Advanced Analysis of Algorithms - Midterm

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Instructions

- 1. The midterm is to be turned in by 9:15 am.
- 2. Each question is worth 4 points.
- 3. Attempt as many problems as you can. You will be given partial credit, as per the policy discussed in class.

2 **Problems**

1. Solve the following recurrence using substitution:

$$T(1) = 0$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + n \cdot \log n, \ n \ge 2$$

- 2. Given an array A of n integer elements, design an algorithm that computes the number of inversion pairs and runs in $O(n \cdot \log n)$ time. Note that an inversion pair is a pair of indices (i, j), such that i < j and A[i] > A[j]. *Hint: Use Divide-and-Conquer.*
- 3. Construct the optimal binary search tree on the following four ordered keys, $key_1 \le key_2 \le key_3 \le key_4$, with probability distribution $p_1 = \frac{1}{2}$, $p_2 = \frac{1}{8}$, $p_3 = \frac{1}{8}$ and $p_4 = \frac{1}{4}$.
- 4. In the Fractional Knapsack problem, you are given *n* objects $O = \{o_1, o_2, \ldots, o_n\}$ with respective weights $W = \{w_1, w_2, \ldots, w_n\}$ and respective profits $P = \{p_1, p_2, \ldots, p_n\}$. The goal is to pack these objects into a knapsack of capacity *M*, such that the profit of the objects in the knapsack is maximized, while the weight constraint is not violated. You may choose a fraction of an object, if you so decide; if α_i , $0 \le \alpha_i \le 1$ of object o_i is chosen, then the profit contribution of this object is $\alpha_i \cdot o_i$ and its weight contribution is $\alpha_i \cdot w_i$. Design a greedy algorithm for this problem and argue its correctness.
- 5. Argue that Randomized Quicksort takes $O(n \cdot \log n)$ comparisons, in the expected case, to sort an array of n elements.