
Analysis of Algorithms - Midterm (Solutions)

K. Subramani
LCSEE,

West Virginia University,
Morgantown, WV

{ksmani@csee.wvu.edu}

1 Problems
1. Recurrences: Solve the following recurrences exactly or asymototically. You may assume any convenient form for n.

(a)

T (1) = 1
T (n) = T (3

√
n) + 1, n > 1

(b)

T (1) = 0

T (n) = 4T (
n

2
) + n2 · log n, n > 1

Solution:

(a) Put n = 3k. Accordingly, the recurrence can be restated as:

T (30) = 1

T (3k) = T (3
k
3) + 1, k > 0

Let G(k) denote T (3k). Accordingly, the above recurrence can be represented as:

G(0) = 1

G(k) = G(
k

3
) + 1, k > 0

Using one of the many techniques discussed in class (expansion, induction, the Master Theorem), it is easily seen
that G(k) = log3 n, from which it follows that T (n) = log3 log3 n.

(b) We use the Master Theorem to solve this recurrence. As per the pattern discussed in class, a = 4, b = 2 and
f(n) = n2 log n. It is clear that f(n) ∈ Θ(nlog24 log1 n), from which it follows that T (n) ∈ Θ(n2 log2 n).

2

2. Binary Trees: Let T denote a proper binary tree with n internal nodes. We define E(T) to be the sum of the depths
of all the external nodes of T ; likewise, I(T) is defined to be the sum of the depths of all the internal nodes of T .
Prove that E(T) = I(T) + 2 · n.

Solution: We use induction on the number of internal nodes in T .

1

Base case: n = 1. In this case, T consists of a root node with a left child and right child node. The root node is the
only internal node and hence I(T) is 0; its two children are the only external nodes and hence E(T) is 1 + 1 = 2.
Since E(T) = I(T) + 2 · 1, the conjecture is proven in the base case.

Assume that if T is a proper binary tree with i internal nodes, where i ≤ k then E(T) = I(T) + 2 · i.
Now consider a proper binary tree T having exactly k +1 internal nodes. Let h denote the height of this tree. Since T
is proper, there are at least two external nodes, which are children of the same internal node. Splice out these external
nodes to get a new tree proper binary tree T ′ having k internal nodes (since a node that was internal in T has now
become external). As per the inductive hypothesis, we must have E(T ′) = I(T ′) + 2 · k.

Observe that in T ′ two external nodes at depth h in T have been removed and one node which was internal in T at
depth h− 1 has been added; hence, E(T ′) = E(T)− 2 · h + (h− 1).

Likewise, a node which was internal in T at depth h− 1 is now external in T ′ and hence I(T ′) = I(T)− (h− 1).

We thus have,

E(T ′)− I(T ′) = E(T)− I(T)− 2 · h + (h− 1) + (h− 1)
= E(T)− I(T)− 2

⇒ E(T)− I(T) = E(T ′)− I(T ′) + 2
⇒ E(T)− I(T) = 2 · k + 2

⇒ E(T) = I(T) + 2 · (k + 1)

Thus, using the second principle of mathematical induction we can conclude that the conjecture is true for all proper
binary trees regardless of the number of internal nodes. 2

3. Greedy: Assume that you are given a set S of n activities {a1, a2, . . . , an}. Associated with activity ai are its start
time si and finish time fi; if activity ai is selected then it must start at si and finish before fi. Two activities ai and
aj are compatible, if si ≥ fj or sj ≥ fi; otherwise, they are conflicting. Design an algorithm that outputs the largest
set of compatible activities.

Solution:
Algorithm 1.1 represents a greedy approach to output the maximum number of mutually compatible activities.

Function MAX-ACTIVITY-SELECT(S)
1: Let R denote a subset of mutually compatible activities.
2: Set R = φ.
3: Order the activities by their finish times so that f1 ≤ f2 ≤ . . . ≤ fn.
4: for (i = 1 to n) do
5: if (activity ai is compatible with the activities already in R) then
6: R = R ∪ {ai}.
7: end if
8: end for
9: return(R)

Algorithm 1.1: Greedy algorithm for maximum compatible activity subset

Assume that Algorithm 1.1 is not optimal and there exists another algorithm, say A′, which produces a solution R′,
such that |R′| > |R|.

Claim 1.1 If a1 6∈ R′, then a1 can always be made part of R′, without decreasing the number of activities in R′.

2

Proof: Insert a1 into R′; clearly it must conflict with some activities in R′. Otherwise, R′∪a1 is a feasible set, which
violates the optimality of R′.

Let ai, aj ∈ R′ denote two jobs that conflict with a1. Since f1 ≤ fi, fj , we must have si, sj ≤ f1. However, this
means that both ai and aj straddle a1, which forces them to conflict with each other. It follows that ai and aj conflict
with each other as well! Thus, there can be at most one activity in R′ that conflicts with a1; replacing that activity
with a1 preserves the cardinality of R′. 2

Let k be the smallest index such that ak ∈ R and ak 6∈ R′. Thrust ak into R′; using the same argument as before, ak

can conflict with at most one activity in R′; replacing that activity with ak does not affect the cardinality of R′, but
brings it one activity closer to R.

Working in this fashion, we can gradually transform R′ such that it includes all the activities in R, without decreasing
its cardinality. Once this transformation has been carried out, we claim that there are no additional activities in R′.
Assume that there exists an activity, say ap ∈ R′, such that ap 6∈ R. Let aq denote the finish time of the last activity
that was added to R.

We consider two possibilities:

(a) sp ≥ fq - In this case, the greedy algorithm would have considered ap and added it to R, since it does not conflict
with any of the jobs already in R.

(b) sp < fq - If fp ≥ fq, then ap conflicts with aq and hence cannot be part of R′. If fp < fq, then the greedy
algorithm would have considered ap before aq; the fact that ap 6∈ R implies that it conflicted with some of the
activities already chosen in R!

We have thus established that any optimal solution can be transformed into the greedy one, i.e., the greedy approach
does produce the optimal solution.

2

4. Sorting: Analogous to the notion of worst-case running time for an algorithm, is the notion of best-case running
time, which is the minimum amount of time that an algorithm needs to accomplish its task. Argue that the best-case
running time of Quicksort (in terms of element-to-element comparisons) is Ω(n · log n). (It is interesting to note that
the best-case running time of Insertion sort is O(n).)

Solution: We focus on the computation tree of Quicksort; recall that we used the computation tree to demonstrate
that the expected running time of Quicksort is O(n · log n). Indeed the running time of the Quicksort algorithm is
O(n)× h, where h is the height of the computation tree.

We observe that the height of a binary tree (or any tree, for that matter) is minimized, when the tree is balanced, i.e.,
external nodes occur only at level h and possibly level h− 1.

Accordingly, for the best-case performance of Quicksort, the partition procedure must divide the array into approxi-
mately equal portions.

Letting T (n) denote the best-case running time of Quicksort on an array of n elements, we get,

T (1) = 0

T (n) = 2 · T (
n− 1

2
) + (n− 1)

We argue using induction, that T (n) ≥ G(n) = 1
10n · log n− n.

Since T (1) ≥ G(1), the base case is proven.

Assume that T (n) ≥ G(n) for all n ≤ k.

Observe that

T (k + 1) = 2 · T (
k

2
) + k as per definition

≥ 2 · [1
10

k

2
· log

k

2
− k

2
] + k as per inductive hypothesis

3

=
k

10
log

k

2

=
k

10
log k − k

10

We then observe that,

k

10
log k − k

10
≥ 1

10
(k + 1) log(k + 1)− (k + 1)

⇒ k log k − k ≥ (k + 1) log(k + 1)− (k + 1)
⇒ k log k − k ≥ (k + 1) log(k + 1)− 10(k + 1)
⇒ 9k + 10 ≥ (k + 1) log(k + 1)− k log k

But (k + 1) log(k + 1)− k log k ≤ (k + 1)[log k + 1]− k log k] = (k + 1) + log k. Hence,
9k + 10 ≥ (k + 1) log(k + 1)− k log k, as long as 8k + 9 ≥ log k, which is true for all k.

We have thus shown that T (n) ∈ Ω(G(n)); it is not hard to show that G(n) ∈ Ω(n · log n); we can thus conclude
that T (n) ∈ Ω(n · log n).
2

5. Divide and Conquer: Design a Divide-And-Conquer algorithm to discover both the maximum and minimum of an
array A of n elements using at most 3n

2 element-to-element comparisons. Formally prove that your algorithm makes
at most 3

2n element-to-element comparisons.

Solution: We assume that there are at least 2 elements in the array; otherwise, the problem is ill-defined. Further, we
assume that the number of elements in A is an exact power of 2, in order to simplify the exposition.

Algorithm 1.2 represents a Divide-And-Conquer approach for computing both the minimum and maximum elements
of the input array.

Function MAXMIN(A, low, high)
1: if (high− low + 1 = 2) then
2: if (A[low] < A[high]) then
3: max = A[high]; min = A[low].
4: return((max, min)).
5: else
6: max = A[low]; min = A[high].
7: return((max, min)).
8: end if
9: else

10: mid = low+high
2 .

11: (maxl,minl) = MAXMIN(A, low,mid).
12: (maxr,minr) =MAXMIN(A,mid + 1, high).
13: end if
14: Set max to the larger of maxl and maxr; likewise, set min to the smaller of minl and minr.
15: return((max, min)).

Algorithm 1.2: Divide and Conquer algorithm for computing maximum and minimum of an array

Let T (n) denote the number of element-to-element comparisons carried out by Algorithm 1.2. We have,

T (2) = 1

T (n) = 2 · T (
n

2
) + 2, n > 2.

4

Substituting n = 2k and using the expansion method discussed in class, it is straightforward to see that T (n) ≤ 3
2n.

T (2k) = 2 · T (2k−1) + 2
= 2 · [2 · T (2k−2) + 2] + 2
= 22 · T (2k−2) + 22 + 2
= 22 · [2 · T (2k−3) + 2] + 22 + 2
= 23 · T (2k−3) + 23 + 22 + 2

=
...

...
...

= 2k−1 · T (2k−(k−1)) + 2k−1 + 2k−2 + . . . 22 + 2

But T (2k−(k−1)) = T (21) = 1 and hence, T (2k) =
∑k−1

j=1 2j + 2k−1.

Note that

k−1∑
j=1

2j = 2 ·
k−2∑
j=0

2j

= 2 · [20 · (2k−1 − 1)]
2− 1

sum of a geometric progression

= 2k − 2

It follows that

T (n) = T (2k)
= 2k−1 + 2k − 2

=
1
2
2k + 2k − 2

=
3
2
2k − 2

=
3n

2
− 2

≤ 3n

2

2

5

