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1 Problems
1. Induction: Let L denote the language of balanced strings over Σ = {0, 1}, i.e., L consists of all strings in {0, 1},

such that n0(w) = n1(w). Given a string w = w1w2 . . . wn, a proper prefix of w is defined to be any string
x = x1x2 . . . xk, such that k < n and xi = wi, i = 1, 2, . . . , k. Let y = y1y2 . . . yr denote an arbitrary string in L
with y1 = yr. Argue that y must have a balanced proper prefix.

Solution: We use induction on |y| to prove the theorem. The following observations are in order:

(a) |y| must be even. (Straightforward proof using induction.)

(b) |y| ≥ 4. If |y| = 0, then y = λ; if |y| = 2, then y must be 01 or 10 and hence the first and last characters are not
equal.

Accordingly, the base case is |y| = 4; the restriction that y1 = y4, implies that y is either 0110 or 1001. In the former
case, 01 is the balanced proper prefix, while in the latter case, 10 is. Thus, in both cases, inspection establishes the
existence of a balanced proper prefix and the basis is proven.

Assume that the theorem holds true for all balanced strings y, where |y| ≤ 4 + 2 · r, r ≥ 0. Now consider a balanced
string y of length |y| = 4 + 2ṙ + 2. Without loss of generality, assume that y1 = y4+2·r+2 = 0. Accordingly, y has
the form 0w0, where w = w1w2 . . . w4+2·r. Since y is balanced, w contains at least one position i such that wi = 1.
Let m denote the smallest such position, i.e., wi = 0, i = 1, 2, . . . ,m − 1. Consider the string y′ obtained from y,
by eliminating the substring z = 0wm. Clearly, y′ is balanced; further |y′| = 4 + 2 · r and hence, as per the inductive
hypothesis, y′ has a balanced proper prefix, say y′′. Reinserting z into y′′ at the appropriate positions, gives us a
balanced proper prefix of y.

Applying the principle of mathematical induction, we conclude that the theorem is true.
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2. Context-Free Grammars: Consider the grammar G = 〈V, T, S, P 〉, where V = {S}, T = {0, 1}, S = S, and the
productions P are defined by:

S → 0S1 | 1S0 | SS | λ

Argue that L(G) contains the set of all balanced strings.

Solution: Let x denote an arbitrary balanced string; we used induction on |x| to show that x can be derived from S.

BASIS: |x| = 0. In this case, x must be λ and since S → λ is a production of the grammar, we have proved that
S ⇒∗ x.

INDUCTIVE STEP: Assume that if x is a balanced string of length at most 2 · k, then S ⇒∗ x. Now consider a string
x of length 2 · k + 2, k ≥ 0. We need to consider the following cases:
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(i) x1 = 0 and x2·k+2 = 1− In this case, x has the form 0w1, where w is also balanced. However, since |w| = 2·k,
as per the inductive hypothesis, w can be derived from S. But this immediately implies that x can be derived
from S; for instance, S ⇒ 0S1⇒∗ 0w1⇒ x.

(ii) x1 = 1 and x2·k+2 = 0 − This case is identical to the one above.
(iii) x1 = 0 and x2·k+2 = 0 − In this case, we know from the prefix theorem, that x must have a balanced

proper prefix. Let us call this prefix y. Then x can be written as y · y′, where y′ is also balanced. Since
|y|, |y′| ≤ 2 · k, we know that y and y′ can be derived from S. Thus x can be derived from S as follows:
S ⇒ SS ⇒ yS ⇒ y · y′ ⇒ x.

(iv) x1 = 1 and x2·k+2 = 1 − This case is identical to the one above.

Applying the principle of mathematical induction, we conclude that all balanced strings can be derived from S, i.e.,
L(G) contains the set of all balanced strings. 2

3. Context-Free Grammar Parsing: Consider the grammar G = 〈V, T, S, P 〉, with V = {S, A,B,C}, T = {a, b},
S = S and the productions P defined by:

S → AB | BC

A → BA | a
B → CC | b
C → AB | a

Use the CYK algorithm to establish the membership or non-membership of w = ababa in L(G).
(You may not use trial and error!)

Solution:
Table (1) represents the application of the CYK algorithm to determine the membership of w = ababa in L(G).

Table 1: Applying the CYK algorithm

{S}
{B} {B}
{B} {S, C} {B}
{S, C} {A,C} {S, C} {A,C}
{A,C} {B} {A,C} {B} {A,C}

a b a b a

Since the topmost leftmost entry contains the start symbol S, we conclude that w ∈ L(G); indeed the following
leftmost derivation establishes it.

S ⇒ AB

⇒ aB

⇒ aCC

⇒ aABC

⇒ aBABC

⇒ abABC

⇒ abaBC

⇒ ababC

⇒ ababa

2
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4. Pushdown Automaton Design: Consider the language L defined as follows:
L = {w ∈ {0, 1}∗ : n0(w) = 2 · n1(w)}. Establish that L is context-free by designing a PDA that accepts all and
only those strings in L.

Solution: In design problems, it is helpful to identify the strategy first. One approach to designing an accepter for
L is as follows: Mark the occurrence of a 1 with two X characters and mark the occurrence of a 0 with a single
Y character. If the input string w contains twice as many 0s as 1s, then it must be the case that the number of X
characters equals the number of Y characters.

Consider the following non-deterministic PDA M = 〈Q,Σ,Γ, δ, q0, z, F 〉, where,

(i) Q = {q0, q1, qf}.
(ii) Σ = {0, 1}.

(iii) Γ = {X, Y, z}.
(iv) δ is defined through the following transitions:

(a) If there is no input at all, i.e., w = λ, then n0(w) = 2 · n1(w). Accordingly, we have,

δ(q0, λ, z) = (qf , λ)

(b) When the input character is 0, we first check if there are any 1s on the stack to match it with; if not, Y is
pushed onto the stack. Accordingly, we have,

δ(q0, 0, z) = (q0, Y z)
δ(q0, 0, X) = (q0, λ)
δ(q0, 0, Y ) = (q0, Y Y )

(c) When the input character is a 1, we first check if there are any 0s on the stack to match it with; if not, we
push in two X characters onto the stack. The matching portion needs to be carried out carefully, since there
are various character combinations on the stack, which must be accounted for. Accordingly, we have,

δ(q0, 1, z) = (q0, XXz)
δ(q0, 1, X) = (q0, XXX)
δ(q0, 1, Y ) = (q1, λ)
δ(q1, λ, Y ) = (q0, λ)
δ(q1, λ,X) = (q0, XX)
δ(q1, λ, z) = (q0, Xz)

(v) q0 = q0.

(vi) z = z.

(vii) F = {qf}.

The above design reinforces the power of non-determinism; if we had chosen to design a DPDA for L, the task would
have been onerous indeed. It is a straightforward exercise using induction to establish that L = L(M). 2
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5. Turing Machine Design: Design a Deterministic Turing Machine to decide the language of palindromes over {0, 1}.
You may select the architecture of the Turing Machine, as per your tastes and convenience.

Solution: I choose a two-tape Turing Machine in which the tapes are semi-infinite, i.e., unbounded only on the left.
The left end of each tape is marked by the special character �. The algorithm consists of the following steps:

(a) Copy the input string w which is on the first tape onto the second tape.

(b) Position the head of the first tape on the first symbol after �, i.e., the first symbol of w and the head of the second
tape on the last symbol of w.

(c) As long as the symbols under both heads are identical, move the first tape head to the right and the second tape
head to the left. If at any point, the tape heads read different symbols, halt and reject. Likewise, if the first tape
head encounters a blank, then halt and accept. Note that the occurrence of a blank below the first tape head
coincides with the occurrence of � below the second tape head.

The above design makes the following assumptions:

(a) The input string is written on the first tape immediately after the �,

(b) At commencement, both tape heads are on the � symbols of their respective tapes,

(c) The second tape is initially blank,

(d) On each transition, the tape heads can independently move right (→), left (←) or stay put (−).

Consider the Turing Machine M = 〈Q,Σ,Γ, δ, q0,2, F 〉, where,

(i) Q = {q0, q1, q2, q3, q4}.
(ii) Σ = {0, 1}.

(iii) Γ = {0, 1,2,�}.
(iv) The program δ is defined by the following transitions:

(a) The first set of transitions copies the input string onto the second tape. Accordingly, we have,

δ(q0, 0,2) = (q0, 0,→, 0,→)
δ(q0, 1,2) = (q0, 1,→, 1,→)
δ(q0,�,�) = (q0,�,→,�,→)

(b) The second set of transitions repositions the heads of both tapes. Accordingly, we have,

δ(q0,2,2) = (q1,2,←,2,−)
δ(q1, 0,2) = (q1, 0,←,2,−)
δ(q1, 1,2) = (q1, 1,←,2,−)
δ(q1,�,2) = (q2,�,→,2,←)

(c) The third set of transitions accomplishes the match and move portion of our algorithm. Accordingly, we
have,

δ(q2, 0, 0) = (q2, 0,→, 0,←)
δ(q2, 1, 1) = (q2, 1,→, 1,←)

δ(q2,2,�) = (q3,2,−,�,−)
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(d) The final set of transitions accounts for the case in which w is not a palindrome. Accordingly, we have,

δ(q2, 0, 1) = (q4, 0,−, 1,−)
δ(q2, 1, 0) = (q4, 1,−, 0,−)

(v) q0 = q0.

(vi) 2 = 2.

(vii) F = {q3}.

We observe that q3 is the “accept” state, while q4 is the “reject” state. It is not hard to see that the above Turing Ma-
chine accomplishes the mission of recognizing palindromes. I do expect that you will formally argue the correctness
of the design using induction. 2
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