Design of Algorithms - Homework Il (Solutions)

K. Subramani
LCSEE,
West Virginia University,
Morgantown, WV
{ksmani@csee.wvu.edu

1 Problems

1. Professor Krustowski claims to have discovered a newngpglgorithm. Given an arra)A of n numbers, his
algorithm breaks the array intbequal parts of siz&, viz., the first third, the middle third and the bottom thiid.
then recursively sorts the first two-thirds of the array,libdom two-thirds of the array and finally the first two-ttgrd
of the array again. Using mathematical induction, prove tha Professor has indeed discovered a correct sorting
algorithm. You may assume the following: The input sizis always some multiple df; additionally, the algorithm
sorts by brute-force, when is exactly3. Formulate a recurrence relation to describe the complefiProfessor
Krustowski’s algorithm and obtain tight asymptotic bounds

Solution: As per the specifications, the algorithm works correctlyewh < 3.

Assume that the algorithm works correctly, as long asn < k, wherek > 3.

Now consider the case where the arfaygontainsk + 1 elements.

We divide the arrayA [1--k+1] (conceptually) into the following regiongiy : A[1--251] Ly« A[EEL 412 (k+1)]

andLs : A[2 - (k+ 1)+ 1- -k +1]. Thus, the first recursive invocation is called bnU Lo, the second recursive
invocation is called orls U L3, and the third recursive invocation is called bnU L, again.

By the inductive hypothesis, the first recursive invocatigl return a correctly sorted array, since the size of the
input array is at most. (Note that% -(k+1) < kaslong ag > 2.) It follows that after the first recursive invocation,
each element i is at least as large as every elemenkin Arguing similarly, we observe that the second recursive
invocation correctly sorts the sét U Ls; further every element ith 3 is at least as large as each elementin From

the correctness of the first recursive invocation, we carefbee conclude that each elementigis at least as large
as every element if; U Lo; further as per the inductive hypothesis, all the elemenisihave been correctly sorted.
The third recursive invocation completes the sorting pdoice, since by the inductive hypothesis, it correctly sorts
L, U Ly and thus the seft; U Lo U Ls is correctly sorted.

LetT'(n) denote the running time of Professor Krustowski’s alganitiWe have,
T(n) = 3,n<3
= 3 T(; . n), otherwise

The recurrence relation fits the template of the Master Téraowitha = 3, b = 2 and f(n) = 0.

Itis easy to see that(n) = O(n(°%1.53)=<) for somee > 0, s0T(n) € O(n*7) by the master theorem (case 1).
O

2. Assume that you are given a chain of matricds As A; A,), with dimension® x 5,5 x 4, 4 x 2, and2 x 4,
respectively. Compute the optimal number of multiplicati@equired to calculate the chain product and also indicate
what the optimal order of multiplication should be usinggraheses.



Solution: Letm[i, j] denote the optimal number of multiplications to multipletbhain{A;, Ait+1,. .., 4;), where
matrix A; has dimensiong;_; x d;. As per the discussion in class, we know that

= k?gnknq mli, k] +mlk+1,7] + di—1 - dy - d;

ComputingM = [mli, j]],i =1,2,3,4; j =4,i+ 1,...,4, in bottom-up fashion, we get,

0 40 56 72

0 0 40 80
M= 0 0 0 32

0 0 0 O

By the above table, the optimal number of multiplicationsrtoltiply the given chain i§2; by recording the split
values, we see that the optimal order of multiplicatiof({s4; - As) - A3) - A4).

O
. A hiker has a choice af objects{o;,09,...,0,} to fill a knapsack of capacitji’. Objecto; has benefip; and

weightw;. A subset of objects is said to be feasible if the combinedjtedf the objects in the subset is at most
W. The hiker's goal is to select a feasible subset of objeath #hat the benefit to him is maximized (benefits are

additive). Note that an object cannot be selected fracliritis either selected or not. Design a dynamic program
to help the hiker.

Solution: We first formulate the problem as an integer program. a;edlenote a variable, which ik if the hiker
selects objeat; and0, otherwise.

Accordingly, the benefit to the hiker iy, p; - z; and the cumulative weight of the objects in the knapsack is:
>or_, w; - z;. Since, the capacity constraint of the knapsack cannotdiatet], we must havg. ", w; - z; < W.

Thus the integer program is:

n
max Zpi R
i=1
n
=1

Let S; denote that subset of the set of objects, that includes 8té @ibjects only. In other wordsy = (}, S; = {01},
Ss = {01, 02,...,05} and so on.

Definem[i, w] to be the maximum benefit that can be reaped using only thetshieS; and a knapsack of capacity
w. The following recurrences follow naturally:

m[0,w] = 0

m[i,0] = 0

mli,w] = m[i—1,w],if w;, >w

mli,w] = max{m[i—1,w],m[i—1,w—w; +p;}, if w; <w

The first equality states that if there are no objects at alhtwose from, then regardless of the capacity of the knapsack
the benefit reaped 8. Likewise, the second equality states that if the knapsaskdapacity, it does not matter
how many objects you select; the accrued benefit iThe third equality states that if thg has weight exceeding
the capacity of the knapsack, then we might as well focus effitst (i — 1) objects. Ifw; < w, then we have two

choices, viz., we could exclude objegt in which case the benefit accruedisi — 1, w] or we could include object
0;, in which case the benefit accruedigi — 1, w — w;] + p;.



As with the other dynamic programs that we studied, we carstcoct a table forn[é, j] and computen[n, W],
which is the entry that we are interested in. Since each eatmpe computed i®(1) time, and there argx + 1) - W
entries in the table, we can implement the dynamic prograt(im- 1) time.

O
. LetT denote a binary search tree. Show that

(a) If nodea in T has two children, then its successor has no left child arpt@decessor has no right child.

(b) If the keys inT" are distinct and: is a leaf node ang is x’s parent, theny - key is either the smallest key ifi
larger thane - key, or the largest key i’ smaller thane - key.

Solution:

(a) Sincea has two children, its right subtree is non-empty. Its susocetherefore is the leftmost node in the right
subtree. But by definition, the leftmost node has no leftdchil
A similar argument shows that the predecessar lb&s no right child.

(b) Since the keys ifi" are distinct, eithet - key < y - key, ory - key < x - key.
Assume that: - key < y - key; it follows thatz is the left child ofy. Furthermore, assume the existence of a
nodez in T, such thatr - key < z - key < y - key. Letr denote the root of". Clearly,z must be in the same
subtree of (left or right) asy. (Why?) Then observe, thatmust be an ancestor ¢f because it cannot be part
of the left subtree of) (x is the only node in the left subtree), and at the same timéiey < y - key, i.e., z
cannot be part of the right subtreewgither. Finally note thay cannot be part of the left subtree afsince
y - key > z - key andy cannot be part of the right subtreegfsince that would imply that - key > y - key,
contradicting our initial assumption. In other words, sach cannot exist. We conclude that- key is the
smallest key ifil’, that is larger than: - key.
A similar argument applies to the case in whichkey < x - key.

O

. An AVL tree is a binary search tree that is height balanéedeach node, the heights of the left and right subtrees
of = differ by at mostl. Prove that an AVL tree with nodes has heigli®(log n).

Solution: We need the following lemma.

Lemma 1.1 Inan AVL tree of height h, there are at least F}, nodes, where F}, isthe A" Fibonacci number.

Proof: The basé, = 0 is easy: a tree of heiglithas eitherl or 0 nodes, and, = 0.

Now assume that the claim is true for all AVL trees of height.et T be an AVL tree of height + 1. LetT; andT.
be the left and right subtrees of the rootiafrespectively. The AVL condition implies thd andT,. are both AVL
trees. Sincd" has height. + 1, at least one df}, 7. has height. and neither has a height greater thaThus, using
the AVL condition, either both have height or one has height and the other has height— 1. By induction, the
number of nodes iff" is at least

Fp+ Fp1+1,
which is at leasf}, 1. O
Now we use a standard fact about the Fibonacci numbers:

Fi+2 > (bz for: >0
whereg(~~ 1.61803399) is thegolden ratio (see Section 4-5 of [CLRS09]).

Combining Lemma 1.1 and this fact, we see that an AVL tree atiié, > 2 has at leasp” 2 many nodes. This
implies that an AVL tree witlw nodes has height at most

logn
bog d +2J,

which isO(logn).
a



References

[CLRS09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and @irtlntroduction to Algorithms. MIT Press,3"¢ edition,
20009.



