Analysis of Algorithms - Scrimmage II

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Instructions

- 1. The scrimmage will not be graded.
- 2. Attempt as many problems as you can.
- 3. The solutions have been posted on the class URL.

2 Important Concepts

Definition 2.1 O(g(n)) is the class of functions that do not grow faster than g(n), as n tends to ∞ . Mathematically, $f(n) \in O(g(n))$, if $f(n) \leq c_1 \cdot g_n$, for some $c_1 > 0$ and all $n \geq N_0$, where N_0 is some fixed constant.

Definition 2.2 $\Omega(g(n))$ is the class of functions that grow at least as fast as g(n), as n tends to ∞ . Mathematically, $f(n) \in \Omega(g(n))$, if $f(n) \ge c_1 \cdot g_n$, for some $c_1 > 0$ and all $n \ge N_0$, where N_0 is some fixed constant.

Definition 2.3 $\Theta(g(n))$ is the class of functions that grow exactly as fast as g(n). Mathematically, $f(n) \in \Theta(g(n))$, if $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$.

3 Techniques

The four common techniques for establising asymptotic orders are:

- (i) Induction Works only when the answer is known exactly; can also be applied when an approximate answer is known, but is usually messy.
- (ii) Summation Rules See "Tools of the Trade" handout.
- (iii) Limit Rules If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = k_1$, then,
 - (a) $k_1 = 0 \Rightarrow f(n) \in O(g(n)).$
 - (b) $k_1 = \infty \Rightarrow f(n) \in \Omega(g(n)).$
 - (c) k_1 is some constant, not zero $\Rightarrow f(n) \in \Theta(g(n))$.

Limit rules may not always apply (See Quiz I).

(iv) Clever Observations - See Solutions to Quiz I and Homework I.

4 Problems

- 1. Show that if f(n) and g(n) are monotonically increasing functions, then so is f(n) + g(n).
- 2. Prove that $n! \in \Omega(2^n)$.
- 3. Prove that $f(n) + O(f(n)) \in O(f(n))$.
- 4. Prove that

$$1^{2} + 3^{2} + \dots (2n-1)^{2} = \frac{n \cdot (2n-1) \cdot (2n+1)}{3}.$$