV

{ksmani@csee.wvu.edu}

1 Problems

1. Write a recursive algorithm to compute the maximum element in an array of integers. You may assume the existence
of a function “max(a, b)” that returns the maximum of two integers a and b.

Solution: 2

Function FIND-ARRAY-MAX(A, n)

1: if (n = 1) then
2: return(A[1])
3: else
4: return(max(A[n], FIND-ARRAY-MAX (A, n− 1) ))
5: end if

Algorithm 1.1: Finding the maximum in an array of n elements

2. Argue that your algorithm is correct.

Solution: We first need to formulate the proposition for algorithm correctness. In this case, we let P (n) stand
for the proposition that Algorithm (1.1) finds and returns the maximum integer in the locations A[1] through A[n].
Accordingly, we have to show that (∀n) P (n) is true.

BASIS: When there is only one element in the array , i.e., n = 1, then this element is clearly the maximum element
and it is returned on Line 2. We thus see that P (1) is true.

INDUCTIVE STEP: Assume that Algorithm (1.1) finds and returns the maximum element, when there are exactly k

elements in A.

Now consider the case in which there are k + 1 elements in A. Since (k + 1) > 1, Line 4 will be executed. In this
step, we first make a recursive call to FIND-ARRAY-MAX with exactly k elements. From the inductive hypothesis,
we know that the maximum elements in A[1] through A[k] is returned. Now the maximum element in A is either
A[k + 1] or the maximum element in A[1] through A[k] (say r). Thus, returning the maximum of A[k + 1] and r

clearly gives the maximum element in A, thereby proving that P (k) → P (k + 1). By applying the first principle of
mathematical induction, we can conclude that (∀n) P (n) is true, i.e., Algorithm (1.1) is correct. 2

3. What is the exact comparison complexity of your algorithm? Derive a recurrence relation and solve it to justify your
answer.

Solution: Observe that the function max(a, b) uses exactly one comparison. Thus, the comparison complexity of
Algorithm (1.1) can be described the recurrence relation:

T (1) = 0

T (n) = T (n− 1) + 1, n > 1

1



This recurrence can be expanded as T (n) = 1 + 1 + . . . 1 (n− 1) times to give T (n) = n− 1. 2

4. Argue using induction that the exact solution to the recurrence relation:

T (1) = 0

T (n) = 2 · T (
n

2
) + n, n ≥ 2

is T (n) = n · log n.

Solution:

BASIS: At n = 1, both the closed form and the recurrence relation agree (0 = 0) and so the basis is true.

INDUCTIVE STEP: Assume that T (r) = r · log r for all 1 ≤ r ≤ k. Now consider T (k + 1). As per the recurrence
relation, we have,

T (k + 1) = 2 · T (
k + 1

2
) + (k + 1), since (k + 1) ≥ 2

= 2 · (
(k + 1)

2
· log

k + 1

2
) + (k + 1) as per the inductive hypothesis, since

k + 1

2
< k

= (k + 1) · [log(k + 1)− log 2] + (k + 1)

= (k + 1) · log(k + 1)− (k + 1) + (k + 1)

= (k + 1) · log(k + 1)

We can therefore apply the second principle of mathematical induction to conclude that the exact solution to the given
recurrence is n · log n. 2

5. Show that log(n!) ∈ O(n · log n).

Solution: Observe that

log 1 ≤ log n

log 2 ≤ log n

...
...

...

log n ≤ log n

Adding up both the LHS and the RHS, we get

Σn

i=1 log i ≤ n · log n

⇒ log(1 · 2 · . . . n) ≤ n · log n

⇒ log(n!) ≤ n · log n

Yet another way of proving the above identity is observing that log n is an increasing function of n and hence we can
use the bound

log(n!) = log 1 + log 2 + . . . log n

= Σn

i=1 log i

≤

n+1∫

1

log x dx

From elementary calculus, we know that
∫
log x = x log x− x, from which it follows that

log(n!) ≤ (n+ 1) · log(n+ 1)− n and hence log(n!) ∈ O(n · log n). 2

2


