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Advanced Analysis of Algorithms - Homework | (Solutions)
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Problems

1. Given an array A of n integer elements, how would you find the second smallest element in n + log, n comparisons.
Solution: Consider the following algorithm:

Function FIND-2MIN(A, low, high)
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n = high — low + 1
SQmin = ¢
if (n=1) then
SZmin = ¢
return(min., Samin)
end if
if (n = 2)then
if (A[1] < A[2]) then
min,, =All]
Add A[2] to ngm
return(min., Somin)
else
ANy, = A[Q]
Add A[1] t0 S2min
return(min.g, Somin)
end if
end if
{We know that n > 3}
mid = | Mehlow |

: (Iming, LSamin) = FIND-2MIN(A, low, mid)
. (rminy, rSomin) = FIND-2MIN(A, mid + 1, high)

if (Ilmin, < rmin,,) then
MiNy = IMming,
SQmin = lSQmin U TminQ

: else

MATyy = TNy,

SQmin B TSQmin U lmln2
end if
return(min., Samin)

Algorithm 1.1: Finding the two smallest elements in an array




The above algorithm returns the smallest element in the whole array min,, and a set Ss,,,;,, 0f candidate elements for
the second minimum element.

The number of comparisons is characterized by the following recurrence relation:

1) = 0
T(2) =
T(n) = 2-T(3)+1

This recurrence is easily solved to get T'(n) = n — 1.
The size of the candidate set Ss,,,;,, can be characterized by the following recurrence:

G1) = 0
@) = 1
Gin) = 1+G(3)

G(n) is easily seen to be log, n. We can find the smallest element in Ss,,,;,, using at most log, n comparisons; it thus
follows that the second smallest element can be found in n + log, n comparisons. O

. Indicate whether each of the following identities is true or false, giving a proof if true and a counterexample otherwise.

@ f(n)+o(f(n)) € O(f(n)).

(b) (f(n) € O(g(n))) A (g(n) € O(h(n))) = (f(n) € O(h(n))).
(©) log"¢n € O(ne), (Ve) 0 < € < 1.

(d) 27 € Q(5'°8m).

Solution:

(@) The key observation is that o(f(n)) € O(f(n)). Also, f(n) < f(n) 4+ o(f(n)); it follows that
f(n) +o(f(n) € O(f(n)).

(b) The premises state that f(n) < cig(n) and g(n) < cah(n). It follows that f(n) < c¢; - coh(n) and hence
f(n) € O(h(n)).

(c) Observe that

. log'/<n
llmTLHOO gn—e
% loglogn

elogn

= limy, o0

= 0 by applying L'Hospital’s rule

The identity is therefore true.
(d) Observe that

n

lim,, oo Slox

n log 2
logn-5

— oo by applying L'Hospital’s rule

= lim,, 0

It therefore follows that the identity is true.



Function FIND-KLARGEST(A, k, n)

1:

10:
11:
12:
13:
14:
15:
16:
17:

We assume that the array elements are stored in A[1] through A[n] and that & is an integer € [1,7n]. We also assume
without loss of generality, we assume that the numbers are distinct.
if (n = 1) then

{k has to be 1 as well}

return(A[n])
end if
We consider a variation of the PARTITION() procedure in which elements larger than the pivot are thrown in the left
subarray and elements smaller than the pivot are thrown in the right subarray.
Partition A using A[1] as the pivot, using the above PARTITION() procedure. Let j denote the index returned by
PARTITION(). {As per the mechanics of PARTITION(), elements A[1] through A[j — 1] are greater than A[;] and
elements A[j + 1] through A[n] are smaller than A[j].}
Copy the elements larger than A[j] into a new array C and the elements smaller than A[j] into a new array D.
if (k= 7)then

return(Afj])
else

if (k < j)then

return( FIND-KLARGEST(C, k, (5 — 1)))
else
return( FIND-KLARGEST(D, k — j, (n — j)))

end if

end if

Algorithm 1.2: Selection through Partition

3. Devise a Divide-and-Conquer procedure for computing the & largest element in an array of integers. Analyze the
asymptotic time complexity of your algorithm. (Hint: Use the Partition procedure discussed in class.)

Solution:
Algorithm (1.2) represents a Divide-and-Conquer strategy for our problem.
The worst case running time of the algorithm is captured by the recurrence:

T1) = 0(1)
T(n) = T(n—-1)+0(n)

This implies that algorithm runs in time O(n?) in the worst case. O




4. Argue the correctness of the MERGE() procedure discussed in class. (Hint: Write a recursive version of MERGE()
and then use induction.)

Solution:

Function MERGE(A, l1, h1,B, 12, ha, C, 3, h3)

: {We assume that the arrays A[l; - -h1] and B[l - -h] are being merged into the array C[l3 - -hs]. }
if (A isempty) then

Copy Binto C

return
end if
if (B isempty) then

Copy Ainto C

return
end if
if (All1] < B[l>]) then

Clls] =All1]

MERGE(A, 1 + 1, h1,B, 5, hy, C,ls + 1, hs)
else

Clis] =Bis]

'\/lERGE(zA7 ll, hl, B7 lo + 1, h27 C, I3 + 1, hg)
end if

Algorithm 1.3: Recursive Merge

To prove the correctness of the algorithm, we use induction on the sum s of the elements in A and B.
Clearly if s = 1, the algorithm functions correctly, since it copies the non-empty array into C.

Assume that the algorithm works correctly when 1 < s < k, for some & > 1. Now consider the case in which
s = k+ 1. In this case, Step (10 :) of the algorithm moves the smallest element in both A and B into the first position
in C. This is followed by a recursive call on arrays whose total cardinality is at most k. By the inductive hypoethesis,
the recursive calls work correctly and since C[s] is already in its correct place, we can conclude that the arrays A and
B have been correctly merged into array C.

O

5. What is the value returned by Algorithm (1.4) when called with n = 10?

Function LOOP-COUNTER(n)

1
2

3

N o gk

8

9

s count =0

. for (i = 1ton)do

for (j = 1toi)do
for (k =1toj)do

count + +

end for

end for

: end for

. return(count)

Algorithm 1.4: Loop Counter

Solution:
For arbitrary n, it is clear that the value of count is given by:

count(n) = 27212;1:12;;:11
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1 n-n+1)-2n+1) n-(n+1)
2| 6 T
~on-(n+1) 2n+1

= 1 [ 3 _|_1]

It follows that count(10) = 32 x 8 = 220. O



