
Advanced Analysis of Algorithms - Homework II (Solutions)

K. Subramani
LCSEE,

West Virginia University,
Morgantown, WV

{ksmani@csee.wvu.edu}

1 Problems

1. Assume that you are given the following weight matrix for a four vertex graph. Compute the shortest-path distances
between each pair of vertices in the graph using the Floyd algorithm. You are required to present all the intermediate
distance matrices.

W =

0 5 ∞ 3
4 0 4 ∞
2 1 0 ∞
3 2 ∞ 0

Solution: The recurrence relation of Floyd’s algorithm is:

d0
ij = Wij

dk
ij = min{dk−1

ij , dk−1
ik + dk−1

kj }, k > 1

We therefore have,

D
0 =

0 5 ∞ 3
4 0 4 ∞
2 1 0 ∞
3 2 ∞ 0

Working through the recurrence relation, we get,

D
1 =

0 5 ∞ 3
4 0 4 7
2 1 0 5
3 2 ∞ 0

D
2 =

0 5 9 3
4 0 4 7
2 1 0 5
3 2 6 0

D
3 =

0 5 9 3
4 0 4 7
2 1 0 5
3 2 6 0

1

D
4 =

0 5 9 3
4 0 4 7
2 1 0 5
3 2 6 0

2

2. Assume that you are given a graph G with some edges having positive weights and some edges having negative
weights. How would you use the Floyd algorithm for checking whether G has a negative cost cycle?

Solution: Consider the following theorem:

Theorem 1.1 G has a negative cost cycle if and only if Dn
ii = 0 for some i = 1, 2, . . . n.

Proof:

If: Assume that D
n
ii < 0 for some i = 1, 2, . . . n. As per the mechanics of the Floyd algorithm, this means that the

shortest path from vi to itself, using {v1, v2, . . . , vn} as intermediate vertices has negative cost. This shortest path is
a closed walk around vi and is either a simple cycle or constituted of simple cycles. In the former case, we have a
negative cost cycle. In the latter case, at least one of the simple cycles has to have negative cost; otherwise, all the
cycles have positive cost and so does their sum, which means that D

n
ii > 0, contradicting the hypothesis. Thus, if

D
n
ii < 0, for some i = 1, 2, . . . n, then G has a negative cost cycle.

Only If: Assume that G has a negative cost cycle. Consider any vertex, say vi, on this cycle. It is clear that the
shortest path from vi to itself using {v1, v2, . . . , vn} as intermediate vertices has negative cost. Therefore, Dn

ii < 0.
2

The above theorem suggests the following algorthm for checking whether an arbitrarily weighted graph G has a
negative cost cycle:

(i) Run Floyd’s algorithm on G to get the distance matrix D
n.

(ii) If D
n
ii < 0 for any i = 1, 2, . . . , n, declare that G has a negative cost cycle; otherwise, declare that G does not

have a negative cost cycle.

2

3. Let X =< x1, x2, . . . xm > and Y =< y1, y2, . . . , yn > denote two sequences on a fixed alphabet Σ (You may
assume that Σ = {0, 1}, if it helps). Devise an efficient algorithm to determine the length of the Longest Common
Subsequence between X and Y. Note that a subsequence of a sequence need not be contiguous.
Hint: Use Dynamic Programming and derive a recurrence relation.

Solution:

Let Z =< z1, z2, . . . , zr > denote the Longest Common Subsequence (LCS) between X and Y. We use the following
notational scheme:

(a) Xi denotes the sequence < x1, x2, . . . , xi >.

(b) LC(X, Y) denotes the LCS between X and Y.

(c) f [i][j] denotes the length of the LCS between Xi and Yj, i.e., f [i][j] = |LC(Xi, Yj)|.

Consider the following cases:

(i) xm = yn - In this case, we must have zr = xm and further, Zr−1 = LC(Xm−1,Yn−1). Observe that if
zr 6= xm, yn, then the length of the LCS can be increased by at least 1, by appending xm to Z, thereby
contradicting the optimality of Z. Given that zr = xm, it is easy to see that Zr−1 = LC(Xm−1, Yn−1). If
this were not the case, then we can determine LC(Xm−1, Yn−1) and append xm to it, thereby contradicting
the optimality of Z.

2

(ii) xm 6= yn and zr 6= xm- We must have Z = LC(Xm−1, Yn). If this were not the case, then there is a
subsequence between X and Y of length greater than k. However, this subsequence is also a subsequence
between Xm−1 and Y , thereby contradicting the optimality of Z.

(iii) xm 6= yn and zr 6= yn - We must have Z = LC(Xm, Yn−1). Symmetric to the case above.

From the above discussion, the following recurrence relation suggests itself for the length of the LCS beween Xi and
Yj:

f [i][j] = 0, if i = 0 or j = 0

= max(f [i− 1][j], f [i][j − 1]), if xi 6= yj and i, j ≥ 1

= 1 + f [i− 1][j − 1], if xi = yj and i, j ≥ 1

This recurrence relation can be easily converted into an algorithm that computes f [m][n] in bottom-up fashion and
runs in time O(m · n). 2

4. A Directed Acyclic Graph (DAG) is a graph without any cycles. The Longest Path problem on a graph is concerned
with computing the length of the longest simple path between each pair of vertices in that graph. Given a DAG D,
argue that the Longest Path problem does satisfy the optimal substructure property demanded by dynamic program-
ming. Derive a recurrence relation for this problem.

Solution:

Let Dk
ij denote the length of the longest path between vertex vi and vertex vj with all intermediate vertices drawn

from the set Sk = {v1, v2, . . . , vk}.

Claim 1.1

Dk
ij = W [i][j], k = 0

= max(Dk−1
ij , Dk−1

ik +Dk−1
kj)

Proof: Clearly, D0
ij = W [i][j], i.e., if no intermediate vertices are allowed on the longest path between vi and vj ,

then W [i][j] indeed denotes the length of the longest path between vi and vj ; indeed it denotes the length of the
shortest path between these vertices as well!

Assume that the above recurrence relation is valid whenever the intermediate vertices are drawn from the set Sk−1 =
{v1, v2, . . . , vk−1}. Now consider the case in which we are allowed to draw the intermediate vertices from the set
Sk = {v1, v2, . . . , vk−1, vk}. Let us study the structure of the longest path p between vi and vj . We need to consider
the following two cases:

(a) vk is not on p - In this case, Dk
ij = Dk−1

ij .

(b) vk is on p - Let pik denote the portion of p between vi and vk; likewise, let pkj denote the portion of p between
vk and vj . We claim that pik is the longest path between vi and vk with all the intermediate vertices drawn from
the set Sk−1 = {v1, v2, . . . vk−1}. If this were not the case, then there is a path p′ik between vi and vk of length
greater than pik. Now this path must have some vertices in common with the path pkj . Otherwise, p′ik can be
combined with pkj to get a path between vi and vj , which is longer than p, contradicting the optimality of p.
However, if p′ij has vertices in common with pkj , then there must be a cycle in D, contradicting the fact that D is
a DAG! (Convince yourself this is true.)

Likewise, the path between vk and vj is the longest such path, with all intermediate vertices drawn from the set
Sk−1 = {v1, v2, . . . , vk−1}, thereby establishing the correctness of the recurrence relation in Claim 1.1.

2

2

3

5. Assume that you are given a chain of matrices < A1 A2 A3 A4 >, with dimensions 2 × 5, 5 × 4, 4 × 2 and 2 × 4
respectively. Compute the optimal number of multiplications required to calculate the chain product and also indicate
what the optimal order of multiplication should be using parentheses.

Solution: Let m[i, j] denote the optimal number of multiplications to multiply the chain < Ai, Ai+1, . . . , Aj >,
where matrix Ai has dimensions di−1 × di. As per the discussion in class, we know that

m[i, j] = 0, if j ≤ i

= min
k:i≤k<j

m[i, k] +m[k + 1, j] + di−1 · dk · dj

Computing M = [m[i, j]], i = 1, 2, 3, 4; j = i, i+ 1, . . . , 4, in bottom-up fashion, we get

M =

0 40 56 72
0 0 40 80
0 0 0 32
0 0 0 0

As per the above table, the optimal number of multiplications to multiply the given chain is 72; by recording the split
values, we see that the optimal order of multiplication is (((A1 ·A2) ·A3) ·A4). 2

4

