
Analysis of Algorithms - Homework II (Solutions)

K. Subramani
LCSEE,

West Virginia University,
Morgantown, WV

{ksmani@csee.wvu.edu}

1 Problems

1. Professor Stankowski proposes the following algorithm for sorting an array A of n numbers:

(i) If there is only one number, return.

(ii) If there are two numbers, perform a single comparison to determine the order.

(iii) If there are more than two numbers, then first sort the top two-thirds of the elements recursively. Follow this
by sorting the bottom two-thirds of the elements recursively and then sorting the top two-thirds of the elements
again.

Write a recursive algorithm to implement the above strategy and argue the correctness of Professor Stankowski’s
algorithm.

Solution:

Function STAN-SORT(A, low, high)

1: if (low = high) then
2: return
3: end if
4: if (low + 1) = high) then
5: if (A[low] > A[high]) then
6: Swap A[low] and A[high].
7: end if
8: return
9: end if

10: t1 = low + high−low+1

3

11: t2 = low + 2 · high−low+1

3

12: STAN-SORT(A, low, t2)
13: STAN-SORT(A, t1, high)
14: STAN-SORT(A, low, t2)

Algorithm 1.1: Stankowski’s Sorting Algorithm

STAN-SORT() should be called as STAN-SORT(A, 1, n) from the main program.

1

1.1 Proof of Correctness

Let n = high − low + 1 denote the number of elements in A. The algorithm clearly works correctly when n = 1
and n = 2. Assume that STAN-SORT() works correctly, whenever n ≤ k, for some k ≥ 2. Now consider the case in
which n = k + 1. As per the mechanics of STAN-SORT(), there is a recursive call on the first (2

3
)rd of the elements

of A, which are correctly sorted as per the inductive hypothesis. This is followed by a recursive call to the bottom
(2
3
)rd of A’s elements, which are once again sorted correctly, as per the inductive hypothesis.

Claim 1.1 After Line (13 :) of Algorithm (1.1) is executed, the largest (1

3
)rd of the elements in A are in their correct

places.

Proof: Let ai denote an element which is in the largest (1
3
)rd of the elements in A. At the commencement of

Algorithm (1.1), ai exists in precisely one of the partitions, p1 : A[low··t1], p2 : A[t1+1··t2] and p3 : A[t2+1··high].
If ai ∈ p3, then ai stays in p3 as per the inductive hypothesis. If ai ∈ p1, then after Line (12 :) of Algorithm (1.1)
is executed, it is moved to parition p2, as per the inductive hypothesis, and then to parition p3, after Line (13 :) is
executed. Likewise, if ai ∈ p2, then it stays in p2, after Line (12 :) is executed and moves to parition p3 after Line
(13 :) is executed. As per the inductive hypothesis, when Line (13 :) is executed, the elements in A[t1 · ·high] are
sorted. The claim follows. 2

Now when Line (14 :) of Algorithm (1.1) is executed, as per the inductive hypothesis, the smallest (2

3
)rd of the

elements in A are also in their correct places. Thus, the entire array is sorted, as per Algorithm (1.1). 2

2. What is the comparison complexity of Professor Stankowski’s algorithm? Formulate a recurrence relation and solve
the same to justify your answer.

Solution: Let T (n) denote the comparison complexity of STAN-SORT(). From the above description, it follows that,

T (n) = 0, if n = 1

= 1, if n = 2

= 3 · T (
2n

3
), n ≥ 3

Using the Master Theorem, it follows that T (n) = Θ(n2.71). Professor Stankowski’s algorithm is worse than
INSERTION-SORT()! 2

3. Describe how you would implement a queue data structure using two stacks. In particular, describe algorithms for
the INSERT() and DELETE() operations, assuming that PUSH() and POP() functions have been implemented.

Solution:

We call the two stacks A and B; assume that the elements of the queue are stored in Stack A. Recall that a stack is a
LIFO structure, whereas, a queue is a FIFO structure. Implementing INSERT() operation is easy; we simply PUSH()
the element onto stack A. The DELETE() operation is implemented as follows: The elements of stack A are popped
out using the POP() operation and pushed into stack B, using the PUSH() operation. The top element of B is then
popped out, thereby deleting the correct element of the queue structure. 2

4. The path length of a binary tree is defined as the sum of the depths of all the nodes in the tree. Write a linear time
algorithm to compute the path length of an arbitrary binary tree.

Solution: We assume that a node v in the tree has the following structure: a left child, which is accessed through
v → lchild, a right child, which is accessed through v → rchild, a key, which is accessed through v → key and a
field which stores the number of nodes in the subtree rooted at v. The last field is accessed through v → num.

We first compute v → num for each node in the tree, by running Algorithm (1.2) on the root r of the input tree.
Algorithm (1.2) recursively updates the num field in each node of the tree. It is important to note that each node
is touched at most twice; once, when descending down the tree and the second time, when ascending up the tree.
Accordingly, Algorithm (1.2) runs in linear time. The key idea is that the number of nodes in the subtree rooted at the

2

Function NODE-NUM(v)

1: if (v == NULL) then
2: return(0)
3: else
4: v → num = 1+NODE-NUM(v → lchild)+ NODE-NUM(v → rchild)
5: return(v → num)
6: end if

Algorithm 1.2: Computing the number of nodes in the subtree rooted a node

current node is one more than the number of nodes in the subtrees rooted at its children. A formal proof of correctness
can be derived in straightforward fashion, using induction on the height of the tree.

Having run Algorithm (1.2) on the root r of the input tree, we call Algorithm (1.3) on r. The key idea in Algorithm (1.3)
is that the path-length at the current node is equal to the path-length of the subtrees at its children plus the number of
nodes in those subtrees (Why?). A formal proof of correctness using induction on the height of the tree, is left as an
exercise. The IS-LEAF(v) function checks whether the current node is a leaf and returns true or false accordingly.
Note that a node is a leaf if and only if both its children are NULL. In this case, we return 0, since the path-length of
a leaf node is 0.

Function PATH-LENGTH(v)

1: if (v = NULL) then
2: return(“error”)
3: end if
4: {v is not a NULL node}
5: if (IS-LEAF(v) then
6: return(0)
7: else
8: if (v → lchild = NULL) then
9: {The right child is definitely not NULL}

10: return(PATH-LENGTH(v → rchild)+((v → rchild)→ num))
11: else
12: if (v → rchild = NULL) then
13: {The left child is definitely not NULL}
14: return(PATH-LENGTH(v → lchild)+((v → lchild)→ num))
15: else
16: return(PATH-LENGTH(v → lchild)+((v → lchild)→ num)+

PATH-LENGTH(v → rchild)+((v → rchild)→ num))
17: end if
18: end if
19: end if

Algorithm 1.3: Computing path length of a binary tree

2

5. In the single machine scheduling problem, you are given a single machine and a collection of tasks T = {T1, T2, . . . , Tn}
with respective start times S = {s1, s2, . . . , sn} and respective finish times F = {f1, f2, . . . , fn}. In other words
task Ti starts at time si and finishes at time fi. The machine can execute precisely one task at a time; accordingly,
tasks scheduled on the machine must be non-conflicting. The goal is to maximize the number of tasks scheduled on
the machine. Design a greedy algorithm for this problem and argue its correctness.

Solution:

Algorithm (1.4) represents our greedy strategy.

3

Function SCHEDULE-TASK(T)

1: Order the tasks in T by their finish times.
2: Without loss of generality, assume that f1 ≤ f2 ≤ . . . fn.
3: XG = T1

4: for (i = 2 to n) do
5: if (Ti does not create a conflict with the tasks in XG) then
6: XG = XG ∪ Ti

7: end if
8: end for

Algorithm 1.4: Greedy task Scheduling

We claim that XG is maximal in terms of the number of tasks that can be feasibly scheduled on the machine. To see
this, assume that XG is not maximal and let Y denote the output of an arbitrary algorithm for this problem, which is
supposedly optimal.

Lemma 1.1 XG is not a proper subset of Y .

Proof: If XG = Y , then clearly Lemma (1.1) is true. Assume that XG 6= Y and that XG ⊂ Y . Let Tj ∈ Y denote a
task which is not in XG. Now Algorithm (1.4) considered Tj at some point and discarded it, since it created a conflict
with the tasks already in XG. But this means that Tj would create a conflict with the tasks in Y as well! Therefore,
we cannot have XG ⊂ Y . 2

Lemma 1.2 T1 can always be made part of the optimal solution.

Proof: Assume that T1 6∈ Y , where Y is an optimal solution. Insert T1 into Y ; if it does not conflict with any job in
Y , then Y cannot be optimal. We now claim that at most one task in Y can conflict with T1. To see this, assume the
contrary and let two tasks Tr and Ts in Y conflict with T1. Note that we must have fr ≥ f1 and fs ≥ f1, since T1 is
the task with the smallest finish time. Therefore, we must have sr < f1 and ss < f1 (since Tr and Ts conflict with
T1) and thus Tr and Ts conflict with each other! Thus, there can be at most task in Y that conficts with T1 and this
task can be replaced by T1, without affecting the cardinality of Y . 2

Let XG and Y agree on the first k − 1 tasks; call this set Sk. Let Tj denote the first task in XG, such that Tj 6∈ Y .
First note that fj ≤ fr, (∀r) Tr ∈ Y − Sk. Add Tj to Y ; we claim that Tj creates a conflict with at most one task
of Y . Assume the contrary, and let Tj create conflicts with two tasks Tr and Ts of Y . Clearly, neither Tr nor Ts can
belong to XG. Further, we must have fr, fs ≥ fj . To see this, assume that fr < fj . Since Tr ∈ Y , it can coexist
with the tasks in Sk; but this means that it would have been considered before Tj by the greedy algorithm and added
to XG. A similar argument establishes that fs ≥ fj . Likewise, sr < fj and ss < fj , since Tr and Ts conflict with
Tj . But this forces Tr and Ts to conflict with each other, thereby establishing that both cannot exist simultaneously
in Y . This means that Tj can displace at most one task in Y , say Tr; this displacement does not affect the number
of tasks that can be feasibly scheduled. Let Z denote the set of jobs Y ∪ Tj − Tr; note that Z is one task closer to
XG than Y is. Working this way, we can transform Y to include all the jobs in XG, without affecting the number of
feasible jobs. At this point, we must have XG = Y or XG ⊂ Y , but by Lemma (1.1), XG ⊂ Y is not possible. We
have thus shown that XG is maximal, thereby proving that the greedy strategy always outputs the optimal solution.

2

4

