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1 Problems

1. Asymptotics:

(a) Show that [(f(n) ∈ Ω(g(n))) ∧ (g(n) ∈ Ω(h(n)))]⇒ f(n) ∈ Ω(h(n)).

(b) Does log3 n ∈ O(n0.5)?

Solution:

(a) The hypothesis states that f(n) ∈ Ω(g(n)), from which it follows that f(n) ≥ c1 · g(n), for some c1 > 0 and
all n ≥ N1. Likewise, we have g(n) ∈ Ω(h(n)), which implies that g(n) ≥ c2 · h(n), for some c2 > 0 and all
n ≥ N2. Observe that for all n ≥ N3 = max (N1, N2), we have f(n) ≥ c1 ·gn and g(n) ≥ c2 ·hn and therefore,
f(n) ≥ c1 · c2 · h(n). Putting c3 = c1 · c2, we get f(n) ≥ c3 · h(n), for all n ≥ N3, where c3 > 0. In other
words,

[(f(n) ∈ Ω(g(n))) ∧ (g(n) ∈ Ω(h(n)))]⇒ f(n) ∈ Ω(h(n))

(b) Observe that

lim
n→∞

log3 n

n0.5
= lim

n→∞

3 log log n

0.5 log n

= c1 · lim
n→∞

log log n

log n

= c1 · lim
n→∞

1
log n

· 1
n

1
n

= c1 · lim
n→∞

1

log n

= 0

It follows that log3 n ∈ O(n0.5).
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2. Algorithm Design for order: Given an integer array of n elements, design an algorithm to find both the maximum
element and the minimum element, using at most 3n

2
element to element comparisons. Comparisions for iterators

(e.g., for loops) do not count.

Solution: Without loss of generality, we assume that the number of elements is even, i.e., n = 2k, for some integer
k.

Break up the array elements into k pairs of 2 elements each. In each pair, perform a comparison and make the larger
element, the left element of the pair. Note that k element to element comparisons are performed to achieve this goal.
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Let (a1, b1), (a2, b2) . . . (ak, bk) denote the elements; observe that as per the above comparison operations, ai ≥ bi,
∀i = 1, 2, . . . , k.

The crucial observation is that to find the maximum element, we can focus purely on the a elements. To see this, let
us assume that the maximum element in the array is one of the b elements, say bj ; but aj ≥ bj and our claim holds.
Since there are k elements of type a, the maximum among them can be found using at most k− 1 element to element
comparisons. Using a similar argument, the minimum element in the array can be found by focussing purely on the b

elements, and this can be achieved using another k − 1 element to element comparisons.

Thus, the total number of element to element comparisons is k + (k − 1) + (k − 1) = 3k − 3 ≤ 3k = 3·n
2

. 2

3. Binary Search Trees: Enumerate all the binary search trees on the keys 1, 2 and 3.

Solution: There are five distinct binary search trees:

(i) 2 at the root, 1 as its left child and 3 as its right child.

(ii) 3 as the root, 1 as the left child of 3 and 2 as the right child of 1.

(iii) 3 as the root, 2 as the left child of 3 and 1 as the left child of 2.

(iv) 1 as the root, 2 as the right child of 1 and 3 as the right of 2.

(v) 1 as the root, 3 as the right child of 1 and 2 as the left child of 3.
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4. Sorting: Explain briefly how Randomized Quicksort performs O(n · log n) comparisons, in the expected case, to sort
an array of n elements. (You may assume the algorithm discussed in class.)

Solution: As per the algorithm in class, the pivot is chosen uniformly and at random from the array. The elements of
the array are then partitioned about this pivot element and the algorithm either terminates on a partition (if there is at
most one element in it) or recurses on it (if there are at least two elements in it).

Consider the computation tree created by a run of Randomized Quicksort on an array of n elements. The root of the
tree has n elements and the leaves have exactly one element each. A node in this tree is called “good”, if both its

children have size at most 3
4

th
of its size.

Claim 1.1 A root to leaf path cannot have more than log 4

3

n good nodes.

Proof: Let L be a good node and let L′ denote one of its two children. We must have |L′| ≤ 3
4
|L|. Accordingly, if

there are k good nodes on a root to leaf path, we have ( 3
4
)k · n ≤ 1, which implies that k ≤ log 4

3

n. 2

Claim 1.2 The expected height of the computation tree is O(log n).

Proof: The expected height of the computation tree is the expected length of a randomly chosen root to leaf path.
Focus on a specific root to leaf path of the computation tree, say p. At any node on p, Randomized Quicksort picks
a pivot, uniformly and at random over all the elements in that node. Therefore, probability that a node is good is
at least 1

2
. Now the expected number of nodes on p (which is the expected length of p)is equal to the number of

recursive invocations made, before log 4

3

n good nodes are created. However, for log 4

3

n good nodes to be created, at
most 2 · log 4

3

n recursive invocations need to be made, as per the theorem given in class. Hence, the expected height
of the computation tree is O(log n). 2

Observe that the total number of comparisions in each level of the computation tree is O(n) and hence the total
number of comparisions performed by Randomized Quicksort is O(n · log n), in the expected case. 2

5. Properties of Binary Trees: Let T be a proper binary tree with n nodes and height h. Argue that the number of
external nodes in T is at least h+ 1 and at most 2h.

Solution: We use induction on the height h of the tree, for proving both bounds.
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MINIMUM: Clearly, if the height h of T is 0, then T has precisely one node, i.e., the root. Further, this node is also
an external node and thus the number of external nodes is at least 1 + 0 = 1. It follows that the base case is true.

Assume that the minimum number of external nodes in a tree of height h = k is k + 1.

Now consider a tree T of height h = k + 1; let us remove all the nodes at level k; we get a tree T ′ of height k and
by the inductive hypothesis, there are at least k + 1 external nodes in T ′. An external node of T is created when a
node is attached to an external node of T ′. To increase the level of T ′ by one, we need to attach at least two nodes
to a node at level k; further both these attached nodes become external nodes; at the same time, the external node of
T ′, to which these nodes were attached becomes an internal node. Thus, the total number of external nodes in T , is
at least k+1+2− 1 = k+2. By applying the second principle of mathematical induction, we can conclude that the
total number of external nodes in a tree of height h is at least h+ 1.

MAXIMUM: Once again, if the height h of T is 0, then T has precisely one node, i.e., the root. Further, this node is
also an external node and thus the number of external nodes is at most 20 = 1. It follows that the base case is true.

Assume that the maximum number of external nodes in a tree of height h = k is 2k.

Now consider a tree T of height h = k + 1; let us remove all the nodes at level k + 1; we get a tree T ′ of height k

and by the inductive hypothesis, there are at most 2k external nodes in T ′. An external node of T is created when a
node is attached to an external node of T ′. We can attach at most 2 nodes to each external node of T ′ and thus the
total number of external nodes in T cannot exceed 2 · 2k = 2k+1. By applying the second principle of mathematical
induction, we can conclude that the total number of external nodes in a tree of height h is at most 2h. 2
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