Advanced Analysis of Algorithms - Homework III (Solutions)

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Problems

1. Is there a problem in the complexity class P, such that all problems in P can be polynomially transformed to this problem?

Solution: Yes; for instance consider the language $L = \{5\}$, i.e., the language containing a single element and the corresponding decision problem: D_1 : Does $x \in L$?. I can reduce an arbitrary decision problem $D_2 \in P$ to D_1 using the reduction f, which is defined as follows: Given x as input to D_2 , f first checks in polynomial time, whether $x \in D_1$. If x is a "yes" instance of D_2 , f(x) = 5; otherwise f(x) = 6. It is not hard to see that an instance x is a "yes" instance of D_2 if and only if f(x) is a "yes" instance of D_1 ! In other words, we have reduced D_2 to D_1 . \Box

2. Show that a language L can be *verified* in deterministic polynomial time if and only if it can be decided by a nondeterministic algorithm in polynomial time.

Solution:

If: Assume that a language L can be decided by a non-deterministic algorithm in polynomial time.

This means that there exists a non-deterministic Turing Machine N, which decides whether a given $x \in L$, in time O(p(|x|)), where p(n) is a fixed polynomial. As described in class, the computation of N on x is a tree T, with each branching representing a non-deterministic choice. Each path from the root to an accepting leaf of this computation tree constitutes a proof. Since the non-deterministic Turing Machine takes polynomial time, the depth of the computation tree is O(p(|x|)), on an input x; further the time spent at each node is also bounded by a polynomial, say q(|x|). It follows that there exists a verification algorithm for L that runs in time $O(p(|x|) \cdot q(|x|))$, i.e., in time polynomial in the size of the input.

Only If: Assume that L can be verified in deterministic polynomial time. This means that given the query: Does $x \in L$, there exists a proof Y(x) if $x \in L$, such that $|Y(x)| \le q(|x|)$ and that Y(x) can be checked for correctness in time p(|x|), where p(n) and q(n) are fixed polynomial functions. Now consider the following non-deterministic algorithm to decide L: Given an input x, first guess Y(x) and then verify that Y(x) is a valid proof for $x \in L$. The running time of this algorithm is q(|x|) + p(|x|), which is clearly polynomial. \Box

3. Design a backtracking algorithm for the 3SAT problem.

Solution: Let us say that we are given a 3CNF formula $\phi = C_1 \wedge C_2 \dots \wedge C_m$, where each clause C_i is a disjunction of three literals on the variables $V = \{x_1, x_2, \dots x_n\}$. The crucial check is whether or not the current (partial) assignment can be completed to a full assignment. Start with $x_1 =$ true and use this assignment to get a reduced set of clauses; the clauses in which x_1 occurs in uncomplemented form can be deleted from the clause set and the clauses in which x_1 occurs in complemented form have one literal less. Call this formula ϕ_1^t . Recursively extend this assignment if possible, by setting $x_2 =$ true and so on; at each node of the tree, a check can be made as to whether the current assignment can be extended. If not, close that path and proceed to the parent node which sets the current variable to **false**. In this manner the search space is explored using backtracking. \Box

4. Consider an instance of the Subset-Sum problem, where $S = \{2, 10, 13, 17, 22, 42\}$ and B = 52. Solve this instance using backtracking, showing all the steps.

Solution: This is too painful for me! The answer is yes, with subset $S' = \{10, 42\}$. This solution is obtained by excluding the element 2 and backtracking. \Box

5. Consider the following graph coloring algorithm for coloring the vertices of a graph using the fewest number of colors:

Function FIND-OPTIMAL-COLOR(G=<V,E>)

1: Let $V_{un} = V$ and $C_u = \{1, 2, \dots, n\}$.

- 2: while $(V_{un} \neq \phi)$ do
- 3: c_{cur} is the smallest indexed color in C.
- 4: Assign c_{cur} to as many vertices as possible in V_{un} making sure that a vertex with index number k is considered before a vertex with index number k + 1.
- 5: Delete all the colored vertices from V_{un} .
- 6: Delete c_{cur} from C.
- 7: end while

Algorithm 1.1: Graph Coloring Algorithm

 V_{un} is the set of uncolored vertices and C_u is the set of unassigned colors.

Is Algorithm (1.1) optimal? Justify your answer with a proof or a counterexample.

Solution: The algorithm is clearly suboptimal; for instance, consider the following graph:

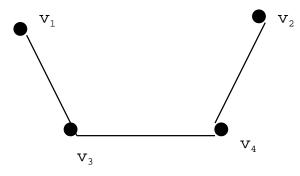


Figure 1: Counterexample to Algorithm (1.1)

It is clear that Algorithm (1.1) will require 3 colors, whereas 2 colors are sufficient. \Box