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1 Problems

1. A tree is defined as an undirected connected graph without any cycles. Argue that if a tree has n nodes, it must have
precisely (n− 1) edges. Hint: Use structural induction.

Solution: The hypothesis is clearly correct in the base case, since if a tree has one node, it must have zero edges.
Assume that the hypothesis is true whenever a tree has at most k nodes, i.e., the inductive hypothesis is that if a tree
has k nodes, then it has precisely (k − 1) edges. Now consider a tree having (k + 1) nodes. As discussed in class,
every tree must have a pendant node, i.e., a node with degree 1. Observe that this node, say va, connects to the rest
of the tree through an edge, say ea. Remove va (and hence va) from the tree to get a tree having k nodes. As per
the inductive hypothesis, this tree has precisely (k − 1) edges. Accordingly, the original tree with va in it, must have
had precisely (k − 1) + 1 = k edges. Thus, when the hypothesis is true for structures of size k, it must be true for
structures of size (k+1). Applying the principle of mathematical induction, we can conclude that a tree with n nodes
has precisely (n− 1) edges. 2

2. Let Σ = {0, 1} denote an alphabet. Enumerate five elements of the following languages:

(a) Even binary numbers,

(b) The number of zeros is not equal to the number of ones in a binary string.

(c) The number of zeros is exactly one greater than the number of ones.

Solution:

(a) Even binary numbers: {0, 10, 100, 110, 1000}.

(b) The number of zeros is not equal to the number of ones in a binary string: {0, 1, 100, 110, 001}.

(c) The number of zeros is exactly one greater than the number of ones: {0, 100, 001, 010, 00011}.
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3. Let Σ = {0, 1}. The language L3 is defined as follows:
L3 = {x | x ∈ Σ

∗, x mod 3 ≡ 0, when interpreted as a number in binary}.
Is L regular? Justify your answer with a proof or a counterexample.

Solution: The language L3 accepts precisely those binary strings which when interpreted as numbers are exactly
divisible by 3. Figure (1) presents a DFA for this language; the existence of a DFA for the language establishes its
regularity. A formal inductive proof establishing that the DFA accepts L3 is beyond the scope of this question.

The first step in the design is to identify that the DFA must have 3 states, viz., one state to denote strings that are
exactly divisible by 3, one state to denote strings that result in a remainder of 1, when divided by 3 and another state
to denote strings that result in a remainder of 2, when divisible by 3.

The second observation is that appending a 0 to the right of a binary number causes its value as a number to double,
whereas adding a 1 results in a number that is the sum of 1 and twice the original value.
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Figure 1: A DFA for divisibility by 3.

The third set of observations are as follows:

(a) If p ≡ 0 mod 3, then 2 · p ≡ 0 mod 3 and (2 · p+ 1) ≡ 1 mod 3.

(b) If p ≡ 1 mod 3, then 2 · p ≡ 2 mod 3 and (2 · p+ 1) ≡ 0 mod 3.

(c) If p ≡ 2 mod 3, then 2 · p ≡ 1 mod 3 and (2 · p+ 1) ≡ 2 mod 3.
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4. Let L1 and L2 denote two languages over an alphabet Σ. For any language L ⊆ Σ∗, the language LR consists of
those strings in Σ∗, whose reverses are in L. Prove or disprove the following claim: (L1 ∪ L2)

R = LR
1
∪ LR

2
.

Solution: Rather surprisingly, the claim is correct. Let us use xR to denote the reverse of string x. As per the
definition of LR, x ∈ L if and only if xR ∈ LR.

Let y ∈ Σ∗ denote an arbitrary string in the set (L1 ∪L2)
R. Assume that y 6∈ (LR

1
∪LR

2
). It follows that y 6∈ LR

1
and

y 6∈ LR
2

. Since y 6∈ LR
1

, it must be the case that yR 6∈ L1. Arguing similarly, yR 6∈ L2. Therefore, yR 6∈ (L1 ∪ L2).
But this immediately implies that y 6∈ (L1 ∪ L2)

R, contradicting the hypothesis.
We thus have, (L1 ∪ L2)

R ⊆ (LR
1
∪ LR

2
).

Let y ∈ Σ∗ denote an arbitrary string in the set (LR
1
∪ LR

2
). As per the definition of set union, either y ∈ LR

1
or

y ∈ LR
2

. Observe that if y ∈ LR
1

, then yR ∈ L1. Hence, yR ∈ (L1 ∪ L2) and therefore, y ∈ (L1 ∪ L2)
R. In similar

fashion, we can deduce that if y ∈ LR
2

, then y ∈ (L1 ∪ L2)
R. It therefore follows that (LR

1
∪ LR

2
) ⊆ (L1 ∪ L2)

R.

From the above discussion, we can conclude that (L1 ∪ L2)
R = LR

1
∪ LR

2
. 2

5. Convert the λ-NFA in Figure (2) into a DFA. Note that the L in the figure represents λ and that Σ = {0, 1}.

Solution:

Figure (3) represents the direct application of the conversion algorithm discussed in class.

I did get rid of the unreachable states and the dead state. 2
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Figure 2: λ-NFA
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Figure 3: Conversion of λ-NFA to DFA
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