Automata Theory - Midterm (Solutions)

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Problems

1. **Induction:** Consider the context-free grammar $G = \langle V, T, P, S \rangle$, where $V = \{S\}$, $T = \{0, 1\}$, and the productions P are defined by:

$$S \rightarrow 0S1 | 1S0 | S \cdot S | \lambda$$

Argue that every string generated by this grammar is balanced, i.e., if w is derived from S, then $n_0(w) = n_1(w)$.

Solution:

We use induction on the number of steps used in the *shortest*, leftmost derivation of w from S.

BASIS: Let w be derived from S in exactly one step. From the production rules, it is clear that w must be λ and hence w is indeed balanced.

INDUCTIVE STEP: Assume that the theorem is true for all strings w, whose shortest leftmost derivations from S, take at most n steps.

Now consider the case in which the shortest leftmost derivation of w from S takes n+1 steps, where $n \ge 1$. The first step of the derivation must be one of $S \Rightarrow SS$, $S \Rightarrow 0S1$ or $S \Rightarrow 1S0$.

Assume that the first step of the derivation is $S \Rightarrow 0S1$. It follows that w = 0x1, where x is a string in Σ^* . Since $S \Rightarrow^* w$, we must have $S \Rightarrow^* x$; however, the shortest leftmost derivation of x from S can take at most n steps. By the inductive hypothesis, it follows that x is balanced. Consequently, w = 0x1 is also balanced.

An identical argument can be used for the case, in which the first step of the derivation is $S \Rightarrow 1S0$.

Finally, consider the case in which the first step of the derivation is $S \Rightarrow SS$. It follows that w can be broken up into w_1w_2 , such that $S \Rightarrow w_1$ and $S \Rightarrow w_2$. We cannot immediately apply the inductive hypothesis, since either w_1 or w_2 could be λ and therefore the length of w is not altered. However, observe that we are focussing on the shortest leftmost derivation of w from S. If either w_1 or w_2 is λ , then we have needlessly used an extra step in the derivation and hence our derivation could not have been the shortest one. It therefore follows that neither w_1 nor w_2 is λ . Now, the shortest leftmost derivations of w_1 and w_2 from S take strictly less than w_1 1 steps; as per the inductive hypothesis, w_1 and w_2 are balanced. It therefore follows that w_1 is also balanced.

2. Closure Properties of Regular Languages: Let L_1 and L_2 be two regular languages. Is the language $L_3 = L_1 \oplus L_2$ regular? Recall that given sets A and B, the set $A \oplus B$ is defined as the set that contains elements which belong to A, but not to B and *vice versa*.

Solution: The key observation is that L_3 can be expressed as: $(L_1 \cap L_2^c) \cup (L_1^c \cap L_2)$. Since, L_1 and L_2 are regular, so are L_1^c and L_2^c . By using the fact that regular languages are closed under intersection, we infer that that $L_1 \cap L_2^c$ and $L_1^c \cap L_2$ are also regular. It immediately follows that L_3 is regular, since regular languages are closed under the union operation as well. \square

3. **Decision Properties of Regular Languages:** Let L denote a regular language. Describe an efficient decision procedure to test whether $L = L^*$, assuming that the DFA for L is provided.

Solution: Let M denote the DFA for language L. Add λ -transitions from each final state of M to the start state to get the λ -NFA N of L^* . (Convince yourself that the addition of λ -transitions in the manner specified does indeed result in the λ -NFA of L^* .) Then, convert N into a DFA M_1 . It is straightforward to check whether the languages represented by these two DFAs are identical, using the technique discussed in class. To wit,

$$(L_1 = L_2) \leftrightarrow [((L_1 \cap L_2^c) \cup (L_1^c \cap L_2)) = \phi]$$

4. Proving or Disproving Regularity: Let $\Sigma = \{a\}$ and let $L = \{a^{n^3}, n \ge 0\}$. Is L regular?

Solution: Assume that L is regular and let m be the number that the Pumping Lemma associates with this language.

Consider the string $w = a^{m^3}$; as per the definition of $L, w \in L$.

As per the Pumping Lemma, w can be decomposed as xyz, where $|xy| \le m$, $|y| \ge 1$ and $xy^iz \in L$, $\forall i \ge 0$. From the manner in which we have chosen w, it must be the case that y must be of the form a^k , where $1 \le k \le m$. It is important to note that our proof should work *regardless* of the value of k, chosen by the adversary.

If the strings in L were ordered by length, the string preceding w would be $w'=a^{(m-1)^3}$. Let us focus on the string w_2 obtained by pumping down y, i.e., by setting i=0. Observe that $|w_2|=m^3-k,\ 1\leq k\leq n$. Regardless of the value assumed by $k,\ m^3>|w_2|=m^3-k>(m-1)^3$. (Requires some nifty algebraic manipulaton, but I am sure you can manage it!) But this means that $w_2\not\in L$, contradicting the assertion of the Pumping Lemma. It follows that L is not regular. \square

5. General questions on Regularity:

Let L be a language over some fixed alphabet Σ .

- (a) Assume that L is finite. Is it necessarily regular? Justify your answer. (2 points)
- (b) How would you efficiently test whether $L = \Sigma^*$? (2 points)

Solution:

- (a) Finiteness implies regularity. Assume that L has n strings. Construct a DFA for each of those strings. We then construct a λ -NFA for L, by taking the union of all these individual DFAs; this involves creation of a new start state and a λ -transition to the start states of the each of the DFAs constructed initially. Finally, we convert the λ -NFA into a DFA using the algorithm discussed in class.
- (b) Observe that $L=\Sigma^*$ if and only if $L^c=\phi$. Assume that you are given a DFA M for L. Interchanging the final and non-final states of M, we get a DFA M^c for L^c . If there exists a path from the start state of M^c to a final state then L^c is non-empty implying that $L\neq \Sigma^*$. Likewise, if there is no path in M^c from the start state to a final state, then it must be the case that $L^c=\phi$ and hence, $L=\Sigma^*$.