
Advanced Analysis of Algorithms - Homework I (Solutions)

K. Subramani
LCSEE,

West Virginia University,
Morgantown, WV

{ksmani@csee.wvu.edu}

1 Problems

1. Given an array A of n integer elements, how would you find the second smallest element in n+ log2 n comparisons.

Solution: Consider the following algorithm:

Function FIND-2MIN(A, low, high)

1: n = high− low + 1
2: S2min = φ

3: if (n = 1) then
4: minw =A[1]
5: S2min = φ.
6: return(minw, S2min)
7: end if
8: if (n = 2) then
9: if (A[1] ≤ A[2]) then

10: minw =A[1]
11: Add A[2] to S2min

12: return(minw, S2min)
13: else
14: minw = A[2].
15: Add A[1] to S2min

16: return(minw, S2min)
17: end if
18: end if
19: {We know that n ≥ 3}
20: mid = bhigh+low

2
c

21: (lminw, lS2min) = FIND-2MIN(A, low, mid)
22: (rminw, rS2min) = FIND-2MIN(A, mid+ 1, high)
23: if (lminw ≤ rminw) then
24: minw = lminw

25: S2min = lS2min ∪ rmin2

26: else
27: minw = rminw

28: S2min = rS2min ∪ lmin2

29: end if
30: return(minw, S2min)

Algorithm 1.1: Finding the two smallest elements in an array

1

The above algorithm returns the smallest element in the whole array minw and a set S2min of candidate elements for
the second minimum element.

The number of comparisons is characterized by the following recurrence relation:

T (1) = 0

T (2) = 1

T (n) = 2 · T (
n

2
) + 1

This recurrence is easily solved to get T (n) = n− 1.

The size of the candidate set S2min can be characterized by the following recurrence:

G(1) = 0

G(2) = 1

G(n) = 1 +G(
n

2
)

G(n) is easily seen to be log2 n. We can find the smallest element in S2min using at most log2 n comparisons; it thus
follows that the second smallest element can be found in n+ log2 n comparisons. 2

2. Indicate whether each of the following identities is true or false, giving a proof if true and a counterexample otherwise.

(a) f(n) + o(f(n)) ∈ Θ(f(n)).

(b) (f(n) ∈ O(g(n))) ∧ (g(n) ∈ O(h(n)))⇒ (f(n) ∈ O(h(n))).

(c) log1/ε n ∈ O(nε), (∀ε) 0 < ε < 1.

(d) 2n ∈ Ω(5loge n).

Solution:

(a) The key observation is that o(f(n)) ∈ O(f(n)). Also, f(n) ≤ f(n) + o(f(n)); it follows that
f(n) + o(f(n) ∈ Θ(f(n)).

(b) The premises state that f(n) ≤ c1g(n) and g(n) ≤ c2h(n). It follows that f(n) ≤ c1 · c2h(n) and hence
f(n) ∈ O(h(n)).

(c) Observe that

limn→∞

log1/εn
nε

= limn→∞

1
ε log logn

ε log n

= 0 by applying L′Hospital′s rule

The identity is therefore true.

(d) Observe that

limn→∞

2n

5logn

= limn→∞

n log 2

logn·5

→ ∞ by applying L′Hospital′s rule

It therefore follows that the identity is true.

2

2

Function FIND-KLARGEST(A, k, n)

1: We assume that the array elements are stored in A[1] through A[n] and that k is an integer ∈ [1, n]. We also assume
without loss of generality, we assume that the numbers are distinct.

2: if (n = 1) then
3: {k has to be 1 as well}
4: return(A[n])
5: end if
6: We consider a variation of the PARTITION() procedure in which elements larger than the pivot are thrown in the left

subarray and elements smaller than the pivot are thrown in the right subarray.
7: Partition A using A[1] as the pivot, using the above PARTITION() procedure. Let j denote the index returned by

PARTITION(). {As per the mechanics of PARTITION(), elements A[1] through A[j − 1] are greater than A[j] and
elements A[j + 1] through A[n] are smaller than A[j].}

8: Copy the elements larger than A[j] into a new array C and the elements smaller than A[j] into a new array D.
9: if ((k = j) then

10: return(A[j])
11: else
12: if (k < j) then
13: return(FIND-KLARGEST(C, k, (j − 1)))
14: else
15: return(FIND-KLARGEST(D, k − j, (n− j)))
16: end if
17: end if

Algorithm 1.2: Selection through Partition

3. Devise a Divide-and-Conquer procedure for computing the kth largest element in an array of integers. Analyze the
asymptotic time complexity of your algorithm. (Hint: Use the Partition procedure discussed in class.)

Solution:

Algorithm (1.2) represents a Divide-and-Conquer strategy for our problem.

The worst case running time of the algorithm is captured by the recurrence:

T (1) = O(1)

T (n) = T (n− 1) +O(n)

This implies that algorithm runs in time O(n2) in the worst case. 2

3

4. Argue the correctness of the MERGE() procedure discussed in class. (Hint: Write a recursive version of MERGE()
and then use induction.)

Solution:

Function MERGE(A, l1, h1,B, l2, h2,C, l3, h3)

1: {We assume that the arrays A[l1 · ·h1] and B[l2 · ·h2] are being merged into the array C[l3 · ·h3]. }
2: if (A is empty) then
3: Copy B into C
4: return
5: end if
6: if (B is empty) then
7: Copy A into C
8: return
9: end if

10: if (A[l1] ≤ B[l2]) then
11: C[l3] =A[l1]
12: MERGE(A, l1 + 1, h1,B, l2, h2,C, l3 + 1, h3)
13: else
14: C[l3] =B[l2]
15: MERGE(A, l1, h1,B, l2 + 1, h2,C, l3 + 1, h3)
16: end if

Algorithm 1.3: Recursive Merge

To prove the correctness of the algorithm, we use induction on the sum s of the elements in A and B.

Clearly if s = 1, the algorithm functions correctly, since it copies the non-empty array into C.

Assume that the algorithm works correctly when 1 ≤ s ≤ k, for some k > 1. Now consider the case in which
s = k+1. In this case, Step (10 :) of the algorithm moves the smallest element in both A and B into the first position
in C. This is followed by a recursive call on arrays whose total cardinality is at most k. By the inductive hypoethesis,
the recursive calls work correctly and since C[l3] is already in its correct place, we can conclude that the arrays A and
B have been correctly merged into array C.

2

5. What is the value returned by Algorithm (1.4) when called with n = 10?

Function LOOP-COUNTER(n)

1: count = 0
2: for (i = 1 to n) do
3: for (j = 1 to i) do
4: for (k = 1 to j) do
5: count++
6: end for
7: end for
8: end for
9: return(count)

Algorithm 1.4: Loop Counter

Solution:

For arbitrary n, it is clear that the value of count is given by:

count(n) = Σn
i=1Σ

i
j=1Σ

j
k=11

4

= Σn
i=1Σ

i
j=1j

= Σn
i=1

i · (i+ 1)

2

=
1

2
· [Σn

i=1i
2 +Σn

i=1i]

=
1

2
· [
n · (n+ 1) · (2n+ 1)

6
+
n · (n+ 1)

2
]

=
n · (n+ 1)

4
· [
2n+ 1

3
+ 1]

It follows that count(10) = 55
2
× 8 = 220. 2

5

