Design of Algorithms - Homework IV

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Instructions

- (i) The homework is due on May 3, in my office.
- (ii) Attempt as many problems as you can. You will get partial credit, as per the policy discussed in class.

2 Problems

- 1. You are given a set of n tasks $S = \{a_1, a_2, \dots, a_n\}$, with task a_i requiring p_i units of time to complete. At any point in time, only one task can be executed. Furthermore, the tasks are non-preemptive, in that once task a_i commences, it must run uninterrupted for p_i units of time. Design an algorithm that schedules the tasks so as to minimize the *average completion time*. Argue the correctness of your algorithm. Note that if you have two tasks a_1 and a_2 with processing times 3 and 5 respectively and a_1 is scheduled before a_2 , then the average completion time is $\frac{1}{2}(3 + (3 + 5))$.
- 2. Consider a set of n jobs $S = \{a_1, a_2, \dots, a_n\}$, with task a_i having processing time t_i , profit p_i and a deadline d_i . There is only one machine to schedule the jobs and the jobs are non-preemptive. If job a_i completes before its deadline d_i , you receive a profit p_i ; otherwise, your profit is 0. Design an algorithm to schedule the jobs so that the profit obtained is maximized. You may assume that all processing times are integers in the set $\{1, 2, \dots, n\}$.
- 3. In the Fractional Knapsack problem, you are given *n* objects $O = \{o_1, o_2, \ldots, o_n\}$ with respective weights $W = \{w_1, w_2, \ldots, w_n\}$ and respective profits $P = \{p_1, p_2, \ldots, p_n\}$. The goal is to pack these objects into a knapsack of capacity *M*, such that the profit of the objects in the knapsack is maximized, while the weight constraint is not violated. You may choose a fraction of an object, if you so decide; if α_i , $0 \le \alpha_i \le 1$ of object o_i is chosen, then the profit contribution of this object is $\alpha_i \cdot o_i$ and its weight contribution is $\alpha_i \cdot w_i$. Design an algorithm for this problem and argue its correctness.
- 4. Consider an ordinary binary min-heap data structure that supports the instructions INSERT() and EXTRACT-MIN() in $O(\log n)$ worst-case time. Design a potential function Φ such that the amortized cost of INSERT() is $O(\log n)$ and the amortized cost of EXTRACT-MIN() is O(1). Prove that your potential function is valid, over any sequence of n operations.
- 5. Design a data structure that supports the following two operations for a set S of integers: INSERT(S, x) inserts x into set S, and DELETE-LARGER-HALF(S) deletes the largest $\lceil \frac{|S|}{2} \rceil$ elements from S.

Explain how to implement the data structure so that any sequence of m operations runs in O(m) time.