
Analysis of Algorithms - Midterm

K. Subramani
LCSEE,

West Virginia University,
Morgantown, WV

{ksmani@csee.wvu.edu}

1 Instructions
1. The Midterm needs to be turned in by 8 : 50 am on October 8.

2. Each question is worth 4 points.

3. Attempt as many problems as you can. You will be given partial credit, as per the policy discussed in class.

2 Problems
1. Recurrences: Solve the following recurrences exactly or asymototically. You may assume any convenient form for n.

(a)

T (1) = 1
T (n) = T (3

√
n) + 1, n > 1

(b)

T (1) = 0

T (n) = 4T (
n

2
) + n2 · log n, n > 1

2. Binary Trees: Let T denote a proper binary tree with n internal nodes. We define E(T) to be the sum of the depths
of all the external nodes of T ; likewise, I(T) is defined to be the sum of the depths of all the internal nodes of T .
Prove that E(T) = I(T) + 2 · n.

3. Greedy: Assume that you are given a set S of n activities {a1, a2, . . . , an}. Associated with activity ai are its start
time si and finish time fi; if activity ai is selected then it must start at si and finish before fi. Two activities ai and
aj are compatible, if si ≥ fj or sj ≥ fi. Design an algorithm that outputs the largest set of compatible activities.

4. Sorting: Analogous to the notion of worst-case running time for an algorithm, is the notion of best-case running
time, which is the minimum amount of time that an algorithm needs to accomplish its task. Argue that the best-case
running time of Quicksort (in terms of element-to-element comparisons) is Ω(n · log n). (It is interesting to note that
the best-case running time of Insertion sort is O(n).)

5. Divide and Conquer: Design a Divide-And-Conquer algorithm to discover both the maximum and minimum of an
array A of n elements using at most 3n

2 element-to-element comparisons. Formally prove that your algorithm makes
at most 3

2n element-to-element comparisons.

1

