
Inverse Optimization

Ravindra K. Ahuja
Industrial and Systems Engineering Department

University of Florida,
Gainesville, FL 32611, USA

ahuja@ufl.edu

James B. Orlin
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

jorlin@mit.edu

(Revised April 30, 2001)

1

Inverse Optimization

Ravindra K. Ahuja1 and James B. Orlin2

ABSTRACT

In this paper, we study inverse optimization problems defined as follows: Let S denote the set of
feasible solutions of an optimization problem P, let c be a specified cost vector, and x0 be a given feasible
solution. The solution x0 may or may not be an optimal solution of P with respect to the cost vector c.
The inverse optimization problem is to perturb the cost vector c to d so that x0 is an optimal solution of P
with respect to d and ||d – c||p is minimum, where ||d – c||p is some selected Lp norm. In this paper, we
consider the inverse linear programming problem under L1 norm (where ||d – c||p = j j jj J w | d c |,∈ −∑

with J denoting the index set of variables xj, and wj denoting the weight of the variable j) and under L∞
norm (where ||d – c||p = maxj∈ J{wj|dj – cj|}). We prove the following results: (i) If the problem P is a
linear programming problem, then its inverse problem under the L1 as well as L∞ norm is also a linear
programming problem. (ii) If the problem P is a shortest path, assignment or minimum cut problem, then
its inverse problem under the L1 norm and unit weights can be solved by solving a problem of the same
kind. For the non-unit weight case, the inverse problem reduces to solving a minimum cost flow
problem. (iii) If the problem P is a minimum cost flow problem, then its inverse problem under the L1
norm and unit weights reduces to solving a unit-capacity minimum cost flow problem. For the non-unit
weight case, the inverse problem reduces to solving a minimum cost flow problem. (iv) If the problem P
is a minimum cost flow problem, then its inverse problem under the L∞ norm and unit weights reduces to
solving a minimum mean cycle problem. For the non-unit weight case, the inverse problem reduces to
solving a minimum cost-to-time ratio cycle problem. (v) If the problem P is polynomially solvable for
linear cost functions, then inverse versions of P under the L1 and L∞ norms are also polynomially
solvable.

1 Industrial and Systems Engineering Department, University of Florida, Gainesville, FL 32611, USA.
2 Sloan School of Management, MIT, Cambridge, MA 02139, USA.

2

1. INTRODUCTION

Inverse problems have been studied extensively by researchers working with geophysical data.
Tarantola [1987] describes inverse problems in the following manner: "Let S represent a physical system.
Assume that we are able to define a set of model parameters which completely describe S. These
parameters may not all be directly measurable (such as the radius of Earth's metallic core). We can
operationally define some observable parameters whose actual values hopefully depend on the values of
the model parameters. To solve the forward problem is to predict the values of the observable
parameters, given arbitrary values of the model parameters. To solve the inverse problem is to infer the
values of the model parameters from given observed values of the observable parameters."

In terms of the above notation, a typical optimization problem is a forward problem since it
identifies the values of observable parameters (optimal decision variables) given the values of the model
parameters (cost coefficients, right-hand side vector, and the constraint matrix). An inverse optimization
problem consists of inferring the values of the model parameters (cost coefficients, right-hand side vector,
and the constraint matrix) given the values of observable parameters (optimal decision variables). In the
past few years, there has been interest in inverse optimization problems in the operations research
community, and a variety of inverse optimization problems have been studied by researchers.

In this paper, we study inverse optimization problems defined in the following manner. Let P
denote an instance of an optimization problem with S as the set of feasible solutions and c as the cost
vector; that is, P = min{cx : x ∈ S}. Suppose that x0 ∈ S. The solution x0 may or may not be an optimal
solution of P with respect to the cost vector c. For a cost vector d, we define P(d) as the variation of
problem P obtained by replacing the cost vector c replaced by d, that is, P(d) = min{dx: x ∈ S}. An
inverse optimization problem with Lp norm is to identify a cost vector d such that x0 is an optimal

solution of P(d) and ||d – c||p = [p
j jj J | d c |∈ −∑]1/p is minimum, where J denotes the index set of

variables xj. In words, the inverse optimization problem is to perturb the cost vector c to d so that x0 is an
optimal solution with respect to the perturbed cost vector and the cost of perturbation is minimum. In
Section 2, we describe several applications of the inverse optimization problems and give references for
some other applications.

Geophysical scientists were the first ones to study inverse problems. The book by Tarantola
[1987] gives a comprehensive discussion of the theory of inverse problems in the geophysical sciences.
Within the mathematical programming community, the interest in inverse optimization problems was
generated by the papers due to Burton and Toint [1992, 1994] who studied inverse shortest path problems
arising in seismic tomography used in predicting the movement of earthquakes. In the past few years,
inverse optimization problems have been studied rather intensively. In this paper, we give a unified
presentation of several inverse problems. We first consider the inverse linear programming problem
under the L1 norm (where we minimize j j jj J w |d - c |∈∑) and the L∞ norm (where we minimize

maxj∈ J{wj|dj – cj|}). We then specialize these results for the following problems and obtain faster
algorithms: the shortest path problem, the assignment problem, the minimum cut problem, and the
minimum cost flow problem. Finally, we consider general inverse optimization problems under L1 and
L∞ norms. We will henceforth refer to inverse problems under L1 norm simply as inverse problems and

3

inverse problems under L∞ norm as minimax inverse problems. The major contributions made in this
paper are as follows:

1. We show that if the problem P is a linear programming problem, then its inverse problems under the
L1 and L∞ norms are also linear programming problems.

2. We show that if the problem P is a shortest path, assignment or minimum cut problem, then its
inverse problem under the L1 norm and unit weights can be solved by solving a problem of the same
kind. For the non-unit weight case, the inverse problem reduces to solving a minimum cost flow
problem.

3. We show that if the problem P is a minimum cost flow problem, then its inverse problem under the
L1 norm and unit weights reduces to solving a unit-capacity minimum cost flow problem. For the
non-unit weight case, the inverse problem reduces to solving a minimum cost flow problem.

4. We show that if the problem P is a minimum cost flow problem, then its inverse problem under the
L∞ norm and unit weights reduces to solving a minimum mean cycle problem. For the non-unit
weight case, the inverse problem reduces to solving a minimum cost-to-time ratio cycle problem.
These results apply to the shortest path and assignment problems too which are special cases of the
minimum cost flow problem.

5. We show that (under reasonable regularity conditions) if the problem P is polynomially solvable for
linear cost functions, then inverse versions of P under the L1 and L∞ norms are also polynomially
solvable. This result uses ideas from ellipsoid algorithm and, therefore, does not lead to
combinatorial algorithms for solving inverse optimization problems.

There has already been some research on inverse linear programming and inverse network flow
problems under L1 norm. Zang and Liu [1996] studied inverse assignment and minimum cost flow
problems; Yang, Zhang and Ma [1997], and Zhang and Cai [1998] have studied the inverse minimum cut
problems; and Xu and Zhang [1995] have studied the inverse shortest path problem. In this paper, we
develop a unified framework from which algorithms for all inverse network flow problems are derived as
special cases. Our algorithms either match the previous best algorithms or improve them, and at the
same time obtain simpler proofs. We also study in this paper inverse linear programming and inverse
network flow problems under L∞ norm which are new results.

In our other research papers we have studied the inverse spanning tree problem (Sokkalingam,
Ahuja and Orlin [1999], Ahuja and Orlin [1998a]) and the inverse sorting problem (Ahuja and Orlin
[1997]). Ahuja and Orlin [1998b] consider inverse network flow problems for the unit weight case and
develop combinatorial proofs that do not rely on the inverse linear programming theory.

2. APPLICATIONS OF INVERSE OPTIMIZATION PROBLEMS

In this section, we briefly describe several applications of inverse optimization problems
collected from the literature and provide references for a few other applications.

4

Geophysical Sciences and Medical Imaging: Geophysical scientists often do not have all the model
parameters, since they may be very difficult or impossible to determine (such as the radius of Earth's
metallic core). They may have some estimates of model parameters and values of the observable
parameters are used to improve the estimates of the model parameters. Consequently, inverse problems
have been extensively studied by geophysical scientists (see, for example, Neumann-Denzau and Behrens
[1984], Nolet [1987], Tarantola [1987], and Woodhouse and Dziewonski [1984]). An important
application in this area concerns predicting the movements of earthquakes. To model earthquake
movements, consider a network obtained by the discretization of a geologic zone into a number of square
cells. Nodes corresponding to adjacent cells are connected by arcs. The cost of an arc represents the
transmission time of certain seismic waves from corresponding cells, and is not accurately known.
Earthquakes are then observed and the arrival times of the resulting seismic perturbations at various
observation stations are observed. Assuming that the earthquakes travel along shortest paths, the problem
faced by geologists is to reconstruct the transmission times between cells from the observation of shortest
time waves and a priori knowledge of the geologic nature of the zone under study. This problem is an
example of an inverse shortest path problem. Inverse problems also arise in X-ray tomography where
observations from a CT-scan of a body part together with a priori knowledge of the body is used to
estimate its dimension. The book by Tarantola [1987] gives a comprehensive treatment of the theory of
inverse problems and provides additional applications.

Traffic Equilibrium: In a transportation network, users make a number of trips between different origin-
destination pairs. Travel costs are flow dependent and as the flow increases so does the travel costs.
Drivers usually select their routes in a way so as to minimize their travel cost (or time). Under certain
idealized assumptions, the resulting flow in such a network is a user equilibrium flow, where no user can
decrease his or her travel cost unilaterally by changing his or her route (see, for example, Sheffi [1985]).
This user equilibrium flow does not necessarily correspond to the most efficient way of using the
transportation network. A transportation planner may want to enforce a flow that minimizes the total
travel cost over the network; such a flow is called the system optimal flow. A user equilibrium flow may
or may not be the same as the system optimal flow. If not, then tolls may be imposed on some road
segments of the route so that the user equilibrium flow becomes identical to the system optimal flow. If
we denote by x0 the system optimal flow, by x* the user equilibrium flow, then imposing tolls amounts to
changing travel costs so that the user equilibrium changes and becomes the same as the system optimal
flow x0. This is an example of the inverse optimization problem. In case the objective is to impose the
minimum total toll to make the user equilibrium flow identical to the system optimal flow, then the
resulting problem is an instance of the inverse optimization problem under the L1 norm. In case the
objective is to minimize the maximum toll imposed on any road, then the resulting problem is an instance
of the inverse optimization problem under the L∞ norm. As a matter of fact, these two problems are
instances of the inverse multicommodity flow problem where flow between different origin-destination
pairs is treated as a different commodity. This problem has been studied by Burton and Toint [1992,
1994] and Dial [1997]. Burton and Toint [1992, 1994] studied nonlinear cost inverse path problems, and
Dial [1997] studied linear-cost, single-source shortest path problems. Our results in this paper generalize
Dial’s results.

The linear impedance problem arising in the railroad scheduling is also an instance of the inverse
multicommodity flow problem where a cost structure is required which would make a specified “target
flow” optimal in the railroad network (Shan [1999]). Inverse problems also finds applications in portfolio
optimization (Carr and Lovejoy [1997] and Dembo, Merkoulovitch and Rosen [1998]). It also has some

5

plausible applications in isotonic regression (Ahuja and Orlin [1997]), and stability analysis (Greenberg
[1997]).

3. FORMULATING THE INVERSE LINEAR PROGRAMMING PROBLEM

We consider the inverse version of the following linear programming problem, which we shall
subsequently refer to as LP:

Minimize Σj∈ J cjxj, (3.1a)
subject to

Σj∈ J aij xj ≥ bi, for all i ∈ I, (3.1b)
xj ≥ lj, for all j ∈ J, (3.1c)

 -xj ≥ -uj, for all j ∈ J, (3.1d)

where J denotes the index set of the decision vector x, and I denotes the index set of the constraints, lj
denotes the lower bound on xj, uj denotes the upper bound on xj. Let us associate the dual variable πi with

the ith constraint in (3.1b), λj with the jth constraint in (3.1c), and ϕj with the jth constraint in (3.1d). The
dual of LP is the following linear program:

Maximize Σi∈ I biπi + Σj∈ J ljλj - Σj∈ J ujϕj (3.2a)
subject to

Σi∈ I aij πi + λj - ϕj = cj, for all j ∈ J, (3.2b)
πi ≥ 0, for all i ∈ I; λj ≥ 0 for all j ∈ J; and ϕj ≥ 0 for all j ∈ J. (3.2c)

One form of the linear programming optimality conditions states that the primal solutions x and
the dual solution (π, λ, ϕ) are optimal for their respective problems if x is feasible for (3.1), (π, λ, ϕ) is
feasible for (3.2), and together they satisfy the following complementary slackness conditions:

(i) if Σj∈ J aij xj > bi then πi = 0, (3.3a)
(ii) if xj > lj then λj = 0, (3.3b)
(iii) if xj < uj then ϕj = 0. (3.3c)

Let x0 be a feasible solution of (3.1). Let B denote the index set of binding constraints in (3.1b)

with respect to x0 (that is, B = {i ∈ I: Σj∈ J aij xj = bi}), L denote the index set of binding constraints in

(3.1c) (that is, L = {j ∈ J: 0
jx = lj}), and U denote the index set of binding constraints in (3.1d) (that is, U

= {j ∈ J: 0
jx = uj}). Let F = {j ∈ J: 0 < 0

jx < uj}. We can restate the complementary slackness conditions

(3.3) as:

6

(i) πi = 0 for all i ∉ B, (3.4a)
(ii) λj = 0 for all j ∉ L, (3.4b)
(iii) ϕj = 0 for all j ∉ U. (3.4c)

We want to make x0 an optimal solution of (3.1) by perturbing the cost vector c to d. We denote
by LP(d) the linear program (3.1) where the cj’s have been replaced with dj’s. We call d inverse feasible

with respect to x0 if x0 is an optimal solution of LP(d). Now notice that x0 is an optimal solution of
LP(d) if and only if there exists a dual solution (π, λ, ϕ) that satisfies (3.2b) with cj replaced by dj and the
primal-dual pair satisfies the complementary slackness conditions (3.4). Using (3.4) in (3.2) gives us the
following characterization of inverse feasible cost vectors:

Σi∈ B aij πi + λj = dj, for all j ∈ L, (3.5a)

Σi∈ B aij πi - ϕj = dj, for all j ∈ U, (3.5b)

Σi∈ B aij πi = dj, for all j ∈ F, (3.5c)
πi ≥ 0 for all i ∈ B; λj ≥ 0 for all j ∈ L; and ϕj ≥ 0 for all j ∈ U. (3.5d)

The inverse problem is to minimize ||d – c||p over all inverse feasible cost vectors d (that is, all
cost vectors d satisfying (3.5)). In the next two sections, we will consider the following two objective

functions for the inverse problem: (i) minimize Σj∈ J wj|dj – cj|, and (ii) minimize max{wj|dj – cj|: j ∈ J}.

4. SOLVING THE INVERSE LINEAR PROGRAMMING PROBLEM UNDER THE L1 NORM

In this section, we will consider the inverse linear programming problem under the weighted L1
norm. A similar approach was taken by Zhang and Liu [1996]. They showed that the inverse problem
under the L1 norm was solvable as a linear program. We first extend their results to the weighted case.
More imporantly, we clarify the connection between the dual of the inverse problem and a relaxation of
the original problem. Zhang and Liu observed this connection for the assignment problem, and we
establish here that the connection extends to all linear programs. We also show that in some network
flow problems, the solution to the inverse problem is readily obtainable from solving the original
problem, and using reduced cost information appropriately. In particular, we show that when applied to
0-1 integer linear programming problems, the inverse problem takes on a particular elegant form.

In this section, we will consider the inverse linear programming problem under the weighted L1

norm. We have shown in the previous section that this reduces to solving minimize Σj∈ J wj|dj – cj|,

subject to (3.5). This is not a linear programming problem in its current form, but can be easily converted
into one using a standard transformation. It is well known that minimizing wj|dj – cj| is equivalent to
minimizing αj + βj, subject to dj – cj = αj - βj, αj ≥ 0 and βj ≥ 0. Using this transformation, the inverse
linear programming problem can be stated as follows:

7

Minimize Σj∈ J wjαj + Σj∈ J wjβj,

or, equivalently,

Maximize -Σj∈ J wjαj - Σj∈ J wjβj, (4.1a)

subject to

Σi∈ B aij πi - αj + βj + λj = cj, for all j ∈ L, (4.1b)

Σi∈ B aij πi - αj + βj - ϕj = cj, for all j ∈ U, (4.1c)

Σi∈ B aij πi - αj + βj = cj, for all j ∈ F, (4.1d)
πi ≥ 0 for all i ∈ B; αj ≥ 0 and βj ≥ 0 for all j ∈ J, (4.1e)
λj ≥ 0 for all j ∈ L; and ϕj ≥ 0 for all j ∈ U. (4.1f)

We will now simplify (4.1). We first note that in an optimal solution of (4.1) both αj and βj
cannot take positive values, since otherwise we can reduce both by a small amount δ without violating
any constraint and strictly improving the objective function value. We can restate (4.1b), (4.1c) and (4.1d)
as

-αj + βj = jcπ - λj, for all j ∈ L, (4.2a)

-αj + βj = jcπ + ϕj, for all j ∈ U, (4.2b)

-αj + βj = jcπ , for all j ∈ F, (4.2c)

where jcπ = cj - Σi∈ B aij πi. There are three cases to consider.

Case 1. jcπ > 0. The non-negativity of αj and βj and the fact that we wish to minimize αj + βj implies

that (i) if j ∈ L then λj = jcπ = | jcπ |, αj = βj = 0 and hence dj = cj; and (ii) if j ∈ F∪ U then αj = ϕj = 0, βj

= jcπ = | jcπ |, and hence dj = cj - | jcπ |.

Case 2. jcπ < 0. In this case, (i) if j ∈ U then ϕj = - jcπ = | jcπ |, αj = βj = 0, hence dj = cj; and (ii) if j ∈

F∪ L then βj = λj = 0, αj = - jcπ = | jcπ |, and hence dj = cj + | jcπ |.

Case 3. jcπ = 0. In this case, αj = βj = λj = ϕj = 0, and hence dj = cj.

The preceding case analysis implies that if π denotes the optimal solution of (4.1), then the
optimal cost vector d* is given by

8

0
j jj j

* 0
j jjj j ij

j

c | c | if c 0 and x 0,

d c | c | if c 0 and x u ,

c otherwise.

π π

π π

 − > >

= + < <

(4.3)

We have shown above that we can solve the inverse problem by solving (4.1), and the optimal
values of π can be used to obtain the optimal cost vector using (4.3). Instead of solving (4.1), we can
alternatively solve the dual of (4.1) which turns out to be a variation of the original problem (3.1). We
associate the variable yj with the constraint associated with the jth index in (4.1b) to (4.1d) and then take
its dual. We get the following linear programming problem:

Minimize Σj∈ J cjyj, (4.4a)
subject to

Σj∈ J aij yj ≥ 0, for all i ∈ B, (4.4b)
 0 ≤ yj ≤ wj, for all j ∈ L, (4.4c)
 - wj ≤ yj ≤ 0, for all j ∈ U, (4.4d)
 -wj ≤ yj ≤ wj, for all j ∈ F. (4.4e)

We can formulate the dual inverse problem in an alternate manner that may be more convenient

to work with compared to the formulation in (4.4). Substituting yj = xj – x j
0 for each j ∈ J in (4.4) gives

us the following equivalent formulation that is more similar to the original formulation of LP:

Minimize Σj∈ J cjxj, (4.5a)
subject to

Σj∈ J aij xj ≥ bi, for all i ∈ B, (4.5b)
0 ≤ xj ≤ wj, for all j ∈ L, (4.5c)
uj - wj ≤ xj ≤ uj, for all j ∈ U, (4.5d)

 0
jx - wj ≤ xj ≤ 0

jx + wj, for all j ∈ F. (4.5e)

The formulations (4.4) and (4.5) of the dual of the inverse linear programming problem are
equivalent to one-another. The two formulations have different primal optimal solutions and are related
using the formula x = x0 – y. But they have the same optimal dual solution π from which we may
determine the optimal cost vector d*. We refer to the formulation (4.4) as the 0-centered dual inverse
problem, and to the formulation (4.5) as the x0-centered dual inverse problem.

In the formulation of the problem LP, we have assumed that all inequalities are of the form “≥”.
In case we have some “≤” inequalities in (3.1), then in the 0-centered problem or the x0-centered problem
the corresponding constraint (if binding) will also be a “≤” inequality. In case we have an equality

9

constraint in (3.1), then this constraint will be a binding constraint and the corresponding constraint will
always be present in the 0-centered dual inverse problem or the x0-centered dual inverse problem.

 5. THE 0-1 LINEAR PROGRAMMING PROBLEM WITH UNIT WEIGHTS AND UNDER L1 NORM

We will now consider a special case of the bounded variable linear programming problem where
each lower bound equals 0, each upper bound equals one, and there always exists an integer optimal
solution. We refer to such a linear programming problem as a 0-1 linear programming problem. We also
assume that wj = 1 for each j ∈ J. Several combinatorial optimization problems, such as, the single-
source single-sink shortest path problem, the assignment problem, and the minimum cut problem, can be
formulated as 0-1 linear programming problems. Let x0 be a 0-1 feasible solution of a 0-1 linear
programming problem which we wish to make optimal by perturbing the cost vector c to d. Let B denote
the index set of constraints binding with respect to the solution x0. Since x0 is a 0-1 solution, each index
j ∈ J either belongs to L or U, and in both the cases (4.5c) and (4.5d) reduce to 0 ≤ xj ≤ 1. We thus get

the following x0-centered dual inverse problem:

Minimize Σj∈ J cjxj (5.1a)

subject to

Σj∈ J aij xj ≥ bi, for all i ∈ B, (5.1b)

 0 ≤ xj ≤ 1, for all j ∈ J, (5.1c)

which is the same as the original problem except that the non-binding constraints with respect to x0 have
been eliminated. In the case when all constraints are binding (for example, when each constraint in (5.1b)
is an equality constraint), B = I and its x0-centered dual inverse problem is the same as the original
problem.

In the case of the 0-1 linear programming problem, we can restate the expression for computing
the optimal cost vector d*. Let x* be an optimal solution of (5.1) and π denote the optimal dual variables
associated with the constraints in (5.1b). It follows from the linear programming theory that (i) jcπ < 0 if

and only if *jx = uj, and (ii) jcπ > 0 if and only if *jx = 0. Using these results in (4.5) yields the following

optimal cost vector:

0 *jj

* 0 *jjj

0 *j

jj

jj

jj

c | c | for all j satisfying x = 1 and x = 0,

d c | c | for all j satisfying x = 0 and x = 1,

c for all j satisfying x = x .

π

π

 −

= +

(5.2)

In this case the optimal objective function value for the inverse problem is 0 *{j J: x x }jj j| c |π
∈ ≠∑ .

10

6. SOLVING THE INVERSE LINEAR PROGRAMMING PROBLEM UNDER THE L∞∞∞∞ NORM

In this section, we study the inverse of the linear programming problem LP under the L∞ norm,
called the minimax inverse linear programming problem. In this problem, we wish to obtain an inverse
feasible cost vector d that minimizes max{wj|dj – cj|: j ∈ J} where wj ≥ 0 for all j ∈ J. It follows from the
discussion in Section 3 that the minimax inverse linear programming problem is to minimize max{wj|dj –
cj|: j ∈ J} subject to (3.5). This mathematical program is not a linear program since it contains absolute
signs on terms in the objective function and a maximization of terms instead of summation of terms;
however, it can be converted to a linear programming problem by using well known transformations. To
eliminate the absolute signs in the objective function, we replace wj|dj – cj| by wjαj + wjβj, subject to dj –
cj = αj - βj, αj ≥ 0 and βj ≥ 0. Further, to eliminate the maximization of the terms, we introduce a
nonnegative variable θ and add the constraints wjαj + wjβj ≤ θ for each j ∈ J to ensure that each term is
less than or equal to θ. We also convert the minimization form of the objective function into the
maximization form. This gives us the following linear programming problem:

 Maximize -θ (6.1a)
subject to

Σi∈ B aij πi - αj + βj + λj = cj, for all j ∈ L, (6.1b)

Σi∈ B aij πi - αj + βj - ϕj = cj, for all j ∈ U, (6.1c)

Σi∈ B aij πi - αj + βj = cj, for all j ∈ F, (6.1d)
 wjαj + wjβj - θ ≤ 0, for all j ∈ J, (6.1e)

 πi ≥ 0 for all i ∈ B; αj ≥ 0 and βj ≥ 0 for all j ∈ J, (6.1f)
λj ≥ 0 for all j ∈ L; and ϕj ≥ 0 for all j ∈ U. (6.1g)

Let jcπ = cj - Σi∈ B aij πi. We can restate (6.1b), (6.1c) and (6.1d) as

-αj + βj = jcπ - λj, for all j ∈ L, (6.2a)

-αj + βj = jcπ + ϕj, for all j ∈ U, (6.2b)

-αj + βj = jcπ , for all j ∈ F, (6.2c)

There are three cases to consider.

Case 1. jcπ > 0. The non-negativity of αj and βj and the fact that we wish to minimize the maximum of

wjαj + wjβj implies that there always exist an optimal solution such that (i) if j ∈ L then λj = jcπ = | jcπ |,

αj = βj = 0, and hence dj = cj; and (ii) if j ∈ F∪ U then αj = ϕj = 0, βj = jcπ = | jcπ |, and hence, dj = cj -

11

| jcπ |. To summarize, in case jcπ > 0, the constraints (6.1b), (6.1c), (6.1d) and (6.1e) reduce to wj jcπ ≤ θ for

all j ∈ F∪ U.

Case 2. jcπ < 0. In this case, (i) if j ∈ U then ϕj = - jcπ = | jcπ |, αj = βj = 0 and hence dj = cj; and (ii) if j ∈

F∪ L then βj = λj = 0 and αj = - jcπ = | jcπ |, and hence dj = cj + | jcπ |. To summarize, in case jcπ < 0, the

constraints (6.1b), (6.1c), (6.1d) and (6.1e) reduce to -wj jcπ ≤ θ for all j ∈ F∪ L.

Case 3. jcπ = 0. In this case, αj = βj = λj = ϕj = 0, and dj = cj. In this case, the constraint (6.1e) is

vacuously satisfied. To summarize, in case jcπ = 0, the constraints (6.1b), (6.1c), (6.1d) and (6.1e) remain

satisfied.

The previous case analysis also implies that the optimal cost vector *
jd = cj + αj - βj is given by

0
j jj j

* 0
j jjj j ij

j

c | c | if c 0 and x 0,

d c | c | if c 0 and x u ,

c otherwise.

π π

π π

 − > >

= + < <

 (6.3)

which is the same as in the case of L1 norm. The preceding analysis also allows us to formulate (6.2) as
the following linear program:

Maximize - θ, (6.4a)
subject to

-wj(cj - Σi∈ B aij πi) ≤ θ, for all j ∈ F∪ L. (6.4b)

wj(cj - Σi∈ B aij πi) ≤ θ, for all j ∈ F∪ U, (6.4c)
πi ≥ 0 for all i ∈ B, (6.4d)

which can be reformulated as

Maximize - θ, (6.5a)
subject to

Σi∈ B aij πi -
j

1
w θ ≤ cj for all j ∈ F∪ L. (6.5b)

-Σi∈ B aij πi -
j

1
w θ ≤ -cj for all j ∈ F∪ U. (6.5c)

πi ≥ 0 for all i ∈ B, (6.5d)

12

where for simplicity of exposition we assume that wj ≠ 0 for each j ∈ J. By taking the dual of (6.5), we

can obtain an equivalent formulation of the minimax inverse problem. We associate the variable jy+ with

the constraint (6.5b), and the variable jy− with the constraint (6.5c). The dual of (6.5) is the following

linear programming problem:

Minimize Σj∈ L cj jy+ + Σj∈ F cj j j(y y)+ −− - Σj∈ U cj jy− (6.6)

subject to

Σj∈ L aij jy+ + Σj∈ F aij j j(y y)+ −− - Σj∈ U aij jy− ≥ 0 for all i ∈ B, (6.6b)

Σj∈ L
j

1
w jy+ + Σj∈ F j

1
w j j(y y)+ −+ + Σj∈ U

j
1

w jy−
 = 1, (6.6c)

jy+ ≥ 0, jy− ≥ 0 for all j ∈ J. (6.6d)

Let yj = jy+ for all j ∈ L, yj = j j(y y)+ −− for all j ∈ F, and yj = - jy− for all j ∈ U. In terms of the

variables yj’s, we can reformulate (6.6) as follows:

Minimize Σj∈ J cjyj, (6.7a)
subject to

Σj∈ J aij yj ≥ 0, for all i ∈ B, (6.7b)

Σj∈ J j
1

w |yj| = 1, (6.7c)

yj ≥ 0 for all j ∈ L, and yj ≤ 0 for all j ∈ U. (6.7d)

We have assumed in (6.7) that wj ≠ 0 for each j ∈ J. It is easy to see that for the case when some

wj have zero values, the formulation will be identical to that in (6.7) except that J is replaced by J′ where

J′ = {j ∈ J: wj ≠ 0}.

If π denotes the optimal dual variables associated with (6.7b), then the optimal cost vector d* can
be computed using (6.4). We refer to the formulation (6.7) as the 0-centered minimax dual inverse
problem. We can obtain the x0-centered minimax dual inverse problem by substituting yj = xj – 0

jx for

each j ∈ J in (6.7). This gives us the following equivalent formulation of the minimax inverse problem:

Minimize Σj∈ J cjxj (6.8a)
subject to

Σj∈ J aij xj ≥ bi, for all i ∈ B, (6.8b)

13

Σj∈ J j
1

w |xj –
0
jx | ≤ 1. (6.8c)

xj ≥ 0
jx for all j ∈ L, and xj ≤ 0

jx for all j ∈ U. (6.8d)

We have assumed so far in this section that that all inequalities are of the form “≥”. In case we
have some “≤” inequalities, then in the 0-centered problem or the x0-centered problem the corresponding
constraint (if binding) will also be a “≤” inequality. In case we have an equality constraint, then this
constraint will always be a binding constraint and the corresponding constraint will always be present in
the 0-centered or the x0-centered mininimax dual inverse problem.

7. THE INVERSE SHORTEST PATH PROBLEM UNDER L1 NORM

In this section, we study the inverse version of the single-source single-sink shortest path
problem. We formulate the single-source single-sink problem as a 0-1 integer program, and apply the
results of Section 5 to show that the inverse shortest path problem reduces to solving a shortest path
problem. This problem has also been studied by Zhang and Liu [1996] who suggest solving the problem
by first transforming to an inverse assignment problem, and then solving the inverse assignment problem
by solving an instance of the assignment problem. Our approach requires solving a shortest path problem
which is a more efficient to solve compared to an assignment problem.

Let G = (N, A) be a directed network, where N denotes the node set and A denotes the arc set.
Let nodes s and t denote two specified nodes. Let us associate a cost cij for each arc (i, j) ∈ A. The s-t
shortest path problem is to determine a directed path from node s to node t in G (henceforth called an s-t

path) whose cost, given by Σ(i,j)∈ P cij, is minimum among all s-t paths in G. The shortest path problem
can be formulated as the following linear programming problem:

Minimize Σ(i,j)∈ A cij xij (7.1a)
subject to

{ }ij ji
{j:(i, j) A} {j:(j,i) A}

1 for i s,
x x 0 for all i s, t ,

1 for i t,∈ ∈

=
− = ∉∑ ∑
− =

(7.1b)

 0 ≤ xij ≤ 1 for all (i, j) ∈ A. (7.1c)

We assume that the network G does not contain any negative cost cycle; under this assumption
(7.1) is a valid formulation of the shortest path problem. Moreover, it has a 0-1 optimal solution. In the
inverse shortest path problem, we are given an s-t path P0 in G that we wish to make a shortest s-t path by
perturbing the arc costs. Let x0 be the flow corresponding to P0, that is, 0

ijx = 1 for all (i, j) ∈ P0 and 0
ijx

= 0 for all (i, j) ∉ P0. The shortest path problem is a special case of the 0-1 linear programming problem,
and it follows from our discussion in Section 5 that the unit-weight x0-centered dual inverse shortest path
problem is identical to (7) because all constraints in (7.1b) are binding constraints. Let P* denote the

14

shortest s-t path in G with cij as arc costs and let x* denote the corresponding 0-1 flow. For the shortest

path problem, the reduced cost of an arc (i, j) is given by ijcπ = cij - πi + πj. It is well known (see, for

example, Ahuja, Magnanti and Orlin [1993]) that reduced costs corresponding to the shortest path P*

satisfy the following conditions:

ijcπ = 0, for all (i, j) ∈ P*, (7.2a)

ijcπ ≥ 0, for all (i, j) ∉ P*. (7.2b)

Let P*\P0 = {(i, j) ∈ A: (i, j) ∈ P* and (i, j) ∉ P0}, and P0\P* = {(i, j) ∈ A: (i, j) ∈ P0 and (i, j) ∉
P*}. Using these results in (5.2) gives the following optimal cost vector d*:

0 *
ij ij*

ij 0 *
ij

c c for all (i, j) P \ P
d

c for all (i, j) P \ P

π − ∈=
∉

, (7.3)

In words, the above result implies that for each arc which is in P0 but not in P*, we decrease the
arc cost by an amount equal to the optimal reduced cost of the arc. The cost of every other arc remains

unchanged. This change decreases the cost of the path P0 by Σ(i,j)∈ P0\P* ijcπ
 units and does not affect the

cost of the path P*. After this change, the modified reduced cost of each arc (i, j) in P0 becomes 0, and it
becomes an alternate shortest s-t path in G.

We have shown above that the unit-weight inverse shortest path problem can be solved by
solving a shortest path problem. When all arc costs are non-negative, we can solve the shortest path
problem in O(m + n log n) time using Fredman and Tarjan’s [1984] implementation of Dijkstra’s
algorithm. In case some arc costs are negative, we can solve the shortest path problem in O(nm) time
using the FIFO label correcting algorithm (see, for example, Ahuja, Magnanti and Orlin [1993]), or in
O(n m log C) time using Goldberg's [1995] algorithm, where C = max{|cij| : (i, j) ∈ A}.

In the weighted version of the inverse shortest path problem, the resulting x0-centered dual
inverse problem is a minimum cost flow problem and can be efficiently solved using any efficient
minimum cost flow algorithm.

We note that one could also address the single-source multiple-sink problem using the results of
Section 5, but only if one were to model the problem as a 0-1 integer programming formulation. The
usual way of modeling the single-source multiple-sink problem is as a single commodity flow, which is
not a 0-1 integer program. However, an alternative formulation is as a multicommodity flow problem,
which is a 0-1 integer program, and can use the results of Section 5.

15

8. THE INVERSE ASSIGNMENT PROBLEM UNDER L1 NORM

In this section, we study the inverse version of the assignment problem. The solution for the
inverse assignment problem is readily obtained from the solution to the same assignment problem. This
result was first established by Zhang and Liu [1996]. Here we show that the result follows directly from
the results of Section 6.

Let G = (N1∪ N2, A) be a bipartite directed network with |N1| = |N2| and A ⊆ N1xN2. We
associate a cost cij for each arc (i, j) ∈ A. The assignment problem is the following linear programming
problem:

Minimize Σ(i,j)∈ A cij xij (8.1a)
subject to

ij{j:(i, j) A}x∈∑ = 1 for all i ∈ N1, (8.1b)

- ij{i:(i, j) A}x∈∑ = -1 for all i ∈ N2, (8.1c)

 0 ≤ xij ≤ 1 for all (i, j) ∈ A. (8.1d)

Each 0-1 solution x of (8.1) defines an assignment M = {(i, j) ∈ A: xij = 1}. Conversely, each
assignment M defines a solution x of (8.1). In the inverse assignment problem, we are given an
assignment M0 in G, which we wish to make optimal by perturbing the arc costs. As in the case of the
shortest path problem, the assignment problem is a special case of the 0-1 linear programming problem
(5.1) and its x0-centered dual inverse problem for the unit-weight case is the same as (8.1). Let M*

denote the optimal assignment in G and let cij
π = cij - πi + πj denote the optimal reduced costs of arcs.

The optimal reduced costs satisfy the condition that cij
π = 0 for all (i, j) ∈ M*, and cij

π ≥ 0 for all (i, j) ∉

M*. Using this result in (5.2) gives us the following optimal cost vector d* for the inverse assignment
problem:

0 *
ij ij*

ij 0 *
ij

c c for all (i, j) M \ M
d

c for all (i, j) M \ M

π − ∈=
∉

(8.2)

Currently, the best available strongly polynomial time bound to solve the assignment problem is
O(nm + n2 log n) and is attained by several algorithms (see, for example, Goldfarb [1985]). The best
available weakly polynomial algorithm is due to Gabow and Tarjan [1989] and Orlin and Ahuja [1992]
and it runs in O(n m log(nC)) time, where C = max{|cij| : (i, j) ∈ A}.

In the weighted version of the inverse assignment problem, the resulting x0-centered dual inverse
problem is a minimum cost flow problem and can be efficiently solved using an efficient minimum cost
flow algorithm.

16

 9. THE INVERSE MINIMUM CUT PROBLEM UNDER L1 NORM

In this section, we study the inverse minimum s-t cut problem. The solution for the inverse
minimum cut path problem is readily obtained from the solution to a minimum s-t cut problem, but it is
one in which certain arcs of the original network may be deleted. Although the solution technique is quite
straightforward, the proof that the technique is valid is much more difficult than the proofs of the previous
two sections. This algorithm was developed by Zhang and Cai [1998]. Here we give a much simpler
proof than theirs. In particular, we show that the correctness of the algorithm for the minimum cut
problem can be obtained by using the path formulation of the cut problem, and relying on results from
Section 6.

Consider a connected network G = (N, A) where uij’s denote arc capacities and s and t are two
specified nodes, called the source and sink nodes, respectively. We assume that uij > 0 for each (i, j) ∈ A.
In the network G, we define an s-t disconnecting set as a set of arcs whose deletion disconnects the
network into two or more components such that nodes s and t belong to different components. We define
an s-t cut as an s-t disconnecting set whose no proper subset is an s-t disconnecting set. This minimality
property implies that in deleting the arcs in an s-t cut creates exactly two components with nodes s and t
in different components. Let S and S (with S = N – S) denote the sets of nodes in the components
defined by an s-t cut; we assume that s ∈ S and t ∈ S . We represent this s-t cut as [S,S] . Let

(S,S) denote the set of forward arcs in the cut, that is, (S,S) = {(i, j) ∈ A : i ∈ S and j ∈ S } and (S,S)

denote the set of backward arcs in the cut, that is, (S,S) = {(i, j) ∈ A : i ∈ S and j ∈ S}. We define the

capacity of the s-t cut [S,S] as the sum of the capacities of the forward arcs in the cut and denote it by
u[S,S] , that is, u[S,S] = ij(i, j) (S,S) u∈∑ . The minimum cut problem is to determine an s-t cut of

minimum capacity. In the inverse minimum cut problem we are given an s-t cut 0 0[S ,S] which we wish
to make a minimum cut by perturbing the arc capacities.

It is well known that the minimum cut problem is equivalent to the dual of the maximum flow
problem and can be solved by using standard maximum flow algorithms. Let x* denote a maximum flow
in the network G, and let S denote the set of nodes reachable from the source node using augmenting
paths. Then, [S,S] is a minimum cut in G (see, for example, Ahuja, Magnanti and Orlin [1993]).

The minimum cut problem can be formulated as a linear programming problem in several ways.
We will use the formulation from which the inverse problem is easier to obtain. We associate a variable
yij for each arc (i, j) ∈ A whose value is 1 or 0, depending upon whether the arc is a forward arc in the
minimum cut or not. We denote by C(G) the collection of all directed paths from node s to node t in the
network G. The minimum cut problem can be formulated as the following linear program:

Minimize Σ(i,j)∈ A uij yij (9.1a)
subject to

ij(i, j) P y∈∑ ≥ 1, for all P ∈ C(G), (9.1b)

17

0 ≤ yij ≤ 1, for all (i, j) ∈ A. (9.1c)

We point out that the upper bound constraints on yij’s are redundant since any optimal solution
would automatically satisfy these constraints; however, for simplicity of exposition we prefer to impose
those constraints. If we eliminate the upper bound constraints, then the dual of (9.1) can be easily shown
to be the path flow formulation of the maximum flow problem (see, for example, Ford and Fulkerson
[1962]). It is well known that there always exists an integer (in fact, a 0-1) optimal solution of (9.1).

A feasible solution y is minimal for (9.1) if there is no other feasible solution y′ with y′ ≤ y. There
is a one-to-one correspondence between integer 0-1 solutions of (9.1) and s-t minimum cuts in G. For any
s-t cut [S,S] , setting yij = 1 for each arc (i, j) ∈ (S,S) and yij = 0 for each (i, j) ∉ (S,S) gives a solution y

of cost u[S,S] satisfying (9.1). If a directed path from node s to node t can contains p > 1 forward arcs

from the set (S,S) , then it must contain p-1 backward arcs from the set (S,S) . Further, notice that every
feasible 0-1 solution y of (9.1) gives an s-t disconnecting set, but an optimal solution of (9.1) must be an
s-t cut because arc capacities are strictly positive.

We will now consider the unit-weight inverse minimum cut problem, where we wish to make the
cut 0 0[S ,S] a minimum cut by modifying the arc capacities. The formulation (9.1) is a special case of the
0-1 linear programming problem and its x0-centered dual inverse problem is the same as (9.1) except that
we eliminate the non-binding constraints in (9.1b) with respect to the s-t cut 0 0[S ,S] . If the path P ∈

C(G) contains no backward arcs in the cut 0 0[S ,S] , then it has exactly one forward arc in the cut 0 0[S ,S] ,
and the constraint in (9.1b) for path P is binding. If the path P ∈ C(G) has p ≥ 1 backward arcs in the cut

0 0[S ,S] , then it contains p+1 forward arcs in the cut 0 0[S ,S] , and the constraint in (9.1b) for path P is

non-binding. Let G′ = (N, A′) denote the directed graph obtained by deleting the backward arcs in the cut
0 0[S ,S] , that is, A′ = A\ 0 0[S ,S] . Let C(G′) denote the set of all directed paths from node s to node t in

G′. We can thus state the inverse minimum cut problem as:

Minimize Σ(i,j)∈ A uij yij (9.2a)
subject to

ij(i, j) P y∈∑ ≥ 1, for all P ∈ C(G′), (9.2b)

0 ≤ yij ≤ 1, for all (i, j) ∈ A′, (9.2c)

which is the formulation of the minimum cut problem in the graph G′. We can determine the minimum
cut in G′ by solving a maximum flow problem in it. Let x* denote the maximum flow in G′ and * *[S ,S]

denote a minimum cut in G′. We can determine the optimal cost vector d* for the inverse minimum cut
problem using (6.3), which requires the determination of arc reduced costs. We will now explain how to
determine these reduced costs. Let fP denote the dual variable associated with the constraint in (9.2b) for
the path P; this dual variable corresponds to the flow sent along the path P in the dual of (9.2) which is a
maximum flow problem in the graph G′. Then the reduced cost of the variable yij, which we denote by

18

f
iju , is f

iju = uij - P{P (i,j)}f∈∑ C , where C(i, j) denote the set of all paths in C(G′) which contain arc (i, j).

But notice that P{P (i,j)}f∈∑ C = *jix , the flow on arc (i, j) in the flow x*. Hence f
iju = uij - *jix , which is

the unused capacity of arc (i, j) in the flow x*. Substituting this value of reduced costs in (9.2) yields:

* * 0 0*ij ij ij
* 0 0 * **ij ij ij ij

ij

u (u x) for each arc (i, j) (S ,S)\ (S ,S)

d u (u x) for each arc (i, j) (S ,S)\ (S ,S)

u for every other arc (i, j).

 + − ∈

= − − ∈

. (9.3)

We now note that for each arc (i, j) ∈ * *(S ,S) , uij = *jix (because each forward arc in the

minimum cut must have flow equal to its capacity). Substituting this result in (9.3) yields for arc (i, j):

0 0 * **
*
ij 0 0 * *

ij

jix for each arc (i, j) (S ,S)\ (S ,S)
d .

u for each arc (i, j) (S ,S)\ (S ,S)

 ∈=
∉

(9.4)

In other words, in order to make the cut 0 0[S ,S] a minimum cut, we decrease the capacity of each

forward arc (i, j) in the cut 0 0[S ,S] to xij
* . This ensures that each forward arc in the cut 0 0[S ,S] has flow

equal to its capacity. Further, since the cut 0 0[S ,S] has no backward arcs in G′, the cut 0 0[S ,S] is a
minimum cut in G. To summarize, we have shown that the inverse minimum cut problem reduces to
solving a minimum cut problem that can be solved using any maximum flow algorithm. Currently, the
fastest strongly polynomial bound to solve the minimum cut problem (and the maximum flow problem) is
O(nm log(n2/m)) and is due to Goldberg and Tarjan [1986]. The best weakly polynomial bound to solve
the maximum flow problem is O(min{n2/3, m1/2}m log(n2/m) log U) and is due to Goldberg and
Rao [1997], where U = max{uij : (i, j) ∈ A}.

We now consider the weighted inverse minimum cut problem. Using the same approach as used
for the unit weight case, the weighted inverse minimum cut problem can be formulated as the following
linear programming problem:

Minimize Σ(i,j)∈ A uij yij (9.5a)
subject to

ij(i, j) P y∈∑ ≥ 1, for all P ∈ C(G′), (9.5b)

0 ≤ yij ≤ wij, for all (i, j) such that 0
ijy = 0, (9.5c)

1 - wij ≤ yij ≤ 1, for all (i, j) such that 0
ijy = 1. (9.5d)

19

It can be shown that the dual of (9.5) is a minimum cost flow problem. Hence the weighted
inverse minimum cut problem can be solved by using a minimum cost flow algorithm.

 10. THE INVERSE MINIMUM COST FLOW PROBLEM UNDER L1 NORM

In this section, we study the inverse version of the minimum cost flow problem. The solution for
the minimum cost flow problem is obtained from the solution to a related minimum cost flow problem.
This result was first established by Zhang and Liu [1996]. Here we show that the result follows directly
from the results of Section 5.

The minimum cost flow problem in a network G = (N, A) concerns determining the least cost
shipment that meets the demands at some nodes of the network by the available supplies at some other
nodes. In the minimum cost flow problem, each arc (i, j) ∈ A has an associated cost cij and an associated
capacity uij, and each node i has an associated supply/demand b(i). If b(i) ≥ 0, then node i is a supply
node; otherwise it is a demand node. We will assume in this section that for any node pair (i, j) both (i, j)
and (j, i) do not belong to A. The minimum cost flow problem can be formulated as the following linear
programming problem:

Minimize Σ(i,j)∈ A cij xij (10.1a)
subject to

ij ji
{j:(i, j) A} {j:(j,i) A}

x x b(i)
∈ ∈

− =∑ ∑ for all i ∈ N, (10.1b)

 0 ≤ xij ≤ uij, for all (i, j) ∈ A. (10.1c)

In the inverse minimum cost flow problem, we are given a feasible solution x0 of (10.1) which we
wish to make optimal by perturbing the arc costs. Using the solution x0, we partition the arc set A into
the following three subsets L, U, and F, as follows: L := {(i, j) ∈ A: 0

ijx = 0}, U := {(i, j) ∈ A: 0
ijx = uij},

F := {(i, j) ∈ A: 0 < 0
ijx < uij}. Then it follows from our discussion in Section 6 that the 0-centered dual

inverse problem of (10.1) is the following linear programming problem:

Minimize Σ(i,j)∈ A cij yij (10.2a)
subject to

ij ji
{j:(i, j) A} {j:(j,i) A}

y y 0
∈ ∈

− =∑ ∑ for all i ∈ N, (10.2b)

yij ≥ 0, for all (i, j) ∈ L, (10.2c)
 yij ≤ 0, for all (i, j) ∈ U, (10.2d)
 -1 ≤ yij ≤ 1, for all (i, j) ∈ A. (10.2e)

The constraints (10.2c), (10.2d), and (10.2e) can alternatively be stated as follows:

20

0 ≤ yij ≤ 1, for all (i, j) ∈ L, (10.3a)
 -1 ≤ yij ≤ 1, for all (i, j) ∈ F, (10.3b)
 -1 ≤ yij ≤ 0, for all (i, j) ∈ U. (10.3c)

We can convert the above linear programming problem into a standard minimum cost flow
problem (that is, where all variables have a zero lower bound on arc flows) by performing the
transformation of variables: (i) for each arc (i, j) ∈ L, replace the variable yij by the variable 'ijy defined

as 'ijy = yij with cost 'ijc = cij; (ii) for each arc (i, j) ∈ U, replace the variable yij by the variable jiy′

defined as jiy′ = -yij with cost jic′ = -cij; and (iii) for each arc (i, j) ∈ F, replace the variable yij by the

two variable 'ijy and jiy′ defined as yij = 'ijy - 'jiy

with cost 'ijc = cij and jic′ = - cij. Each variable 'ijy is

required to be non-negative. Let A(x0) denote the index set of the variables 'ijy ’s. In terms of the

variables 'ijy ’s, the inverse minimum cost flow problem can be reformulated as the following linear

programming problem:

Minimize Σ(i,j)∈ A(x0) 'ijc 'ijy (10.4a)

subject to
' 'ij ji

0 0{j:(i, j) A(x)} {j:(j,i) A(x)}
y y 0

∈ ∈
− =∑ ∑ for all i ∈ N, (10.4b)

 0 ≤ 'ijy ≤ 1, for all (i, j) ∈ A(x0). (10.4c)

Now observe that (10.4) is the formulation of the minimum cost circulation problem (that is, the
minimum cost flow problem with zero supply/demand vector) on a unit capacity network. Further, the
network on which the minimum cost circulation problem is solved is known as the residual network of G
corresponding to the flow x0 where all arc residual capacities are set to one.

The minimum cost flow problem (10.4) is in general easier to solve than the original minimum
cost flow problem (10.1) because all arc capacities in it are one. Using the successive shortest path
algorithm, this minimum cost circulation problem can be solved in O(m(m + n log n)) time (see, for
example, Ahuja, Magnanti, and Orlin [1993]). Using the cost scaling algorithm due to Gabow and
Tarjan [1989], this minimum cost circulation problem can be solved in O(O(min{n5/3, m3/2}log(nC))
time, where C = max{|cij| : (i, j) ∈ A}.

We now explain how to obtain the optimal cost vector d*. Let π denote the optimal dual variables
associated with (10.4b), and ijcπ = cij - πi + πj denote the optimal reduced costs. It follows from our

discussion in Section 6 that the optimal cost vector d* is given by (6.3).

For the weighted version of the inverse minimum cost flow problem, we get the same formulation
as (10.4) except that the constraints (10.4) are replaced by the following constraint:

21

0 ≤ 'ijy ≤ wij, for all (i, j) ∈ A(x0). (10.4c′)

The resulting problem is again a minimum cost flow problem but, in general, all arcs do not have
unit capacities. Hence the resulting minimum cost circulation problem cannot be solved as efficiently as
in the case of unit capacities.

11. THE INVERSE MINIMUM COST FLOW PROBLEM UNDER L∞∞∞∞ NORM

We will now apply our results for the minimax inverse linear programming problem to the
minimum cost flow problem. Our results also apply to the assignment problem and the shortest path
problem as special cases.

In the minimax inverse minimum cost flow problem, we are given a feasible solution x0 of the
minimum cost flow problem (10.1) which we wish to make optimal by perturbing the arc costs in a
manner so that the maximum perturbation is minimum. We assume that wj = 1 for all j ∈ J. In the
solution x0, we partition the arc set A into the following three subsets L, U, and F, as follows: L := {(i, j)
∈ A: 0

ijx = 0}, U := {(i, j) ∈ A: 0
ijx = uij}, F := {(i, j) ∈ A: 0 < 0

ijx < uij}. It follows from Section 6 that

the 0-centered minimax dual inverse problem of (10.1) is the following linear programming problem:

minimize Σ(i,j)∈ A cij yij (11.1a)
subject to

ij ji
{j:(i, j) A} {j:(j,i) A}

y y 0
∈ ∈

− =∑ ∑ for all i ∈ N, (11.1b)

yij ≥ 0, for all (i, j) ∈ L, (11.1c)
 yij ≤ 0, for all (i, j) ∈ U, (11.1d)

Σ(i,j)∈ A |yij| = 1. (11.1e)

We now perform the same transformation of variables as we did in Section 10 where we replace

yij’s by the non-negative variables yij′ ’s. The minimum cost flow problem after this transformation can

be simplified to the following linear program:

Minimize Σ(i,j)∈ A(x0) 'ijc 'ijy (11.2a)

subject to
' 'ij ji

0 0{j:(i, j) A(x)} {j:(j,i) A(x)}
y y 0

∈ ∈
− =∑ ∑ for all i ∈ N, (11.2b)

Σ(i,j)∈ A(x0) 'ijy = 1, (11.2c)

 'ijy ≥ 0, for all (i, j) ∈ A(x0). (11.2d)

22

It is well known that (11.2) is the formulation of the minimum mean cycle problem (see, for
example, Dantzig, Blattner and Rao [1966]). A minimum mean cycle in the residual network G(x0) is a

directed cycle W for which the mean cost given by Σ(i,j)∈ W cij /|W| is minimum. We can obtain a

minimum mean cycle in G(x0) using an algorithm due to Karp [1978] which runs in O(nm) time, or using
the algorithm due to Orlin and Ahuja [1992] which runs in O(n m log(nC)) time, where C = max{cij:

(i, j) ∈ A}. Let π denote the vector of optimal dual variables of (7.2) and ijcπ = cij - πi + πj denote the

optimal reduced costs. A minimum mean cycle algorithm yields the mean cost of the minimum mean
cycle and the vector π of optimal dual variables. The optimal cost vector d* can be obtained using (6.5).

For the weighted case, we get the same formulation as in (11.2) except that (11.2c) is replaced by

Σ(i,j)∈ G(x0) (yij/wij) ≤ 1. This is the formulation of the minimum cost-to-weight ratio cycle problem,
which is also known as the tramp steamer problem (see, for example, Dantzig, Blattner and Rao [1966]).
The minimum cost-to-weight ratio problem is to identify a directed cycle W in the network for which

(Σ(i,j)∈ W cij)/ (Σ(i,j)∈ W wij) is minimum. The minimum cost-to-weight ratio problem can be solved in

O(nm log(CW)) time using Lawler's [1966] algorithm or in O(n4 log n) time using Meggido's [1979]
algorithm, where C = max{cij: (i, j) ∈ A} and W = max{wij : (i, j) ∈ A}. It can also be solved in

O(n m log2(CW)) time using Goldberg's [1995] shortest path algorithm.

12. THE GENERAL INVERSE OPTIMIZATION PROBLEM

In this section, we consider the general inverse optimization problem and show (under reasonable
regularity conditions) that if the problem P is polynomially solvable, then its inverse versions under L1
and L∞ norms are also polynomially solvable. This result makes use of the ellipsoid algorithm, and we
refer the reader to the books by Schrijver [1986] and Grotschel, Lovasz, and Schrijver [1986].

Let S the denote the set of feasible solutions, and P = min{cx : x ∈ S}. We denote by Qn, the set
of all rational numbers in the n dimensional space. Suppose that a polyhedron D ⊆ Rn is defined by
rational linear inequalities in terms of rationals of size at most ϕ. On the polyhedron D, the separation
problem, and optimization problem, can be defined as follows.

Separation Problem: Given a vector d′ ∈ Rn, the separation problem is to either decide that d′ ∈ D, or
find a vector y ∈ Qn such that dy < d′y for all d ∈ D.

Optimization Problem: Given a polyhedron D ⊆ Rn and a vector r ∈ Qn, conclude with one of the
following: (a) give a vector d* ∈ D with rd* = min{rd: d ∈ D}; (b) assert that there exists a sequence of
vectors in D with objective function values unbounded from below; or (c) assert that D is empty;

If D is specified by a set of linear constraints, then to solve the separation problem it is sufficient
to check whether the given solution d′ satisfies all the constraints. If yes, then d′ ∈ D; otherwise, a

23

violated constraint gives a “separator vector” y satisfying dy < d′y for all d ∈ D. We also use the
following well known result:

Theorem 1 (Grotschel, Lovasz, and Schrijver [1986]). The optimization problem can be solved in time
polynomially bounded by n, ϕ, the size of r, and the running time of the separation algorithm.

The inverse linear programming problem P under the L1 norm can be formulated as:

Minimize jj J z∈∑ (12.1a)

subject to
dx0 ≤ dx for all x ∈ S, (12.1b)
dj – cj ≤ zj for all j ∈ J, (12.1c)
cj – dj ≤ zj for all j ∈ J. (12.1d)

Observe that the constraints in (12.1c) and (12.1d) imply that zj ≥ |dj – cj|. Further, since we

minimize jj J z∈∑ , each zj will equal |dj – cj| in an optimum solution. Let D denote the polyhedron

defined by the feasible solutions of (12.1). We assume that all data in (12.1) is rational and the largest
number in the data has size ϕ. Given a proposed solution (d′, z′) of (12.1), we can easily check in linear
time whether the solution (d′, z′) satisfies (12.1c) and (12.1d). To check whether the solution d′ satisfies
(12.1b), we solve the problem P with d′ as the cost vector. Let x′ denote the resulting optimal solution. If
d′x0 ≤ d′x′ (in fact, d′x0 = d′x′), then d′ satisfies (12.1b); otherwise, we have found a violated inequality
d′x0 > d′x′. Thus we can solve the separation problem by solving a single instance of P. This result in
view of Theorem 1 implies that inverse P under the L1 norm is polynomially solvable.

For the minimax inverse P we wish to minimize max{|dj – cj|: j ∈ J}, subject to dx0 ≤ dx, for all x
∈ S. This mathematical program can be formulated as to minimize z subject to (12.1). Using the same
technique as in the case of the L1 norm, it can be shown that we can solve the separation problem by
solving a single instance of problem P. We summarize the preceding discussion as the following
theorem:

Theorem 2. If a problem P is polynomially solvable for each linear cost function, then inverse versions
of P under L1 and L∞ are polynomially solvable.

This result establishes the polynomial solvability of large classes of inverse optimization
problems; however, the ellipsoid algorithm is not yet practical for large problems. Moreover, for many
specific classes of problems, such as network flow problems, one may obtain improved polynomial time
algorithms.

ACKNOWLEDGEMENTS

We sincerely thank the referees whose perceptive and insightful comments led to a major
improvement of the paper. We gratefully acknowledge the support from the Office of Naval Research

24

under contract ONR N00014-98-1-0317 as well as a grant from the United Parcel Service. We also
acknowledge the help of Don Wagner who raised some perceptive and fundamental questions that led to
the pursuit of the research reported in this paper.

REFERENCES

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin. 1993. Network Flows: Theory, Algorithms, and
Applications, Prentice Hall, NJ.

Ahuja, R. K., and J. B. Orlin. 1997. A fast scaling algorithm for minimizing separable convex functions
subject to chain constraints. Working Paper, Sloan School of Management, MIT, Cambridge,
MA.

Ahuja, R. K., and J. B. Orlin. 1998a. A faster algorithm for the inverse spanning tree problem. Working
Paper, Sloan School of Management, MIT, Cambridge, MA. To appear in Journal of Algorithms.

Ahuja, R. K., and J. B. Orlin. 1998b. Combinatorial algorithms for inverse network flow problems.
Working Paper, Sloan School of Management, MIT, Cambridge, MA.

Burton, D., and Ph. L. Toint. 1992. On an instance of the inverse shortest paths problem. Mathematical
Programming 53, 45-61.

Burton, D., and Ph. L. Toint. 1994. On the use of an inverse shortest paths algorithm for recovering
linearly correlated costs. Mathematical Programming 63, 1-22.

Carr, S. C., and W. S. Lovejoy. 1997. The inverse newsvendor problem: Choosing an optimal demand
portfolio for capacitated resources. Technical Report, Department of Industrial and Operations
Engineering, University of Michigan, Ann Arbor, MI.

Dantzig, G. B., W. Blattner, and M. R. Rao. 1966. Finding a cycle in a graph with minimum cost to time
ratio with application to a ship routing problem. In Theory of Graphs. International Symposium.
Dunod, Paris, and Gordon and Breach, New York, pp. 209-213.

Dembo, R., L. Merkoulovitch, D. Rosen. 1998. Images from a portfolio. Algorithmics Research Working
Paper, Algorithmics, Inc., Canada.

Dial, B. 1997. Minimum-revenue congestion pricing, Part 1: A fast algorithm for the single-origin case.
Technical Report, The Volpe National Transportation Systems Center, Kendall Square,
Cambridge, MA 02142.

Ford. L. R. Jr., and D. R. Fulkerson. 1962. Flows in Networks. Princeton University Press, Princeton, NJ.
Fredman, M. L., and R. E. Tarjan. 1984. Fibonacci heaps and their uses in improved network

optimization algorithms. Proceedings of the 25th Annual IEEE Symposium on Foundations of
Computer Science, pp. 338-346.

Gabow, H. N., and R. E. Tarjan. 1989. Faster scaling algorithms for network problems. SIAM Journal on
Computing 18, 1013-1036.

Goldberg, A. V. 1995. Scaling algorithms for the shortest path problem. SIAM Journal on Computing 24,
494-504.

Goldberg, A. V., and S. Rao. 1997. Length function for flow computation. Technical Report # 97-055,
NEC Research Institute, 4 Independence Way, Princeton, NJ.

25

Goldberg, A. V., and R. E. Tarjan. 1986. A new approach to the maximum flow problem. Proceedings of
the 18th ACM Symposium on the theory of Computing, pp. 136-146. Full paper in Journal of ACM
35(1990), 873-886.

Goldfarb, D. 1985. Efficient dual simplex algorithms for the assignment problem. Mathematical
Programming 33, 187-203.

Greenberg, H. J. 1997. An annotated bibliography for post-solution analysis in mixed integer
programming and combinatorial optimization. Advances in Computational and Stochastic
Optimization, Logic Programming, and Heuristic Search, Edited by D. L. Woodruff, Kluwer
Academic Publishers.

Grotschel, M., L. Lovasz, and A. Schrijver. 1986. Geometric Algorithms and Combinatorial
Optimization. Springer, Heidelberg.

Karp, R. M. 1978. A characterization of the minimum cycle mean in a diagraph. Discrete Mathematics
23, 309-311./*-*-*-***

Meggido, N. 1979. Combinatorial optimization with rational objective functions. Mathematics of
Operations Research 4, 414-424.

Lawler, E. L. 1966. Optimal cycles in doubly weighted linear graphs. In Theory of Graphs: International
Symposium, Dunod, Paris, and Gordon and Breach, New York, pp. 209-213.

Neumann-Denzau, G., and J. Behrens. 1984. Inversion of seismic data using tomographical reconstruction
techniques for investigations of laterally inhomogeneous media. Geophysical Journal of the
Royal Astronomical Society 79, 305-315.

Nolet. G. 1987. Seismic Tomography. Reidel, Dordrecht.
Orlin, J. B., and R. K. Ahuja. 1992. New scaling algorithms for the assignment and minimum cycle mean

problems. Mathematical Programming 54, 41-56.
Schrijver, A. 1986. Theory of Linear and Integer Programming. John Wiley & Sons.
Shan, Y. 1999. Personal communication. CSX Transportation, Jacksonville, FL.
Sheffi, Y. 1985. Urban Transportation Networks. MIT Press, Cambridge, MA.
Sokkalingam, P. T., R. K. Ahuja, and J. B. Orlin. 1999. Solving inverse spanning tree problems through

network flow techniques. Operations Research 47, 291-300.
Tarantola, A. 1987. Inverse Problem Theory: Methods for Data Fitting and Model Parameter

Estimation. Elsevier, Amsterdam.
Woodhouse, J. H., and A. M. Dziewonski. 1984. Mapping the upper mantle: Three dimensional modeling

of Earth structure by inversion of seismic waveforms. Journal of Geophysical Research 89 (B7),
5953-5986.

Xu, S., and J. Zhang. 1995. An inverse problem of the weighted shortest path problem. Japanese
Journal of Industrial and Applied Mathematics 12, 47-59.

Yang, C., J. Zhang, and Z. Ma. 1997. Inverse maximum flow and minimum cut problem. Optimization
40, 147-170.

Zhang, J., and M. Cai. 1998. Inverse problem of minimum cuts. ZOR Mathematical Methods of
Operations Research 48, 51-58.

Zhang, J., and Z. Liu. 1996. Calculating some inverse linear programming problem. Journal of
Computational and Applied Mathematics 72, 261-273.

	Abstract
	
	
	
	
	6. Solving the Inverse Linear Programming Problem under the L(Norm

	8. The Inverse Assignment Problem Under L1 Norm
	9. The Inverse Minimum Cut Problem Under L1 Norm
	10. The Inverse Minimum Cost Flow Problem Under L1 Norm
	11. The Inverse Minimum Cost Flow Problem Under L(Norm
	Acknowledgements

