## Automata Theory - Quiz I (Solutions)

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

## **1** Problems

1. Induction: Show that

$$\sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2 \cdot n + 1)}{6}.$$

**Solution:** BASIS: At n = 1, the LHS is  $\sum_{i=1}^{1} i^2 = 1^2 = 1$ . Likewise, the RHS is  $\frac{1 \cdot 2 \cdot (2 \cdot 1 + 1)}{6} = 1$ . Since the LHS and RHS are equal, the basis is proven.

INDUCTIVE STEP: Assume that for some  $k \ge 1$ ,

$$\sum_{i=1}^{k} i^2 = \frac{k \cdot (k+1) \cdot (2 \cdot k + 1)}{6}.$$

Now observe that,

$$\begin{split} \sum_{i=1}^{k+1} i^2 &= \sum_{i=1}^k i^2 + (k+1)^2 \\ &= \frac{k \cdot (k+1) \cdot (2 \cdot k+1)}{6} + (k+1)^2, \text{ using the inductive hypothesis} \\ &= \frac{(k+1)}{6} \cdot [k \cdot (2 \cdot k+1) + 6 \cdot (k+1)] \\ &= \frac{(k+1)}{6} \cdot [2 \cdot k^2 + k + 6 \cdot k + 6] \\ &= \frac{(k+1)}{6} \cdot [2 \cdot k^2 + 7 \cdot k + 6] \\ &= \frac{(k+1)}{6} \cdot [2 \cdot k^2 + 4 \cdot k + 3 \cdot k + 6] \\ &= \frac{(k+1)}{6} \cdot [2 \cdot k(k+2) + 3 \cdot (k+2)] \\ &= \frac{(k+1) \cdot (k+2) \cdot (2 \cdot k+3)}{6} \end{split}$$

However, the last step of the derivation corresponds to substituting n = (k+1) in the RHS of the conjecture and thus we have the LHS = RHS at n = (k+1). Applying the principle of mathematical induction, we conclude that

$$\sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2 \cdot n + 1)}{6}.$$

2. Language Properties: Let  $\Sigma$  denote an alphabet and let  $L \subseteq \Sigma^*$  denote some language. The Kleene closure of L, viz.,  $L^*$ , is also a language over  $\Sigma$ . Recall that  $L^*$  is defined as:

$$L^* = \bigcup_{i=0}^{\infty} L^i.$$

Argue that  $(L^*)^* = L^*$ , for any language L.

**Solution:** First note that as per the definition of Kleene closure, we must have,  $X \subseteq X^*$ , for any language X. Accordingy,  $L^* \subseteq (L^*)^*$ . The non-trivial part lies in showing that the converse is true.

*Lemma 1.1*  $L^* \cdot L^* = L^*$ .

**Proof:** Clearly,  $L^* \subseteq L^* \cdot L^*$ , since any string  $w \in L^*$  can be written as  $w = w \cdot \lambda$ . Let  $w \in L^* \cdot L^*$ . We can express w as  $w_1 \cdot w_2$ , where  $w_1, w_2 \in L^*$ . But if  $w_1$  and  $w_2$  are in  $L^*$ , then so is their concatenation, as per the definition of Kleene closure! This implies that  $w \in L^*$  and hence,  $L^* \cdot L^* \subseteq L^*$ .

It follows that  $L^* \cdot L^* = L^*$ .  $\Box$ 

**Theorem 1.1**  $\forall i \geq 1, (L^*)^i = L^*.$ 

**Proof:** We prove the above theorem inductively.

BASIS: Since,  $(L^*)^1 = L^*$ , by definition, the basis is proven.

INDUCTIVE STEP: Assume that  $(L^*)^k = L^*$ , for some  $k \ge 1$ . Now observe that  $(L^*)^{(k+1)} = (L^*)^k \cdot L^*$ , as per the definition of the exponentiation operator as applied to languages. Using the inductive hypothesis, we can write that  $(L^*)^{(k+1)} = L^* \cdot L^*$ . But this immediately implies that  $(L^*)^{(k+1)} = L^*$ , as per Lemma (1.1). Using the principle of mathematical induction, we can conclude that  $\forall i \ge 1$ ,  $(L^*)^i = L^*$ .  $\Box$ 

As per the definition of Kleene closure,

$$(L^*)^* = \bigcup_{i=0}^{\infty} (L^*)^i$$
  
=  $\bigcup_{i=0}^{\infty} L^*$ , as per Theorem (1.1)  
=  $L^*$ .

3. Regular Expression conversion: Write a regular expression for the language represented by the FSA in Figure (1).



Figure 1: FSA to Regular Expression



Figure 2: FSA to Regular Expression



Figure 3: FSA to Regular Expression

**Solution:** As described in class, we eliminate State *B* to get the two-state Generalized Transition Graph described by Figure (2).

Eliminating state C, we get Figure (3)

Using R to represent the expression  $(ab + (b + aa) \cdot (ba)^* \cdot bb)$ , we conclude that the regular expression for the language represented by the input FSA is  $R^*$ .  $\Box$ 

4. **Regular Grammars:** Construct a right-linear grammar for the language  $L((aab^*)^*)$ .

## Solution:

We first construct the NFA for the given language; it is not hard to see that Figure (4) represents  $L((aab^*)^*)$ .



Figure 4: FSA to Regular Grammar

I would like to emphasize the following points:

- (i) The L in the figure denotes  $\lambda$ .
- (ii) Technically, you should provide an inductive proof that establishes the equivalence between the language  $L((aab^*)^*)$  and the NFA in Figure (4). While that is not feasible within the framework of a quiz, you need to convince yourself that the NFA is correct. I did work out the inductive proof though!

As per the algorithm described in class, we can construct the following right linear grammar  $G = \langle V, T, S, P \rangle$ , where,

- (a)  $V = \{q_0, q_1, q_2\},\$
- (b)  $T = \{a, b\},\$
- (c)  $S = q_0$ , and
- (d) The productions P are given by:

$$\begin{array}{rcl} q_0 & \rightarrow & a \ q_1 \mid \lambda \\ q_1 & \rightarrow & a \ q_2 \\ q_2 & \rightarrow & b \ q_2 \mid q_0 \mid \lambda \end{array}$$

5. State Minimization: Minimize the number of states in the DFA shown in Figure (5).



Figure 5: DFA State minimization

**Solution:** Without loss of generality, we can eliminate one of the two trap states F and G; we choose to eliminate G to get the DFA in Figure (6).

We make the following observations:

- (a) States A and F are distinguishable from states B, C, D and E on input  $\lambda$ .
- (b) States A and F are distinguishable on 0.
- (c) State C is distinguishable from states E and D on input 1; so is state B.
- (d) There are no more distinguishable pairs; accordingly, the equivalence classes are:  $\{A\}, \{B, C\}, \{D, E\}$  and F.

Figure (7) represents the minimized DFA.



Figure 6: DFA State minimization



Figure 7: DFA State minimization