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1 Problems

1. Induction: Show that

n∑

i=1

i2 =
n · (n + 1) · (2 · n + 1)

6
.

Solution: BASIS: At n = 1, the LHS is
∑1

i=1 i2 = 12 = 1. Likewise, the RHS is1·2·(2·1+1)
6 = 1. Since the LHS

and RHS are equal, the basis is proven.

INDUCTIVE STEP: Assume that for somek ≥ 1,

k∑

i=1

i2 =
k · (k + 1) · (2 · k + 1)

6
.

Now observe that,

k+1∑

i=1

i2 =
k∑

i=1

i2 + (k + 1)2

=
k · (k + 1) · (2 · k + 1)

6
+ (k + 1)2, using the inductive hypothesis

=
(k + 1)

6
· [k · (2 · k + 1) + 6 · (k + 1)]

=
(k + 1)

6
· [2 · k2 + k + 6 · k + 6]

=
(k + 1)

6
· [2 · k2 + 7 · k + 6]

=
(k + 1)

6
· [2 · k2 + 4 · k + 3 · k + 6]

=
(k + 1)

6
· [2 · k(k + 2) + 3 · (k + 2)]

=
(k + 1) · (k + 2) · (2 · k + 3)

6

1



However, the last step of the derivation corresponds to substituting n = (k +1) in the RHS of the conjecture and thus
we have the LHS= RHS atn = (k + 1). Applying the principle of mathematical induction, we conclude that

n∑

i=1

i2 =
n · (n + 1) · (2 · n + 1)

6
.
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2. Language Properties: Let Σ denote an alphabet and letL ⊆ Σ∗ denote some language. The Kleene closure ofL,
viz., L∗, is also a language overΣ. Recall thatL∗ is defined as:

L∗ = ∪∞

i=0L
i.

Argue that(L∗)∗ = L∗, for any languageL.

Solution: First note that as per the definition of Kleene closure, we must have,X ⊆ X∗, for any languageX.
Accordingy,L∗ ⊆ (L∗)∗. The non-trivial part lies in showing that the converse is true.

Lemma 1.1 L∗ · L∗ = L∗.

Proof: Clearly,L∗ ⊆ L∗ ·L∗, since any stringw ∈ L∗ can be written asw = w ·λ. Letw ∈ L∗ ·L∗. We can express
w asw1 · w2, wherew1, w2 ∈ L∗. But if w1 andw2 are inL∗, then so is their concatenation, as per the definition of
Kleene closure! This implies thatw ∈ L∗ and hence,L∗ · L∗ ⊆ L∗.

It follows thatL∗ · L∗ = L∗. 2

Theorem 1.1 ∀i ≥ 1, (L∗)i = L∗.

Proof: We prove the above theorem inductively.

BASIS: Since,(L∗)1 = L∗, by definition, the basis is proven.

INDUCTIVE STEP: Assume that(L∗)k = L∗, for somek ≥ 1. Now observe that(L∗)(k+1) = (L∗)k · L∗, as per the
definition of the exponentiation operator as applied to languages. Using the inductive hypothesis, we can write that
(L∗)(k+1) = L∗ · L∗. But this immediately implies that(L∗)(k+1) = L∗, as per Lemma (1.1). Using the principle of
mathematical induction, we can conclude that∀i ≥ 1, (L∗)i = L∗. 2

As per the definition of Kleene closure,

(L∗)∗ = ∪∞

i=0(L
∗)i

= ∪∞

i=0L
∗, as per Theorem (1.1)

= L∗.
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3. Regular Expression conversion: Write a regular expression for the language represented by the FSA in Figure (1).
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b

Figure 1: FSA to Regular Expression
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b+aa
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Figure 2: FSA to Regular Expression

A

ab+(b+aa)(ba)* bb

Figure 3: FSA to Regular Expression

Solution: As described in class, we eliminate StateB to get the two-state Generalized Transition Graph described by
Figure (2).

Eliminating stateC, we get Figure (3)

Using R to represent the expression(ab + (b + aa) · (ba)∗ · bb), we conclude that the regular expression for the
language represented by the input FSA isR∗. 2

4. Regular Grammars: Construct a right-linear grammar for the languageL((aab∗)∗).

Solution:

We first construct the NFA for the given language; it is not hard to see that Figure (4) representsL((aab∗)∗).

a a

b
L

q0  q1  q2

Figure 4: FSA to Regular Grammar

I would like to emphasize the following points:

(i) TheL in the figure denotesλ.

(ii) Technically, you should provide an inductive proof that establishes the equivalence between the language
L((aab∗)∗) and the NFA in Figure (4). While that is not feasible within theframework of a quiz, you need
to convince yourself that the NFA is correct. I did work out the inductive proof though!
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As per the algorithm described in class, we can construct thefollowing right linear grammarG = 〈V, T, S, P 〉, where,

(a) V = {q0, q1, q2},

(b) T = {a, b},

(c) S = q0, and

(d) The productionsP are given by:

q0 → a q1 | λ

q1 → a q2

q2 → b q2 | q0 | λ

2

5. State Minimization: Minimize the number of states in the DFA shown in Figure (5).
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Figure 5: DFA State minimization

Solution: Without loss of generality, we can eliminate one of the two trap statesF andG; we choose to eliminateG
to get the DFA in Figure (6).

We make the following observations:

(a) StatesA andF are distinguishable from statesB, C, D andE on inputλ.

(b) StatesA andF are distinguishable on0.

(c) StateC is distinguishable from statesE andD on input1; so is stateB.

(d) There are no more distinguishable pairs; accordingly, the equivalence classes are:{A}, {B,C}, {D,E} andF .

Figure (7) represents the minimized DFA.

2
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Figure 6: DFA State minimization
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Figure 7: DFA State minimization
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