
Automata Theory - Final (Solutions)

K. Subramani
LCSEE,

West Virginia University,
Morgantown, WV

{ksmani@csee.wvu.edu}

1 Problems
1. Diagonalization: The Halting problem is defined as follows: Given a Turing Machine M = 〈Q, {0, 1},Γ, δ, q0,2, F 〉

and a string w ∈ Σ∗, determine whether M halts on w. In class, we proved that the Halting problem is undecidable
using two different techniques. The first technique was constructive, where we constructed a series of Turing Ma-
chines, which led to a contradiction. The second technique was based on the observation that if the Halting problem
is decidable then all recursively enumerable languages would become recursive. In this question, I am asking you to
prove that the Halting problem is undecidable using diagonalization.
Hint: Recall that the set of Turing Machines is countable and construct the table of Turing Machines presented with
Turing Machines.

Solution: Assume that the Halting Problem is decidable, i.e., there exists an algorithmic procedure A, which when
presented with a Turing Machine and a string, unambiguously determines whether or not M halts on w.

In class, we argued that the set of Turing Machines over a fixed alphabet is countable and therefore denumerable.
Let M = {M1,M2, . . .} denote some ordering of the set of all Turing Machines over the alphabet {0, 1}. We also
showed that every Turing Machine is basically a binary string; we use wi to denote the binary string representing
Turing Machine Mi.

We construct the table R, where R[i, j] = 0, if the Turing Machine Mi halts on the binary string wj and is 1 otherwise.
Since, the Halting Problem is decided by A, each entry in R is unique and can be computed.

Based on table R, we can construct the following Turing Machine M ′: M ′ halts on wi, if and only if Mi does not
halt on wi. Clearly M ′ is a valid Turing Machine and hence it must appear at some point in the enumeration M.
Assume that M ′ = Mk for some index k.

What is R[k, k]? If R[k, k] = 0, then it means that Turing Machine Mk does halt on wk; however, this would mean
that Mk should not halt on wk, by the definition of Mk. Likewise, if R[k, k] = 1, then it means that Mk does not halt
on wk; however, this forces Mk to halt on wk!

The above contradiction resulted because we assumed the existence of an algorithmic procedure that would unam-
biguously decide the Halting Problem. We can therefore conclude that the Halting Problem is undecidable. 2

2. Countability:

(a) The set N = {1, 2, 3, . . .} is known to be a countable set. Is the set N ×N countable? (2 points.)

(b) Let I = (0, 1) and let <+ = (0,∞). Which set has more elements? (2 points.)

Solution:

(a) The function f : N → Q+, defined by f(a, b) = a
b , puts the set N × N in a one-to-one correspondence with

the set Q+. Hence, the cardinalities of the two sets are equal and since we proved Q+ to be countable in class, it
follows that the set N ×N is also countable.

1

(b) Clearly |I| ≤ |<+|, since every element of I is also an element of <+. Now, consider the function f : <+ → I
defined by:

f(x) =
1

1 + x

It is not hard to see that f is injective, i.e., distinct elements in <+ are mapped into distinct elements of I . It
therefore follows that |<+| ≤ |I|, from which we can conclude that the two sets have the same cardinality.
This should not be surprising since the set of even numbers has the same cardinality has the set of natural numbers,
i.e., in case of infinite sets, it is possible for a set A to be a proper subset of a set B and yet have the same
cardinality as B.

2

3. Language Theory: In class we laboriously argued that the concept of undecidability did not apply to problems
which are characterized by a single instance. Let us say that a problem P has three instances. Can such a problem be
undecidable?

Solution: Let us call the three instances I1, I2 and I3. Note that there are precisely 8 possibilities for these instances,
with respect to whether they are “yes” instances or “no” instances. For instance, one possibility is that I1 is a “yes”
instance, while the other two are not.

Accordingly, we could construct eight distinct Turing Machines, each of which declares a distinct subset of {I1, I2, I3}
to be “yes” instances. At least one of the eight Turing Machines produces the correct answer; thus although we may
not know how to solve the problem P , there exists a Turing Machine which correctly decides it. It follows that
problem P cannot be undecidable,as per the definition of undecidability. 2

4. Undecidability: The Total-Halting problem is defined as follows: Given a Turing Machine M = 〈Q,Σ,Γ, δ, q0,2, F 〉,
determine whether M halt on all inputs w ∈ Σ∗. Is the Total-Halting Problem decidable?

Solution: Assume that the Total-Halting problem is decidable and that there exists and algorithm A, which when
given a Turing Machine M = 〈Q,Σ,Γ, δ, q0,2, F 〉 unambiguously and correctly decides whether M halts on all
inputs w ∈ Σ∗.

We now reduce the Halting Problem to the Total-Halting problem. Recall that in the Halting Problem, we are given a
Turing Machine M = 〈Q,Σ,Γ, δ, q0,2, F 〉 and a string w ∈ Σ∗ and asked whether M halts on w. Observe that given
an instance 〈M,w〉 of the Halting Problem, we can construct the Turing Machine M ′, which behaves as follows: If
the input to M ′ is exactly w, then M ′ simulates the execution of M on w; for any other string M ′ simply halts. It is
not hard to see that M halts on w, if and only if, M ′ halts on all inputs! Since the Total-Halting problem is decidable,
we could present the Turing Machine M ′ to the algorithm A and thereby solve the Halting Problem instance. Since
all Halting Problem instances could be thus decided, it follows that the Halting Problem is decidable as well, which
is absurd.

We therefore conclude that the Total-Halting problem is undecidable. 2

5. Properties of Regular Languages: Let L1 and L2 denote two languages over an alphabet Σ. We define cor(L1, L2)
as follows:

cor(L1, L2) = {w ∈ Σ∗ : w ∈ Lc
1 or w ∈ Lc

2}

where Lc denotes the complement of language L. Show that cor(L1, L2) is regular, if L1 and L2 are regular.

Solution: Since L1 is regular, so is Lc
1; likewise, the regularity of Lc

2 follows from the regularity of L2. In class, we
showed that the union of two regular languages is also regular and thus Lc

1 ∪ Lc
2 is also regular. But this is precisely

the language cor(L1, L2) and hence, we conclude that cor(L1, L2) is regular, if L1 and L2 are. 2

2

