Automata Theory - Homework I

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Instructions

- 1. The homework is due on September 14, in class.
- 2. Each question is worth 3 points.
- 3. Attempt as many problems as you can. You will be given partial credit, as per the policy discussed in class.

2 Problems

- 1. A tree is defined as an undirected connected graph without any cycles. Argue that if a tree has n nodes, it must have precisely (n 1) edges. *Hint: Use structural induction.*
- 2. Let $\Sigma = \{0, 1\}$ denote an alphabet. Enumerate five elements of the following languages:
 - (a) Even binary numbers,
 - (b) The number of zeros is not equal to the number of ones in a binary string.
 - (c) The number of zeros is exactly one greater than the number of ones.
- 3. Let Σ = {0,1}. The language L₃ is defined as follows:
 L₃ = {x | x ∈ Σ*, x mod 3 ≡ 0, when interpreted as a number in binary}. Is L regular? Justify your answer with a proof or a counterexample.
- 4. Let L_1 and L_2 denote two languages over an alphabet; Σ . For any language $L \subseteq \Sigma^*$, the language L^R consists of those strings in Σ^* , whose reverses are in L. Prove or disprove the following claim: $(L_1 \cup L_2)^R = L_1^R \cup L_2^R$.
- 5. Convert the λ -NFA in Figure (1) into a DFA. Note that the L in the figure represents λ and that $\Sigma = \{0, 1\}$.

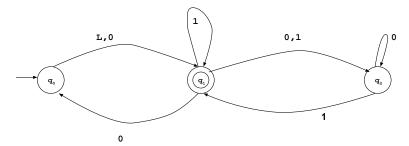


Figure 1: λ -NFA