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Summary. Let Ψ(b, c) be the solution set mapping of a linear parametric opti-
mization problem with parameters b in the right hand side and c in the objective
function. Then, given a point x0 we search for parameter values b and c as well as
for an optimal solution x ∈ Ψ(b, c) such that ‖x− x0‖ is minimal. This problem is
formulated as a bilevel programming problem. Focus in the paper is on optimality
conditions for this problem. We show that, under mild assumptions, these conditions
can be checked in polynomial time.

1 Introduction

Let Ψ(b, c) = argmax{c>x : Ax = b, x ≥ 0} denote the set of optimal
solutions of a linear parametric optimization problem

max
{
c>x : Ax = b, x ≥ 0

}
, (1)

where the parameters of the right hand side and in the objective function are
elements of given sets

B = {b : Bb = b̃} , C = {c : Cc = c̃} ,

respectively. Throughout this note, A ∈ Rm×n is a matrix of full row rank
m, B ∈ Rp×m, C ∈ Rq×n, b̃ ∈ Rp and c̃ ∈ Rq. This data is fixed once and for
all.

Let x0 ∈ Rn also be fixed. Our task is to find values b and c for the
parameters, such that x0 ∈ Ψ(b, c) or, if this is not possible, x0 is at least
close to Ψ(b, c). Thus we consider the following bilevel programming problem

min
{
‖x− x0‖ : x ∈ Ψ(b, c), b ∈ B, c ∈ C

}
, (2)

which has a convex objective function x ∈ Rn 7→ f(x) := ‖x − x0‖, but not
necessarily a convex feasible region. We consider in this note an arbitrary
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(semi)norm ‖·‖, not necessarily the Euclidean norm. In fact, we are specially
thinking in a polyhedral norm like, for instance, the l1-norm.

Bilevel programming problems have been intensively investigated, see the
monographs [2, 3] and the annotated bibliography [4]. Inverse linear program-
ming problems have been investigated in the paper [1], where it is shown that
the inverse problem to e.g. a shortest path problem can again be formulated as
a shortest path problem and there is no need to solve a bilevel programming
problem. However, the main assumption in [1] that there exist parameter val-
ues b ∈ B and c ∈ C such that x0 ∈ Ψ(b, c) seems to be rather restrictive.
Hence, we will not use this assumption.

Throughout the paper the following system is supposed to be infeasible:

A>y = c

Cc = c̃ .
(3)

Otherwise every solution of

Ax = b

x ≥ 0

Bb = b̃ ,

would be feasible for (2), which means that (2) reduces to

min
{
‖x− x0‖ : Ax = b, x ≥ 0, Bb = b̃

}
,

which is a convex optimization problem.

2 Reformulation as an MPEC

First we transform (2) via the Karush-Kuhn-Tucker conditions into a mathe-
matical program with equilibrium constraints (MPEC) [5] and we get

‖x− x0‖ −→ min
x,b,c,y

Ax = b

x ≥ 0

A>y ≥ c

x>(A>y − c) = 0

Bb = b̃

Cc = c̃ .

(4)

The next thing which should be clarified is the notion of a local optimal
solution.



Inverse Linear Programming 3

Fig. 1. Definition of a local optimal solution

Definition 1. A point x is a local optimal solution of problem (2) if there
exists a neighborhood U of x such that ‖x− x0‖ ≥ ‖x− x0‖ for all x, b, c
with b ∈ B, c ∈ C and x ∈ U ∩Ψ(b, c).

Using the usual definition of a local optimal solution of problem (4) it can
be easily seen that for each local optimal solution x of problem (2) there are
b, c, y such that (x, b, c, y) is a local optimal solution of problem (4), cf. [3].
The opposite implication is in general not true.

Theorem 1. Let B = {b}, {x} = Ψ(b, c) for all c ∈ U ∩C, where U is some
neighborhood of c. Then, (x, b, c, y) is a local optimal solution of (4) for some
dual variables y.

The proof of Theorem 1 is fairly easy and therefore it is omitted. Figure 1
can be used to illustrate the fact of the last theorem. The points x satisfying
the assumptions of Theorem 1 are the vertices of the feasible set of the lower
level problem given by the dashed area in this figure.

3 Optimality via Tangent Cones

Now we consider a feasible point x of problem (2) and we want to decide
whether x is local optimal or not. To formulate suitable optimality conditions
certain subsets of the index set of active inequalities in the lower level problem
need to be determined. Let
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I(x) = {i : xi = 0}

be the index set of active indices. Then every feasible solution x of (2) close
enough to x satisfies xi > 0 for all i /∈ I(x). Complementarity slackness
motivates us to define the following index sets, too:

• I(c, y) = {i : (A>y − c)i > 0}
• I(x) =

{
I(c, y) : A>y ≥ c, (A>y − c)i = 0 ∀i /∈ I(x), Cc = c̃

}
• I0(x) =

⋂
I∈I(x)

I.

Remark 1. If an index set I belongs to the family I(x) then I0(x) ⊆ I ⊆
I(x).

An efficient calculation of the index set I0(x) is necessary for the evaluation
of the optimality conditions below. By contrast, the knowledge of the family
I(x) itself is not necessary.

Remark 2. We have j ∈ I(x) \ I0(x) if and only if the system

(A>y − c)i = 0 ∀i /∈ I(x)

(A>y − c)j = 0

(A>y − c)i ≥ 0 ∀i ∈ I(x) \ {j}
Cc = c̃

is feasible. Furthermore I0(x) is an element of I(x) if and only if the system

(A>y − c)i = 0 ∀i /∈ I0(x)

(A>y − c)i ≥ 0 ∀i ∈ I0(x)
Cc = c̃

is feasible.

Now we are able to transform (4) into a locally equivalent problem, which
does not explicitly depend on c and y.

Lemma 1. x is a local optimal solution of (2) if and only if x is a (global)
optimal solution of all problems (AI)

‖x− x0‖ −→ min
x,b

Ax = b

x ≥ 0
xi = 0 ∀i ∈ I

Bb = b̃

(AI)

with I ∈ I(x).
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Proof. Let x be a local optimal solution of (2) and assume that there is a set
I ∈ I(x) with x being not optimal for (AI). Then there exists a sequence
{xk}k∈N of feasible solutions of (AI) with lim

k→∞
xk = x and ‖xk − x0‖ <

‖x− x0‖ for all k. Consequently x can not be a local optimal solution to (2)
since I ∈ I(x) implies that all xk are also feasible for (2).

Conversely, let x be an optimal solution of all problems (AI) and assume
that there is a sequence {xk}k∈N of feasible points of (2) with lim

k→∞
xk = x

and ‖xk − x0‖ < ‖x− x0‖ for all k. For k sufficiently large the elements of
this sequence satisfy the condition xk

i > 0 for all i /∈ I(x) and due to the
feasibility of xk for (2) there are sets I ∈ I(x) such that xk is feasible for
problem (AI). Because I(x) consists only of a finite number of sets, there is
a subsequence {xkj}j∈N where xkj are all feasible for a fixed problem (AI).
So we contradict the optimality of x for this problem (AI).

Corollary 1. We can also consider

‖x− x0‖ −→ min
x,b,I

Ax = b

x ≥ 0
xi = 0 ∀i ∈ I

Bb = b̃

I ∈ I(x)

(5)

to check if x is a local optimal solution of (2). Here the index set I is a
minimization variable. Problem (5) combines all the problems (AI) into one
problem and means that we have to find a best one between all the optimal
solutions of the problems (AI) for I ∈ I(x).

In what follow we use the notation

TI(x) = {d| ∃r : Ad = r, Br = 0, di ≥ 0 ∀i ∈ I(x) \ I, di = 0 ∀i ∈ I} .

This set corresponds to the tangent cone (relative to x only) to the feasible
set of problem (AI) at the point x. The last lemma obviously implies the
following necessary and sufficient optimality condition.

Lemma 2. x is a local optimal solution of (5) if and only if f ′(x, d) ≥ 0 for
all

d ∈ T (x) :=
⋃

I∈I(x)

TI(x) .

Remark 3. T (x) is the (not necessarily convex) tangent cone (relative x) of
problem (5) at the point x.

Corollary 2. The condition I0(x) ∈ I(x) implies TI0(x)(x) = T (x).
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Remark 4. If f is differentiable at x, then saying that f ′(x, ·) is nonnegative
over T (x) is obviously equivalent to saying that

f ′(x, d) ≥ 0 ∀d ∈ conv T (x) , (6)

where the ”conv” indicates the convex hull operator.

As shown in the next example, without differentiablility assumption, (6)
is sufficient for optimality but not necessary.

Fig. 2. Illustration of Example 1

Example 1. Let us consider a problem with the l1-norm restricted to the first
two components of x as objective function and

A =
(

2 1 1 0
2 −1 0 1

)
, B =

{(
3
1

)}
, C =

{
2e

(4)
1 + te

(4)
2 : t ∈ R

}
,

x0 =


0
1
2
2

 , x1 =


2
1
−2
−2

 and x =


1
1
0
0

 .

We consider the point x. The bold marked lines in Fig. 2 are the feasible set
of our problem and the dashed lines are iso-distance-lines with the value 1.
So we get the convexified tangent cone as
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conv T (x) = {d : 2d1 + d2 + d3 = 0; 2d1 − d2 + d4 = 0; d3, d4 ≥ 0} .

Finally d = (−1 0 2 2)> ∈ conv T (x) is a direction of descent with f ′(x, d) =
−1 although x is obviously the global optimal solution. If we choose x1

(instead of x0 ) and the objective function |x1−x1
1|+ |x2−x1

2|, condition (6)
implies the optimality of x.

Remark 5. Because it is a matter of illustration, we considered the problem
with inequality constraints in the lower level. For that reason we used the
l1-norm restricted to the first two components of x as objective function and
not the l1-norm over the whole space R4. By the way, in this case x would
not be a local optimal solution.

4 A Formula for the Tangent Cone

For the verification of the optimality condition (6) an explicit formula for
the tangent cone conv T (x) is essential. For notational simplicity we suppose
I(x) = {1, . . . , k} and I0(x) = {l + 1, . . . , k} with l ≤ k ≤ n. Consequently
all feasible points of (2) sufficiently close to x satisfy xi = 0 for all i ∈ I0(x).
We pay attention to this fact and consider the following relaxed problem:

‖x− x0‖ −→ min
x,b

Ax = b

xi ≥ 0 i = 1, . . . , l

xi = 0 i = l + 1, . . . , k

Bb = b̃ .

(7)

In what follow we use the notation

TR(x) = {d| ∃r : Ad = r, Br = 0, di ≥ 0 i = 1, . . . , l, di = 0 i = l+1, . . . , k}.

This set corresponds to the tangent cone (relative x) of (7) at the point x.
Since I0 ⊆ I for all I ∈ I(x), it follows immediately that

conv T (x) = cone T (x) ⊆ TR(x) . (8)

The point x is said to satisfy the full rank condition, if

span({Ai : i /∈ I(x}) = Rm, (FRC)

where Ai denotes the ith column of the matrix A.

Example 2. All non-degenerate vertices of Ax = b, x ≥ 0 satisfy (FRC).

This condition allows us now to establish equality between the cones above.
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Theorem 2. Let (FRC) be satisfied at the point x. Then equality holds in
(8).

Proof. Let d be an arbitrary element of TR(x), that means there is a r with
Ad = r, Br = 0, di ≥ 0 i = 1, . . . , l, di = 0 i = l + 1, . . . , k. We consider the
following linear systems

Ad = δ1,jr

dj = dj

di = 0 i = 1, . . . , k, i 6= j

(Sj)

for j = 1, . . . , l, where δ1,j = 1 if j = 1 and δ1,j = 0 if j 6= 1. These systems
are all feasible because of (FRC).

Fig. 3. Illustration of the proof of Theorem 2

Furthermore let d1, . . . , dl be (arbitrary) solutions of the systems

(S1), . . . , (Sl) respectively. We define now the direction d =
l∑

j=1

dj and get

di = di for i = 1, . . . , k as well as Ad = Ad = r. Because we chose arbitrary
vectors d1, . . . , dl it is possible that d 6= d. But we can achieve equality with
a translation of the solution d1 by a specific vector of N (A) = {z : Az = 0}.
Therefore we define d̂1 := d1 + d − d, and because d1 is feasible for (S1)
and di = di for i = 1, . . . , k as well as Ad = Ad = r we get d̂1

i = 0 for all
i = 2, . . . , k and Ad̂1 = A(d1 + d − d) = r + r − r = r. Hence d̂1 is also a

solution of (S1). Thus we have d̂1 +
l∑

j=2

dj = d − d +
l∑

j=1

dj = d. As a result
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of the definition of the set I0(x) there are index sets Ij ∈ I(x) with j /∈ Ij

for all j ∈ {1, . . . , l} = I(x) \ I0(x). So d̂1 is an element of the tangent cone
of problem (AI1) and dj are elements of the tangent cones of the problems
(AIj ) for j = 2, . . . , l, see the definition of these cones. Finally d is the sum
of a finite number of elements of T (x) and therefore TR(x) ⊆ cone T (x).

By combining Lemma 2 and Remarks 2 and 4, one obtains:
Corollary 3. Let x be a point of differentiability of f . Then, at most n
systems of linear equalities\inequalities are needed to be investigated in order
to compute the index set I0(x). Furthermore, verification of local optimality
of a feasible point of problem (2) is possible in polynomial time.

Example 3. This example will show that (FRC) is not necessary for equality
in (8).

x2 − x4 = 1
2x1 + 2x2 − x3 + x5 = 3

2x2 − x3 + x6 = 1
2x1 + x3 − x7 = 3

x3 + x8 = 3
xi ≥ 0

B = {(1 3 1 3 3)>} and C = {c = −e
(8)
2 + t(2e

(8)
1 + 3e

(8)
2 − e

(8)
3 ) + s(3e

(8)
2 −

e
(8)
3 ) : t, s ∈ R}.

Fig. 4. Illustration of Example 3

Consider the point x = (1, 1, 1, 0, 0, 0, 0, 2)>. Hence we get I(x) =
{4, 5, 6, 7}, I0 = ∅ and TR(x) = {d : Ad = 0, di ≥ 0 ∀i ∈ I(x)}. The
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feasible region of (5) consists of the four faces x4 = 0, x5 = 0, x6 = 0 and
x7 = 0 ( t = s = 0; t = 1, s = 0; t = 0, s = 1 respectively t = − 1

3 , s = 2
3 ).

Obviously we have TR(x) = cone T (x).
Now delete the second vector in C, that means C = {c = −e

(8)
2 + t(2e

(8)
1 +

3e
(8)
2 − e

(8)
3 ) : t ∈ R}. Then we also get I0 = ∅. That is why the tangent

cone of the relaxed problem is the same as above. But the convexified tangent
cone conv T (x) of (5) is a proper subset of this cone. Because the feasible
set consists only of the two faces x4 = 0 and x5 = 0, the cone conv T (x) is
spanned by the four bold marked vertices where the apex of the cone is x,
see Fig. 4.
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