Automata Theory - Homework II (Solutions)

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Problems

1. Let L be a regular language not containing λ . Argue that there exists a right-linear grammar for L, whose productions are restricted to the forms:

$$\begin{array}{rccc} A & \to & aB, \text{ and} \\ A & \to & a \end{array}$$

where A and B are generic variables and a is a generic terminal.

Solution: In class, we showed that every regular language can be represented as a DFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$, where the symbols should be interpreted using the standard convention. Since, L is λ -free, it must be the case that $q_0 \notin F$. We construct the following Right-Linear Grammar $G = \langle V, T, S, P \rangle$ for L:

- (a) We use symbol A_i to denote state q_i . $V = \{A_i : i = 0, 1, ..., |Q| 1\}$.
- (b) The set of terminals T is precisely Σ .
- (c) $S = A_0$.
- (d) The productions P of G are defined as follows: For each transition, $\delta(q_i, a) = q_j$, add the production $A_i \to aA_j$. If q_j is also a final state, then add the production $A_i \to a$.

We use induction on the number of transition steps to show that if $\delta(q_0, w) \in F$, then $A_0 \Rightarrow^* w$. Likewise, we use induction on the number of steps in a leftmost derivation to establish that if $A_0 \Rightarrow^* w$, then $\delta(q_0, w) \in F$. (The induction proofs are straightforward exercises). \Box

2. Consider the language $L = \{a^n : n \text{ is not a perfect square}\}$. Prove that L is not regular, by using the Pumping Lemma. You may not use complement properties of regular languages.

Solution: One way of showing that L is not regular is through the following argument: If L is regular, then so is L^c ; however, we showed in class that L^c is not regular and hence L cannot be regular. Since you were expressly forbidden from using the complement properties of regular languages, let us proceed to prove the non-regularity of L, using first principles.

Assume that *L* is regular and let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ denote the unique minimal state DFA for *L*, where the symbols in the tuple have their usual meaning. Let *p* denote the number associated by the Pumping Lemma with *L*; we know that p = |Q|. Let $G = \{a^{p^2+i} : i = 1, 2, ..., 2p\}$; we can think of the strings in *G* as being indexed by their length after subtracting the offset p^2 . Using w_i to refer to the string a^{p^2+i} , we have that $|w_i| + 1 = |w_{i+1}|$. Let $R = \{\delta(q_0, w_i) : w_i \in G\}$; we use r_i to denote $\delta(q_0, w_i), w_i \in G$.

The following observations are in order:

(i) All the states in R are final states.

(ii) |G| = 2p and $|R| \le p$. As per the pigeonhole principle, there must exist at least two strings w_i and w_j in G, such that $\delta(q_0, w_i) = \delta(q_0, w_j) = r_k, r_k \in R$.

We have thus established that there exists a string $a^s, 1 \le s \le p$, and a state $r_k \in R$, such that $\delta(r_k, a^s) = r_k$. Let $T = \{\delta(r_k, a), \delta(r_k, a^2), \dots, \delta(r_k, a^{s-1}), \delta(r_k, a^s)\}$; clearly $T \subseteq R$. T represents a cycle of final states on a-transitions; it follows that the DFA can never escape from this cycle towards a non-final state on a-transitions. Thus $\delta(q_0, a^{p^2+2p+1}) \in T$; however, $a^{p^2+2p+1} = a^{(p+1)^2}$ and should be rejected by the DFA M.

We thus have the desired contradiction and it follows that L cannot be a regular language.

3. Consider the grammar $G = \langle V, T, S, P \rangle$, with productions defined by:

$$S \rightarrow aSbS \mid bSaS \mid \lambda$$

Is G ambiguous? Is L(G) ambiguous?

Solution: G is ambiguous, since the string w = abab has two distinct leftmost derivations:

- (i) $S \Rightarrow aSbS \Rightarrow abSaSbS \Rightarrow abaSbS \Rightarrow ababS \Rightarrow abab$, and
- (ii) $S \Rightarrow aSbS \Rightarrow abS \Rightarrow abaSbS \Rightarrow ababS \Rightarrow abab.$

L(G) is the language of strings over $\{a, b\}$, in which the number of as is equal to the number of bs. An unambiguous grammar for this language is given by: $G' = \langle V, T, S, P \rangle$, where,

- (a) $V = \{S\},\$
- (b) $T = \{a, b\},\$
- (c) S = S, and
- (d) P is defined by:

$$S \to aSb \mid bSa \mid S \cdot S \mid \lambda$$

You are required to use induction on the number of steps of a leftmost derivation from S to establish that if $S \Rightarrow_{lm}^* w$, then the leftmost derivation of w is unique. \Box

4. Show that the language $L = \{w \cdot w^R : w \in \{a, b\}^*\}$ is not inherently ambiguous. *Hint: Prove that L has an unambiguous grammar.*

Solution: An unambiguous grammar for *L* is $G = \langle V, T, S, P \rangle$, where,

- (a) $V = \{S\}.$
- (b) $T = \{a, b\}.$
- (c) S = S.
- (d) The productions P are defined by:

$$S \rightarrow aSa \mid bSb \mid \lambda$$

In order to establish the unambiguous nature of G, we need to show that for every string $w \in L(G)$, there is precisely one leftmost derivation $S \Rightarrow_{lm}^* w$; this is done by using induction on the length of w. Before commencing the proof, we need the following lemmata.

Lemma 1.1 If $S \Rightarrow_{lm}^* w$, then |w| is even.

Proof: Exercise. Use induction on the number of steps in the *shortest* leftmost derivation of w. \Box

Lemma 1.2 If $w \in L$, then the string w' obtained by dropping the first and last symbols of w, also belongs to L

Proof: It is a straightforward observation (Use contradiction!). \Box

Theorem 1.1 If $S \Rightarrow_{lm}^* w$, then this derivation is unique.

Proof: We use induction on the length of w; the induction will be on the set of even numbers and not on the set of natural numbers (which is our conventional ground set). If |w| = 0, then w must be λ , and there is precisely one production rule and hence one way for w to be derived from S, in leftmost fashion.

Assume that Theorem (1.1) is true, for all even-length strings of length at most $2 \cdot k$, $k \ge 0$. Now consider a string $w \in L$, of length $2 \cdot (k + 1)$. Since $w \in L$, it must be the case that w = axa or w = bxb, with $x \in L$ (See Lemma (1.2)). However, $|x| = 2 \cdot k$ and hence x has a unique leftmost derivation from S. It therefore follows that w has a unique leftmost derivation; for instance, if w = axa, then $S \Rightarrow_{lm} aSa \Rightarrow_{lm}^* axa$ represents the unique leftmost derivation of w from S. A similar argument holds when w = bxb; we can therefore apply the principle of mathematical induction to conclude that every string in L has a unique leftmost derivation from S, i.e., G is unambiguous. Inasmuch as L has an unambiguous grammar, it follows that L itself is unambiguous. \Box

- 5. Remove all unit productions, λ -productions and useless productions from the the grammar $G = \langle V, T, P, S \rangle$, with productions P defined by:

$$\begin{array}{rrrr} S & \rightarrow & aA \mid aBB \\ A & \rightarrow & aaA \mid \lambda \\ B & \rightarrow & bB \mid bbC \\ C & \rightarrow & B \end{array}$$

Solution: It is important that all λ -productions are deleted first, followed by the unit productions and finally by the useless productions. If this order is altered, language preservation is not guaranteed [Lin06].

(a) Removing λ -productions - The only nullable symbol is *A*; accordingly, applying the algorithm in [Lin06], the removal of λ -productions results in the following set of productions:

$$\begin{array}{rcl} S & \rightarrow & aA \mid aBB \mid a \\ A & \rightarrow & aaA \mid aa \\ B & \rightarrow & bB \mid bbC \\ C & \rightarrow & B \end{array}$$

(b) Removing unit productions - There is precisely one unit production, viz., $C \rightarrow B$. Applying the algorithm in [Lin06], the removal of this unit production results in the following set of productions:

$$S \rightarrow aA \mid aBB \mid a$$
$$A \rightarrow aaA \mid aa$$
$$B \rightarrow bB \mid bbB$$

(c) Removing useless productions - Observe that no terminal string can be derived from B; it follows that any production involving B can be deleted, without affecting the language of the grammar. Accordingly, the final set of productions is:

$$\begin{array}{rrrr} S & \to & aA \mid a \\ A & \to & aaA \mid aa \end{array}$$

References

[Lin06] Peter Linz. An Introduction to Formal Languages and Automata. Jones and Bartlett, 4th edition, 2006.