Analysis of Algorithms - Quiz Il (Solutions)

K. Subramani
LCSEE,
West Virginia University,
Morgantown, WV
{ksmani @csee.wvu.edu}

1 Problems

1. Recurrences: Solve the following recurrences using the Master method:

0]
T1) = 0
T(n) = 2'T(g)+logn, n>1
(ii)
T1) = 0
T(n) = 9-T(g)+n3logn, n>1
Solution:

(i) Referring to the format of the Master Theorem, a« = 2, b = 2 and f(n) = logn. Hence, log,a = 1 and
nlogv @ = n, Clearly, f(n) € O(n'~¢), forany 0 < ¢ < 1 and therefore, T'(n) € ©(n), by the Master Theorem.

(i) Observethat,a =9,b = 3and f(n) = n3logn in the format of the Master Theorem. Hence, log, a = log; 9 =
2 and n'er @ = n2. Clearly, f(n) € Q(n?*€), for e = 1 and therefore, T'(n) € ©(n?logn).

O

2. Divide-And-Conquer (Application) Use Strassen’s matrix mutiplication algorithm to multiply

3 2 1 5
X—{4 S]andY—{g 6]'

Solution: We set Z = X - Y and partition each matrix into four submatrices as discussed in class. Accordingly,
A=[3,B=[2],C=[4],D=[8,E=[1],F = [5], G = [9] and H = [6], where,

I J A B E F
Z:{K L}’X:[C D}andY:[G H]

Applying Strassen’s algorithm, we compute the following products:
() S1=A-(F-H)=3]-([5] - [6]) = [-3].

(i) S2 = (A+B)-H= (3] +[2]) - [6] = [30].

(iii) S5 =(C+D)-E = ([4 +[8]) - [1] = [12].

(iv) S4=D-(G—-E)=[8]-([9] - [1]) = [64].
V) Ss=(A+D)-(E+H)=([3]+] +

(Vi) S = (B —D)- (G +H) = ([2] - [8]) - ([9] + [6]) = [-90].

(vii) S7=(A-C)-(E+F) = ([3] - [4]) - (1] +

From the above products, we can compute Z as follows:

() I=554+8+85.1—5=21
(i) J=51+5,=27
(i) K=S3+5,=76
(IV) LZSl—S7—Sg+S5=68
The correctness can easily be verified using the naive algorithm. O

3. Divide-And-Conquer (Theory) Design a Divide-And-Conquer strategy to find both the maximum and the minimum
elements of an integer array using at most 37” comparisons. Analyze your algorithm through a recurrence relation.
Note that the strategy discussed in the Midterm solutions is not Divide-And-Conquer.

Solution:
Without loss of generality, we assume that the number of elements in the input array is 2%, for some & > 1.

Function FIND-MAXMIN(A, low, high)
1 if ((high — low + 1) = 2) then
if (Allow] < Alhigh]) then
max = Alhigh]; min = Aflow]
return(max, min)
else
max = Allow]; min = Alhigh]
return(max, min)
end if
else
10 mad = o
11: (max;, min;) =FIND-MAXMIN(A, low, mid)
122 (max,,min,) =FIND-MAXMIN(A, mid + 1, high)
13 if (max; > mazx,) then

N

© N QO

high+low

14: maxr = max;

15 else

16: maxr = max,

17 endif

18 if (min; < min,.) then
19: min = min;

20. else

21: min = min,

22 endif

23: end if

24: return(max, min)

Algorithm 1.1: Divide and Conquer for Minimum and Maximum

Algorithm (1.1) is called as FIND-MAXMIN(A, 1, n) from the main program.

Let T'(n) denote the comparison complexity of Algorithm (1.1). We have,

T(2) = 1
2~T(g)+2

=
2
I

We have assumed that n = 2%, k& > 1. We thus have,

T2YH =1
T2%) = 2.-T@2"")+2
Therefore,
Tn=2% = 2.2-7T2"?%) +2/+2
= 22.7(2"%) 42242
= ok-l.pk-—(k=1)y L ok=1 4 | 9219
= 2Fl.T@2)+2-1+24...287
= 2192kt)
— 2k—1+2_2k—1_2
= 3.2t 2
3n
= = -2
2
O

4. Greedy: Let G =< V,E > denote an undirected graph with vertex set V and edge set E. Assume that the weights
on the edges of G are distinct, i.e., no two edges have the same weight. Argue that G has a unique Minimum Spanning
Tree. Hint: Recall the proof of correctness of Kruskal’s algorithm and modify it ever so slightly!

Solution: Let T be the Minimum Spanning Tree (MST) produced by Kruskal’s algorithm and let 7’ be another MST,
which is different from T'. Since both 7" and T" have exactly (n — 1) edges, there must be at least one edge e, such
thate € T, but e ¢ T” and at least one edge ¢’, such that ¢’ € T”, but ¢’ ¢ T'. Without loss of generality, let e denote
the lightest edge which belongs to T, but not to 7”; likewise, let ¢’ denote the lightest edge which belongs to 7”7, but
not to 7. It follows that all edges e,. which are lighter than both e and ¢’ are in both 7" and 7’ or in neither. Let S
denote the set of edges, which are lighter than both e and ¢’ and are present in both 7" and 7”. We claim that e is
lighter than ¢’. To see this, observe that if ¢’ were lighter than e and could exist with the edges in S, then Kruskal’s
algorithm would have considered it first. Since e and e’ are different edges, they cannot have the same weight (this
is where the distinctness of the edge weights kicks in) and thus, e must be lighter than ¢’. Insert e into T”; a cycle C
will be created. We now claim that at least one edge in this cycle, say e, does not belong to S. To see this, observe
that if all the edges in C, were also in .S, then e forms a cycle with the edges in S, which contradicts the fact that 7" is
a spanning tree. Since ey ¢ S, it must be the case that e is heavier than e (they cannot have the same weight, since
they are distinct edges). On removing e, from C, we get a spanning tree which is lighter than 7", contradicting the
hypothesis that 7" was a Minimum Spanning Tree.

It follows that G must have a unique Minimum Spanning Tree.
a

5. Dynamic Programming: Assume that you are given a chain of matrices < A; A> A3z A4 >, with dimensions 2 x 5,
5 x 4,4 x 2and 2 x 4 respectively. Compute the optimal number of multiplications required to calculate the chain
product.

Solution: Let m]s, j] denote the optimal number of multiplications to multiply the chain < A;, A;41,. ..

where matrix A; has dimensions d; 1 x d;. As per the discussion in class, we know that
mli,j] = 0,ifj<i

= k:%nknq_m[l, kl+mlk+1,j] +di—1 - di - d;

Computing M = [m[i, j]],i = 1,2,3,4; j =4,i+ 1,...,4, in bottom-up fashion, we get

0 40 56 72
0 0 40 &0
M= 0 0 0 32
0 0 0 O

As per the above table, the optimal number of multiplications to multiply the given chain is 72. O

7A] >,

