Automata Theory - Homework I (Solutions)

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Problems

1. A tree is defined as an undirected connected graph without any cycles. Argue that if a tree has n nodes, it must have precisely (n - 1) edges. *Hint: Use structural induction*.

Solution: The hypothesis is clearly correct in the base case, since if a tree has one node, it must have zero edges. Assume that the hypothesis is true whenever a tree has at most k nodes, i.e., the inductive hypothesis is that if a tree has k nodes, then it has precisely (k - 1) edges. Now consider a tree having (k + 1) nodes. As discussed in class, every tree *must* have a pendant node, i.e., a node with degree 1. Observe that this node, say v_a , connects to the rest of the tree through an edge, say e_a . Remove v_a (and hence v_a) from the tree to get a tree having k nodes. As per the inductive hypothesis, this tree has precisely (k - 1) edges. Accordingly, the original tree with v_a in it, must have had precisely (k - 1) + 1 = k edges. Thus, when the hypothesis is true for structures of size k, it must be true for structures of size (k + 1). Applying the principle of mathematical induction, we can conclude that a tree with n nodes has precisely (n - 1) edges. \Box

- 2. Let $\Sigma = \{0, 1\}$ denote an alphabet. Enumerate five elements of the following languages:
 - (a) Even binary numbers,
 - (b) The number of zeros is not equal to the number of ones in a binary string.
 - (c) The number of zeros is exactly one greater than the number of ones.

Solution:

- (a) Even binary numbers: $\{0, 10, 100, 110, 1000\}$.
- (b) The number of zeros is not equal to the number of ones in a binary string: $\{0, 1, 100, 110, 001\}$.
- (c) The number of zeros is exactly one greater than the number of ones: $\{0, 100, 001, 010, 00011\}$.

3. Let $\Sigma = \{0, 1\}$. The language L_3 is defined as follows:

 $L_3 = \{x \mid x \in \Sigma^*, x \mod 3 \equiv 0, \text{ when interpreted as a number in binary}\}.$

Is *L* regular? Justify your answer with a proof or a counterexample.

Solution: The language L_3 accepts precisely those binary strings which when interpreted as numbers are exactly divisible by 3. Figure (1) presents a DFA for this language; the existence of a DFA for the language establishes its regularity. A formal inductive proof establishing that the DFA accepts L_3 is beyond the scope of this question.

The first step in the design is to identify that the DFA must have 3 states, viz., one state to denote strings that are exactly divisible by 3, one state to denote strings that result in a remainder of 1, when divided by 3 and another state to denote strings that result in a remainder of 2, when divisible by 3.

The second observation is that appending a 0 to the right of a binary number causes its *value* as a number to double, whereas adding a 1 results in a number that is the sum of 1 and twice the original value.

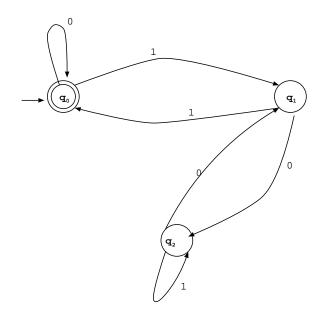


Figure 1: A DFA for divisibility by 3.

The third set of observations are as follows:

- (a) If $p \equiv 0 \mod 3$, then $2 \cdot p \equiv 0 \mod 3$ and $(2 \cdot p + 1) \equiv 1 \mod 3$.
- (b) If $p \equiv 1 \mod 3$, then $2 \cdot p \equiv 2 \mod 3$ and $(2 \cdot p + 1) \equiv 0 \mod 3$.
- (c) If $p \equiv 2 \mod 3$, then $2 \cdot p \equiv 1 \mod 3$ and $(2 \cdot p + 1) \equiv 2 \mod 3$.

4. Let L_1 and L_2 denote two languages over an alphabet Σ . For any language $L \subseteq \Sigma^*$, the language L^R consists of those strings in Σ^* , whose reverses are in L. Prove or disprove the following claim: $(L_1 \cup L_2)^R = L_1^R \cup L_2^R$.

Solution: Rather surprisingly, the claim is correct. Let us use x^R to denote the reverse of string x. As per the definition of L^R , $x \in L$ if and only if $x^R \in L^R$.

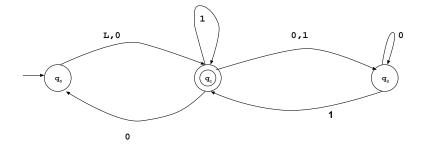
Let $y \in \Sigma^*$ denote an arbitrary string in the set $(L_1 \cup L_2)^R$. Assume that $y \notin (L_1^R \cup L_2^R)$. It follows that $y \notin L_1^R$ and $y \notin L_2^R$. Since $y \notin L_1^R$, it must be the case that $y^R \notin L_1$. Arguing similarly, $y^R \notin L_2$. Therefore, $y^R \notin (L_1 \cup L_2)$. But this immediately implies that $y \notin (L_1 \cup L_2)^R$, contradicting the hypothesis. We thus have, $(L_1 \cup L_2)^R \subseteq (L_1^R \cup L_2^R)$.

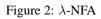
Let $y \in \Sigma^*$ denote an arbitrary string in the set $(L_1^R \cup L_2^R)$. As per the definition of set union, either $y \in L_1^R$ or $y \in L_2^R$. Observe that if $y \in L_1^R$, then $y^R \in L_1$. Hence, $y^R \in (L_1 \cup L_2)$ and therefore, $y \in (L_1 \cup L_2)^R$. In similar fashion, we can deduce that if $y \in L_2^R$, then $y \in (L_1 \cup L_2)^R$. It therefore follows that $(L_1^R \cup L_2^R) \subseteq (L_1 \cup L_2)^R$. From the above discussion, we can conclude that $(L_1 \cup L_2)^R = L_1^R \cup L_2^R$. \Box

5. Convert the λ -NFA in Figure (2) into a DFA. Note that the *L* in the figure represents λ and that $\Sigma = \{0, 1\}$. Solution:

Figure (3) represents the direct application of the conversion algorithm discussed in class.

I did get rid of the unreachable states and the dead state. \Box





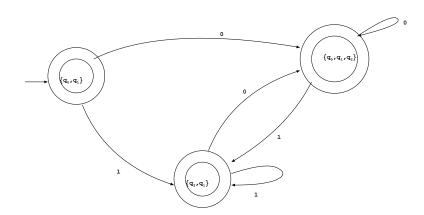


Figure 3: Conversion of λ -NFA to DFA