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1 Problems
1. In the Knapsack problem, you are given a knapsack of capacity W and n objects {o1, o2, . . . on} with respective

weights {w1, w2, . . . , wn} and respective profit values {p1, p2, . . . pn}. The goal is to pack the objects into the
knapsack in a manner that maximizes the profit of knapsack, without violating its capacity constraint. In class, we
showed that if we are permitted to choose fractions of objects, then the problem can be solved by a greedy strategy.
The 0/1 Knapsack problem is a variant of the knapsack problem in which you cannot choose fractions of objects,
i.e., each object is either selected or not. Argue with a counterexample that the greedy strategy does not work for the
0/1 Knapsack problem.

Solution: Consider the following input instance 〈o1, o2, o3〉:

(a) W = 5.

(b) 〈p1, p2, p3〉 = 〈6, 10, 12〉.
(c) 〈w1, w2, w3〉 = 〈1, 2, 3〉.

The greedy strategy for fractional knapsack would pick o1 and o2, whereas the optimal solution is clearly o1 and o3.
2

2. Let A = {a1, a2, . . . , an} denote a set of positive integers that add up to N . Design an O(n · N) algorithm for
determining whether there is a subset B of A, such that

∑
ai∈B ai =

∑
ai∈A−B ai.

Solution: Observe that the problem is asking whether A can be partitioned into two parts which sum up to N
2 . Without

loss of generality, we assume that N is even; since if N is odd, the answer is “no”!

We thus need to determine whether a subset of A adds up exactly to N
2 .

Accordingly, we define

B[i, j] = true, if some subset of {a1, a2, . . . , ai} adds up exactly to j .
= false, otherwise.

The entry of interest in this table is B[n, N
2 ]; if this entry is true, then there is indeed some subset of A which sums

up to N
2 .

When filling in the entry for B[i, j], we either select ai to be included in the chosen subset or ai is excluded. In the
former case, B[i, j] = B[i − 1, j − ai], since there must exist a subset of {a1, a2, . . . , ai−1} that sums to j − ai. In
the latter case, B[i, j] = B[i − 1, j]. Since B[i, j] is true, if either choice is true, we conclude that

B[i, j] = B[i − 1, j − ai] ∨ B[i − 1, j].

The table B is filled up in bottom-up fashion, i.e., first B[1, k] is computed for k = 1, 2, . . . , N
2 , then B[2, k] is

computed and so on. The computation of a single entry requires at most two lookups and an arithmetic computation,
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i.e., each entry of the table can be computed in O(1) time. Since there are n · N
2 entries in the table, the entire table

can be filled in O(n · N) time. 2

3. Let G be an undirected spanning tree on n vertices and m edges. Argue that m = n − 1.

Solution: We use mathematical induction to establish the above theorem.

When n = 1 and G is a tree, we must have m = 0 and the basis is proven.

Assume that whenever G is an undirected spanning tree on at most k vertices, the number of edges in G is one lower
than the number of vertices.

Now let G be an undirected spanning tree on (k + 1) vertices. Remove any edge e in G; the removal of e breaks
G into two non-empty disjoint components G1 and G2, since G is minimally connected. These two components are
themselves spanning trees on |G1| vertices and |G2| vertices respectively, since they are also minimally connected.
Clearly, |G1| ≤ k and |G2 ≤ k and as per the inductive hypothesis, they must have |G1| − 1 and |G2| − 1 edges
respectively. It follows that G has |G1| − 1 + |G2| − 1 + 1 = |G1| + |G2| − 1 = (k + 1) − 1 = k edges.

Using the second principle of mathematical induction, we conclude that the theorem holds for all n ≥ 1. 2

4. Consider the DFS algorithm discussed in class. Argue that for any pair of nodes u and v, precisely one of the following
two possibilities holds:

(i) [d[u], f [u]] ∩ [d[v], f [v]] = ∅.

(ii) Either [d[u], f [u]] is completely contained in [d[v], f [v]] or vice versa.

Solution: First note that both the above possibilities cannot simultaneously hold, since they describe mutually exclu-
sive situations.

Let us assume that neither possibility holds and suppose that there exists a pair of vertices (u, v), such that d[u] <
d[v] < f [u] < f [v]. Since d[u] < d[v], vertex u was discovered by the depth-first search before vertex v. Since
d[v] < f [u], it follows that v was discovered when u was yet to be “finished”; consequently v must be a descendant
of u in the depth-first search tree. However, if v is a descendant of u, then as per the definition of depth-first search,
v must be “finished” before u is, i.e., we have contradicted the hypothesis.

In other words, we cannot have a vertex pair (u, v) such that d[u] < d[v] < f [u] < f [v] and hence precisely one of
the enumerated possibilities holds. 2

5. Consider a directed weighted graph in which all edges, except those directed out of the source are positive. The edges
out of the source can be positive or negative. Will Dijkstra’s algorithm produce the correct shortest path distances
when run on this graph? Justify your answer with a proof or counterexample.

Solution: Dijkstra’s algorithm works on this graph as well.

Let G = 〈V,E, w〉 denote the graph, s denote the source vertex and Q denote the priority queue from which the
vertices are extracted in increasing order of their d[] values as per Dijkstra’s algorithm. We first observe that there
cannot be any negative cost cycles in G so that the shortest path from s to any vertex u ∈ V is well-defined.

Claim 1.1 For all vertices, u ∈ V, d[u] = δ(s, u), when u is extracted from the queue.

Proof: The claim is clearly true for u = s since in this case d[u] = δ(s, u) = 0 and s is first vertex to be extracted
from Q.

Let p = 〈s, v1, v2, . . . , u〉 denote the shortest path from the source s to some vertex u. If this path consists of a single
edge then clearly d[u] = δ(s, u) when s is extracted from Q and its edges are relaxed. By the upper-bound property,
d[u] will not decrease as a result of future relaxations and hence the claim holds, when u is extracted from Q.

Now consider the case in which the shortest path from s to u consists of r edges. We can decompose this path as
〈(s, v1), (v1, v2), . . . , (vr−1, vr = u)〉. By the principle of optimality, (s, v1) must be shortest path from s to v1

and 〈v1, v2, . . . u〉 is the shortest path from v1 to u in G. Once s is extracted from Q and its edges are relaxed,
d[v1] = δ(s, v1). The problem of finding the shortest path from s to u is now identical to the problem of finding
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the shortest path from v1 to u. However, the edges on all paths from v1 to u have positive weights and hence the
correctness of Dijkstra’s algorithm establishes that when u is extracted from Q, d[u] = δ(s, u). 2

It follows that Dijkstra’s algorithm produces the correct output when run on G. 2
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