
Advanced Analysis of Algorithms - Final (Solutions)

K. Subramani
LCSEE,

West Virginia University,
Morgantown, WV

{ksmani@csee.wvu.edu}

1 Problems

1. Consider the following greedy algorithm for finding the Minimum Vertex Cover in an undirected, labeled graph
G =< V,E >: Select the vertex with the maximum degree and add it to the cover. In the event that more than one
vertex has the maximum degree, choose the vertex with the smallest label. Now remove this vertex and all its incident
edges from G (these edges are covered by the chosen vertex). Repeat this step till all edges are deleted from the
graph. It is clear that this algorithm produces a cover. Will this algorithm produce a minimum size cover? Justify
your answer with a proof or a counterexample.

Solution:

Consider the labeled graph in Figure (1). If we use the above algorithm the vertex cover that is returned is
V ′ = {v3, v4, v2, v6}, whereas the optimal vertex cover is V ′ = {v4, v2, v6}.

v1

v2 v3

v4 v5

v6v7

Figure 1: Counterexample to the described algorithm for Minimum Vertex Cover

Note that labeling does not alter the NP-completeness of the vertex covering problem and it is unlikely that this
heuristic or any other polynomial time heuristic for that matter, is going to produce the optimal cover. 2

2. In the stagewise shortest path problem, you are given a staged graph G =< V,E, s, t,k, c >, where, V is the set of
vertices, E is the set of edges, s is the source vertex, t is the sink vertex, k is the number of stages and c is a weighting
function that associates a positive weight to the edges in E. In stage 1, s is the only vertex; likewise, in stage k, t

is the only vertex. All the other vertices are partitioned among the other stages, with each stage containing at least
one vertex. Edges in the the graph are strictly from stage i to stage (i + 1), 1 ≤ i ≤ k − 1. Describe a linear time
algorithm to determine the shortest path from s to t. You may assume that |V| = n and |E| = m.

Solution: Since the edges are positively weighted, we may be tempted to use Dijkstra’s algorithm; however, Dijkstra’s
algorithm is not known to run in linear time! Interestingly enough, a dynamic programming approach (as opposed to
a greedy approach) actually works in time O(m + n). We define P (i, j) to be shortest path from vertex vj in Stage i

to vertex t and d(i, j) to be the actual cost of this path.

1

We exploit the stagewise nature of the graph to derive:

d(i, j) = min
vl∈Stage (i+1),(vj ,vl)∈E

c(vj , vl) + d(i + 1, l)

∀vj ∈ Stage (k − 1) d(k − 1, j) = c(vj , t)

Using an adjacency list structure to represent the staged graph and the associated data structures d() and P (), we can
implement the above recurrence relation in O(m+n) time. Note that we are concerned with computing d(1, 1), with
v1 denoting the source vertex s. Further, although the recurrence is written in top-down fashion, the computation is
done bottom-up. In other words, we first set d(k, n) = 0, where vn = t. This is followed by processing the edges in
Stage (k − 1), after which the edges in Stage (k − 2) are processed and so on. The computation of d(1, 1) then takes
time proportional to the degree of s. Since each edge is processed exactly once and for constant time, the running
time of the algorithm is O(m + n). 2

3. Consider Professor Boruvka’s algorithm for determining the Minimum Spanning Tree in a weighted, undirected
graph.

Function FIND-MST(G=<V,E>)

1: Let T be a subgraph containing only the vertices in V.
2: while (|T | ≤ (n− 1)) do
3: for (each connected component Ci of T) do
4: Find the lightest edge e = (u, v), with u ∈ Ci and v 6∈ Ci.
5: Add e to T if it is not already in T .
6: end for
7: end while
8: return(T)

Algorithm 1.1: Boruvka’s algorithm for Minimum Spanning Trees

Is the Professor’s algorithm correct? Justify your answer.

Solution: Professor Boruvka’s algorithm is yet another implementation of the Cut Theorem for Spanning Trees,
which states that the lightest edge crossing a cut can always be made part of a Minimum Spanning Tree. This
theorem was proved in class during the discussion on Prim’s algorithm. It follows that the Professor’s algorithm is
correct. 2

4. In class, we showed that the HORNSAT and 2SAT problems were in P. Consider the following SAT variant called
HORN⊕2SAT; a CNF formula is said to be HORN⊕2SAT, if every clause has exactly two literals or (inclusively) is
HORN. Argue that checking the satisfiability of a HORN⊕2SAT formula is NP-complete.
Hint: Reduce 3SAT to HORN⊕2SAT.

Solution: Note that the input to a 3SAT instance is a collection of clauses with 3 literals in each clause. If a clause
has 2 or more negative literals, the clause is already in HORN form, so nothing needs to be done. Consider a clause
Cj with two positive literals, say (x1, x3, x̄4). Cj is replaced by the clause set Sj = (z̄j , x3, x̄4) (zj , x1), where zj

is a new boolean variable. It is not hard to see that Cj is satisfied by an assignment if and only if Sj is. For instance,
if x1 = true, Sj can be made true, by choosing zj to be false. Likewise, if x1 = x3 = false and x4 = true, then
regardless of how zj is chosen, Sj will be false.

Now consider the case in which Cj is of the form (x1, x2, x3) (three positive literals). We replace Cj by the set Sj =

(z̄ij , x1)

(z̄3j , x2, z̄2j)

(z3j , z1j)

(z2j , x3)

2

where zij , z2j and z3j are new boolean variables. It is not hard to see that if x1 = x2 = x3 = false, Sj will be false,
regardless of how the zij , 1 ≤ i ≤ 3 are chosen. Likewise, if any of x1, x2 or x3 is true, then Sj can be made true,
by selecting the zij variables appropriately. 2

5. In class, we showed that the Maximum Independent Set problem on an undirected graph G =< V,E > is
NP-complete. What can you say about the complexity of the problem, if G does not have any cycles. Justify your
answer with a polynomial time algorithm or a proof of NP-completeness.
Hint: Does Dynamic Programming work?

Solution: Without loss of generality, we can assume that G is a tree (say T), since if it were a forest, we can find the
maximum independent set of each connected component separately and take their union. The next observation that
we make is that T can be rooted at an arbitrary vertex, without affecting the Maximum Independent Set (Why?).

Lemma 1.1 Let T be a rooted tree, with vertex r denoting the root. Let v denote an arbitrary vertex in T ; let Cv

denote the set of children of v and let Gv denote the set of grandchildren of v. Let I(v) denote the size of the Maximum
Independent Set (MIS) of the subtree rooted at vertex v. Then,

I(v) = max ((1 +
∑

u∈Gv

I(u)),
∑

u∈Cv

I(u))

Proof: Let Sv denote the MIS of the tree rooted at vertex v. Observe that either v ∈ Sv or v 6∈ Sv and that these cases
are mutually exclusive and exhaustive. If v ∈ Sv, then clearly, none of the vertices in Cv can be part of Sv . Further,
we can safely combine v with the union of the Maximum Independent Sets of the subtrees rooted at its grandchildren.
Similarly, if v 6∈ Sv, we can simply set Sv to be union of the Maximum Independent Sets of the subtrees rooted at its
children. 2

Although I(r) is expressed in top-down fashion, we compute it in bottom-up fashion, beginning at the leaves of the
tree and working our way to the root. It is not hard to see that this algorithm runs in linear time.

2

3

