
Advanced Analysis of Algorithms - Homework III (Solutions)

K. Subramani
LCSEE,

West Virginia University,
Morgantown, WV

{ksmani@csee.wvu.edu}

1 Problems

1. Is there a problem in the complexity class P, such that all problems in P can be polynomially transformed to this
problem?

Solution: Yes; for instance consider the language L = {5}, i.e., the language containing a single element and the
corresponding decision problem: D1: Does x ∈ L?. I can reduce an arbitrary decision problem D2 ∈ P to D1 using
the reduction f , which is defined as follows: Given x as input to D2, f first checks in polynomial time, whether
x ∈ D1. If x is a “yes” instance of D2, f(x) = 5; otherwise f(x) = 6. It is not hard to see that an instance x is a
“yes” instance of D2 if and only if f(x) is a “yes” instance of D1! In other words, we have reduced D2 to D1. 2

2. Show that a language L can be verified in deterministic polynomial time if and only if it can be decided by a non-
deterministic algorithm in polynomial time.

Solution:

If: Assume that a language L can be decided by a non-deterministic algorithm in polynomial time.

This means that there exists a non-deterministic Turing Machine N , which decides whether a given x ∈ L, in
time O(p(|x|)), where p(n) is a fixed polynomial. As described in class, the computation of N on x is a tree T ,
with each branching representing a non-deterministic choice. Each path from the root to an accepting leaf of this
computation tree constitutes a proof. Since the non-deterministic Turing Machine takes polynomial time, the depth of
the computation tree is O(p(|x|)), on an input x; further the time spent at each node is also bounded by a polynomial,
say q(|x|). It follows that there exists a verification algorithm for L that runs in time O(p(|x|) · q(|x|)), i.e., in time
polynomial in the size of the input.

Only If: Assume that L can be verified in deterministic polynomial time. This means that given the query: Does
x ∈ L, there exists a proof Y (x) if x ∈ L, such that |Y (x)| ≤ q(|x|) and that Y (x) can be checked for correctness
in time p(|x|), where p(n) and q(n) are fixed polynomial functions. Now consider the following non-deterministic
algorithm to decide L: Given an input x, first guess Y (x) and then verify that Y (x) is a valid proof for x ∈ L. The
running time of this algorithm is q(|x|) + p(|x|), which is clearly polynomial. 2

3. Design a backtracking algorithm for the 3SAT problem.

Solution: Let us say that we are given a 3CNF formula φ = C1 ∧C2 . . .∧Cm, where each clause Ci is a disjunction
of three literals on the variables V = {x1, x2, . . . xn}. The crucial check is whether or not the current (partial)
assignment can be completed to a full assignment. Start with x1 = true and use this assignment to get a reduced
set of clauses; the clauses in which x1 occurs in uncomplemented form can be deleted from the clause set and the
clauses in which x1 occurs in complemented form have one literal less. Call this formula φt

1
. Recursively extend this

assignment if possible, by setting x2 = true and so on; at each node of the tree, a check can be made as to whether
the current assignment can be extended. If not, close that path and proceed to the parent node which sets the current
variable to false. In this manner the search space is explored using backtracking. 2

1

4. Consider an instance of the Subset-Sum problem, where S = {2, 10, 13, 17, 22, 42} and B = 52. Solve this instance
using backtracking, showing all the steps.

Solution: This is too painful for me! The answer is yes, with subset S ′ = {10, 42}. This solution is obtained by
excluding the element 2 and backtracking. 2

5. Consider the following graph coloring algorithm for coloring the vertices of a graph using the fewest number of
colors:

Function FIND-OPTIMAL-COLOR(G=<V,E>)

1: Let Vun = V and Cu = {1, 2, . . . , n}.
2: while (Vun 6= φ) do
3: ccur is the smallest indexed color in C.
4: Assign ccur to as many vertices as possible in Vun making sure that a vertex with index number k is considered

before a vertex with index number k + 1.
5: Delete all the colored vertices from Vun.
6: Delete ccur from C.
7: end while

Algorithm 1.1: Graph Coloring Algorithm

Vun is the set of uncolored vertices and Cu is the set of unasssigned colors.

Is Algorithm (1.1) optimal? Justify your answer with a proof or a counterexample.

Solution: The algorithm is clearly suboptimal; for instance, consider the following graph:

v1

v3

v4

v2

Figure 1: Counterexample to Algorithm (1.1)

It is clear that Algorithm (1.1) will require 3 colors, whereas 2 colors are sufficient. 2

2

