Analysis of Algorithms - Homework | (Solutions)

K. Subramani
LCSEE,
West Virginia University,
Morgantown, WV
{ksmani @csee.wvu.edu}

1 Problems

1. Write a recursive algorithm to compute the maximum element in an array of integers. You may assume the existence

of a function “max(a, b)” that returns the maximum of two integers a and b.
Solution: O

Function FIND-ARRAY-MAX (A, n)

[

if (n = 1) then

return(A[1])

else

return(max(A[n], FIND-ARRAY-MAX (A, n —1)))

end if

Algorithm 1.1: Finding the maximum in an array of n elements

2. Argue that your algorithm is correct.

Solution: We first need to formulate the proposition for algorithm correctness. In this case, we let P(n) stand
for the proposition that Algorithm (1.1) finds and returns the maximum integer in the locations A[1] through Al[n].
Accordingly, we have to show that (Vn) P(n) is true.

BAsIs: When there is only one element in the array , i.e., n = 1, then this element is clearly the maximum element
and it is returned on Line 2. We thus see that P(1) is true.

INDUCTIVE STEP: Assume that Algorithm (1.1) finds and returns the maximum element, when there are exactly &
elements in A.

Now consider the case in which there are k& + 1 elements in A. Since (k + 1) > 1, Line 4 will be executed. In this
step, we first make a recursive call to FIND-ARRAY-MAX with exactly k& elements. From the inductive hypothesis,
we know that the maximum elements in A[1] through A[k] is returned. Now the maximum element in A is either
Alk + 1] or the maximum element in A[1] through A[k] (say r). Thus, returning the maximum of A[k + 1] and r
clearly gives the maximum element in A, thereby proving that P(k) — P(k + 1). By applying the first principle of
mathematical induction, we can conclude that (¥n) P(n) is true, i.e., Algorithm (1.1) is correct. O

. What is the exact comparison complexity of your algorithm? Derive a recurrence relation and solve it to justify your

answer.
Solution: Observe that the function max(a, b) uses exactly one comparison. Thus, the comparison complexity of
Algorithm (1.1) can be described the recurrence relation:

T(1) = 0

Tn) = Th—-1)+1,n>1

This recurrence can be expandedas 7'(n) =14+ 1+...1 (n—1) timestogive T'(n) =n—1. O
. Argue using induction that the exact solution to the recurrence relation:

T(1) = 0

T(n) = 2~T(g)+n, n>2

isT(n) =n-logn.
Solution:
BAsis: Atn = 1, both the closed form and the recurrence relation agree (0 = 0) and so the basis is true.

INDUCTIVE STEP: Assume that T'(r) = r - logr forall 1 < r < k. Now consider T'(k + 1). As per the recurrence
relation, we have,

1
Tk+1) = 2-T(k%)+(k+1), since (k+1) > 2

k+1 k+1 k+1

(;—). log ;)+ (k4 1) as per the inductive hypothesis, since i
(k+1) - [log(k+1)—log2]+ (k+1)

= (k+1)-log(k+1)—(k+1)+(k+1)
(

k+1)-log(k+1)

= 2.

We can therefore apply the second principle of mathematical induction to conclude that the exact solution to the given
recurrence isn - logn. O

. Show that log(n!) € O(n - logn).
Solution: Observe that

logl < logn
log2 < logn
logn < logn
Adding up both the LHS and the RHS, we get
¥ logi < n -logn

=log(l-2-...n) <n-logn
= log(n!) <n-logn

Yet another way of proving the above identity is observing that log . is an increasing function of n and hence we can
use the bound
log(n!) = logl+log2+...logn
= X, logi
n+1

< / logz dx

1

From elementary calculus, we know that [logz = xlogz — =, from which it follows that
log(n!) < (n+1) -log(n + 1) — n and hence log(n!) € O(n -logn). O

