Inverse Linear Programming

- S. $Dempe^1$ and S. $Lohse^2$
- ¹ Technical University Bergakademie Freiberg, Department of Mathematics and Computer Sciences, Akademiestr. 6, 09596 Freiberg, Germany, corresponding author, dempe@math.tu-freiberg.de
- ² Technical University Bergakademie Freiberg, Department of Mathematics and Computer Sciences, Akademiestr. 6, 09596 Freiberg, Germany

Summary. Let $\Psi(b,c)$ be the solution set mapping of a linear parametric optimization problem with parameters b in the right hand side and c in the objective function. Then, given a point x^0 we search for parameter values \overline{b} and \overline{c} as well as for an optimal solution $\overline{x} \in \Psi(\overline{b}, \overline{c})$ such that $\|\overline{x} - x^0\|$ is minimal. This problem is formulated as a bilevel programming problem. Focus in the paper is on optimality conditions for this problem. We show that, under mild assumptions, these conditions can be checked in polynomial time.

1 Introduction

Let $\Psi(b,c) = \operatorname{argmax}\{c^{\top}x : Ax = b, x \ge 0\}$ denote the set of optimal solutions of a linear parametric optimization problem

$$\max\{c^{\top}x: Ax = b, x \ge 0\},$$
(1)

where the parameters of the right hand side and in the objective function are elements of given sets

$$\mathcal{B} = \{b: Bb = \tilde{b}\}, \quad \mathcal{C} = \{c: Cc = \tilde{c}\},\$$

respectively. Throughout this note, $A \in \mathbb{R}^{m \times n}$ is a matrix of full row rank $m, B \in \mathbb{R}^{p \times m}, C \in \mathbb{R}^{q \times n}, \tilde{b} \in \mathbb{R}^p$ and $\tilde{c} \in \mathbb{R}^q$. This data is fixed once and for all.

Let $x^0 \in \mathbb{R}^n$ also be fixed. Our task is to find values \overline{b} and \overline{c} for the parameters, such that $x^0 \in \Psi(\overline{b}, \overline{c})$ or, if this is not possible, x^0 is at least close to $\Psi(\overline{b}, \overline{c})$. Thus we consider the following bilevel programming problem

$$\min\{\|x - x^0\|: x \in \Psi(b, c), b \in \mathcal{B}, c \in \mathcal{C}\},$$
(2)

which has a convex objective function $x \in \mathbb{R}^n \mapsto f(x) := ||x - x^0||$, but not necessarily a convex feasible region. We consider in this note an arbitrary

(semi)norm $\|\cdot\|$, not necessarily the Euclidean norm. In fact, we are specially thinking in a polyhedral norm like, for instance, the l_1 -norm.

Bilevel programming problems have been intensively investigated, see the monographs [2, 3] and the annotated bibliography [4]. Inverse linear programming problems have been investigated in the paper [1], where it is shown that the inverse problem to e.g. a shortest path problem can again be formulated as a shortest path problem and there is no need to solve a bilevel programming problem. However, the main assumption in [1] that there exist parameter values $\bar{b} \in \mathcal{B}$ and $\bar{c} \in \mathcal{C}$ such that $x^0 \in \Psi(\bar{b}, \bar{c})$ seems to be rather restrictive. Hence, we will not use this assumption.

Throughout the paper the following system is supposed to be infeasible:

$$\begin{aligned} A^{\top}y &= c\\ Cc &= \tilde{c} . \end{aligned} \tag{3}$$

Otherwise every solution of

$$Ax = b$$
$$x \ge 0$$
$$Bb = \tilde{b}$$

would be feasible for (2), which means that (2) reduces to

$$\min\left\{\|x - x^0\|: Ax = b, x \ge 0, Bb = \tilde{b}\right\},\$$

which is a convex optimization problem.

2 Reformulation as an MPEC

First we transform (2) via the Karush-Kuhn-Tucker conditions into a mathematical program with equilibrium constraints (MPEC) [5] and we get

$$||x - x^{0}|| \longrightarrow \min_{x,b,c,y}$$

$$Ax = b$$

$$x \ge 0$$

$$A^{\top}y \ge c$$

$$x^{\top}(A^{\top}y - c) = 0$$

$$Bb = \tilde{b}$$

$$Cc = \tilde{c}.$$

$$(4)$$

The next thing which should be clarified is the notion of a local optimal solution.

Fig. 1. Definition of a local optimal solution

Definition 1. A point \overline{x} is a local optimal solution of problem (2) if there exists a neighborhood U of \overline{x} such that $||x - x^0|| \ge ||\overline{x} - x^0||$ for all x, b, c with $b \in \mathcal{B}, c \in \mathcal{C}$ and $x \in U \cap \Psi(b, c)$.

Using the usual definition of a local optimal solution of problem (4) it can be easily seen that for each local optimal solution \overline{x} of problem (2) there are $\overline{b}, \overline{c}, \overline{y}$ such that $(\overline{x}, \overline{b}, \overline{c}, \overline{y})$ is a local optimal solution of problem (4), cf. [3]. The opposite implication is in general not true.

Theorem 1. Let $\mathcal{B} = \{\overline{b}\}, \{\overline{x}\} = \Psi(\overline{b}, c)$ for all $c \in U \cap \mathcal{C}$, where U is some neighborhood of \overline{c} . Then, $(\overline{x}, \overline{b}, \overline{c}, \overline{y})$ is a local optimal solution of (4) for some dual variables \overline{y} .

The proof of Theorem 1 is fairly easy and therefore it is omitted. Figure 1 can be used to illustrate the fact of the last theorem. The points \overline{x} satisfying the assumptions of Theorem 1 are the vertices of the feasible set of the lower level problem given by the dashed area in this figure.

3 Optimality via Tangent Cones

Now we consider a feasible point \overline{x} of problem (2) and we want to decide whether \overline{x} is local optimal or not. To formulate suitable optimality conditions certain subsets of the index set of active inequalities in the lower level problem need to be determined. Let

$$I(\overline{x}) = \{i : \overline{x}_i = 0\}$$

be the index set of active indices. Then every feasible solution x of (2) close enough to \overline{x} satisfies $x_i > 0$ for all $i \notin I(\overline{x})$. Complementarity slackness motivates us to define the following index sets, too:

- $I(c, y) = \{i : (A^{\top}y c)_i > 0\}$ $\mathcal{I}(\overline{x}) = \{I(c, y) : A^{\top}y \ge c, (A^{\top}y c)_i = 0 \ \forall i \notin I(\overline{x}), \ Cc = \tilde{c}\}$ $I^0(\overline{x}) = \bigcap_{I \in \mathcal{I}(\overline{x})} I.$

Remark 1. If an index set I belongs to the family $\mathcal{I}(\overline{x})$ then $I^0(\overline{x}) \subseteq I \subseteq$ $I(\overline{x}).$

An efficient calculation of the index set $I^0(\overline{x})$ is necessary for the evaluation of the optimality conditions below. By contrast, the knowledge of the family $\mathcal{I}(\overline{x})$ itself is not necessary.

Remark 2. We have $j \in I(\overline{x}) \setminus I^0(\overline{x})$ if and only if the system

$$\begin{split} (A^{\top}y-c)_i &= 0 \quad \forall i \notin I(\overline{x}) \\ (A^{\top}y-c)_j &= 0 \\ (A^{\top}y-c)_i &\geq 0 \quad \forall i \in I(\overline{x}) \setminus \{j\} \\ Cc &= \tilde{c} \end{split}$$

is feasible. Furthermore $I^0(\overline{x})$ is an element of $\mathcal{I}(\overline{x})$ if and only if the system

$$\begin{aligned} (A^{\top}y - c)_i &= 0 \quad \forall i \notin I^0(\overline{x}) \\ (A^{\top}y - c)_i &\geq 0 \quad \forall i \in I^0(\overline{x}) \\ Cc &= \tilde{c} \end{aligned}$$

is feasible.

Now we are able to transform (4) into a locally equivalent problem, which does not explicitly depend on c and y.

Lemma 1. \overline{x} is a local optimal solution of (2) if and only if \overline{x} is a (global) optimal solution of all problems (A_I)

$$\begin{aligned} \|x - x^0\| &\longrightarrow \min_{x,b} \\ Ax &= b \\ x &\ge 0 \\ x_i &= 0 \quad \forall i \in I \\ Bb &= \tilde{b} \end{aligned} \tag{A_I}$$

with $I \in \mathcal{I}(\overline{x})$.

5

Proof. Let \overline{x} be a local optimal solution of (2) and assume that there is a set $I \in \mathcal{I}(\overline{x})$ with \overline{x} being not optimal for (A_I) . Then there exists a sequence $\{x^k\}_{k\in\mathbb{N}}$ of feasible solutions of (A_I) with $\lim_{k\to\infty} x^k = \overline{x}$ and $\|x^k - x^0\| < \|\overline{x} - x^0\|$ for all k. Consequently \overline{x} can not be a local optimal solution to (2) since $I \in \mathcal{I}(\overline{x})$ implies that all x^k are also feasible for (2).

Conversely, let \overline{x} be an optimal solution of all problems (A_I) and assume that there is a sequence $\{x^k\}_{k\in\mathbb{N}}$ of feasible points of (2) with $\lim_{k\to\infty} x^k = \overline{x}$ and $||x^k - x^0|| < ||\overline{x} - x^0||$ for all k. For k sufficiently large the elements of this sequence satisfy the condition $x_i^k > 0$ for all $i \notin I(\overline{x})$ and due to the feasibility of x^k for (2) there are sets $I \in \mathcal{I}(\overline{x})$ such that x^k is feasible for problem (A_I) . Because $\mathcal{I}(\overline{x})$ consists only of a finite number of sets, there is a subsequence $\{x^{k_j}\}_{j\in\mathbb{N}}$ where x^{k_j} are all feasible for a fixed problem (A_I) . So we contradict the optimality of \overline{x} for this problem (A_I) .

Corollary 1. We can also consider

$$\|x - x^{0}\| \longrightarrow \min_{x,b,I}$$

$$Ax = b$$

$$x \ge 0$$

$$x_{i} = 0 \quad \forall i \in I$$

$$Bb = \tilde{b}$$

$$I \in \mathcal{I}(\bar{x})$$

$$(5)$$

to check if \overline{x} is a local optimal solution of (2). Here the index set I is a minimization variable. Problem (5) combines all the problems (A_I) into one problem and means that we have to find a best one between all the optimal solutions of the problems (A_I) for $I \in \mathcal{I}(\overline{x})$.

In what follow we use the notation

$$T_I(\overline{x}) = \{ d | \exists r : Ad = r, Br = 0, d_i \ge 0 \ \forall i \in I(\overline{x}) \setminus I, d_i = 0 \ \forall i \in I \}.$$

This set corresponds to the tangent cone (relative to x only) to the feasible set of problem (A_I) at the point \overline{x} . The last lemma obviously implies the following necessary and sufficient optimality condition.

Lemma 2. \overline{x} is a local optimal solution of (5) if and only if $f'(\overline{x}, d) \ge 0$ for all

$$d \in T(\overline{x}) := \bigcup_{I \in \mathcal{I}(\overline{x})} T_I(\overline{x}) .$$

Remark 3. $T(\overline{x})$ is the (not necessarily convex) tangent cone (relative x) of problem (5) at the point \overline{x} .

Corollary 2. The condition $I^0(\overline{x}) \in \mathcal{I}(\overline{x})$ implies $T_{I^0(\overline{x})}(\overline{x}) = T(\overline{x})$.

Remark 4. If f is differentiable at \overline{x} , then saying that $f'(\overline{x}, \cdot)$ is nonnegative over $T(\overline{x})$ is obviously equivalent to saying that

$$f'(\overline{x}, d) \ge 0 \quad \forall d \in \operatorname{conv} T(\overline{x}) ,$$
 (6)

where the "conv" indicates the convex hull operator.

As shown in the next example, without differentiablility assumption, (6) is sufficient for optimality but not necessary.

Fig. 2. Illustration of Example 1

Example 1. Let us consider a problem with the l_1 -norm restricted to the first two components of x as objective function and

$$A = \begin{pmatrix} 2 & 1 & 1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix}, \ \mathcal{B} = \left\{ \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right\}, \ \mathcal{C} = \left\{ 2e_1^{(4)} + te_2^{(4)} : \ t \in \mathbb{R} \right\},$$
$$x^0 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 2 \end{pmatrix}, \ x^1 = \begin{pmatrix} 2 \\ 1 \\ -2 \\ -2 \end{pmatrix} \quad \text{and} \quad \overline{x} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}.$$

We consider the point \overline{x} . The bold marked lines in Fig. 2 are the feasible set of our problem and the dashed lines are iso-distance-lines with the value 1. So we get the convexified tangent cone as

Inverse Linear Programming

7

conv
$$T(\overline{x}) = \{ d: 2d_1 + d_2 + d_3 = 0; 2d_1 - d_2 + d_4 = 0; d_3, d_4 \ge 0 \}$$
.

Finally $\overline{d} = (-1 \ 0 \ 2 \ 2)^{\top} \in \operatorname{conv} T(\overline{x})$ is a direction of descent with $f'(\overline{x}, \overline{d}) = -1$ although \overline{x} is obviously the global optimal solution. If we choose x^1 (instead of x^0) and the objective function $|x_1 - x_1^1| + |x_2 - x_2^1|$, condition (6) implies the optimality of \overline{x} .

Remark 5. Because it is a matter of illustration, we considered the problem with inequality constraints in the lower level. For that reason we used the l_1 -norm restricted to the first two components of x as objective function and not the l_1 -norm over the whole space \mathbb{R}^4 . By the way, in this case \overline{x} would not be a local optimal solution.

4 A Formula for the Tangent Cone

For the verification of the optimality condition (6) an explicit formula for the tangent cone conv $T(\overline{x})$ is essential. For notational simplicity we suppose $I(\overline{x}) = \{1, \ldots, k\}$ and $I^0(\overline{x}) = \{l + 1, \ldots, k\}$ with $l \leq k \leq n$. Consequently all feasible points of (2) sufficiently close to \overline{x} satisfy $x_i = 0$ for all $i \in I^0(\overline{x})$. We pay attention to this fact and consider the following relaxed problem:

$$|x - x^{0}|| \longrightarrow \min_{x,b}$$

$$Ax = b$$

$$x_{i} \ge 0 \quad i = 1, \dots, l$$

$$x_{i} = 0 \quad i = l + 1, \dots, k$$

$$Bb = \tilde{b}.$$
(7)

In what follow we use the notation

$$T_R(\overline{x}) = \{ d | \exists r : Ad = r, Br = 0, d_i \ge 0 \ i = 1, \dots, l, d_i = 0 \ i = l+1, \dots, k \}.$$

This set corresponds to the tangent cone (relative x) of (7) at the point \overline{x} . Since $I^0 \subseteq I$ for all $I \in \mathcal{I}(\overline{x})$, it follows immediately that

$$\operatorname{conv} T(\overline{x}) = \operatorname{cone} T(\overline{x}) \subseteq T_R(\overline{x}) . \tag{8}$$

The point \overline{x} is said to satisfy the *full rank condition*, if

$$\operatorname{span}(\{A_i: i \notin I(\overline{x}\}) = \mathbb{R}^m,$$
(FRC)

where A_i denotes the *i*th column of the matrix A.

Example 2. All non-degenerate vertices of $Ax = b, x \ge 0$ satisfy (FRC).

This condition allows us now to establish equality between the cones above.

Theorem 2. Let (FRC) be satisfied at the point \overline{x} . Then equality holds in (8).

Proof. Let \overline{d} be an arbitrary element of $T_R(\overline{x})$, that means there is a \overline{r} with $A\overline{d} = \overline{r}, \ B\overline{r} = 0, \ \overline{d}_i \ge 0 \ i = 1, \ldots, l, \ \overline{d}_i = 0 \ i = l+1, \ldots, k$. We consider the following linear systems

$$Ad = \delta_{1,j}\overline{r}$$

$$d_j = \overline{d}_j \qquad (S_j)$$

$$d_i = 0 \quad i = 1, \dots, k, \ i \neq j$$

for j = 1, ..., l, where $\delta_{1,j} = 1$ if j = 1 and $\delta_{1,j} = 0$ if $j \neq 1$. These systems are all feasible because of (FRC).

Fig. 3. Illustration of the proof of Theorem 2

Furthermore let d^1, \ldots, d^l be (arbitrary) solutions of the systems $(S_1), \ldots, (S_l)$ respectively. We define now the direction $d = \sum_{j=1}^l d^j$ and get $d_i = \overline{d}_i$ for $i = 1, \ldots, k$ as well as $Ad = A\overline{d} = \overline{r}$. Because we chose arbitrary vectors d^1, \ldots, d^l it is possible that $d \neq \overline{d}$. But we can achieve equality with a translation of the solution d^1 by a specific vector of $\mathcal{N}(A) = \{z : Az = 0\}$. Therefore we define $\hat{d}^1 := d^1 + \overline{d} - d$, and because d^1 is feasible for (S_1) and $d_i = \overline{d}_i$ for $i = 1, \ldots, k$ as well as $Ad = A\overline{d} = \overline{r}$ we get $\hat{d}_i^1 = 0$ for all $i = 2, \ldots, k$ and $A\hat{d}^1 = A(d^1 + \overline{d} - d) = \overline{r} + \overline{r} - \overline{r} = \overline{r}$. Hence \hat{d}^1 is also a solution of (S_1) . Thus we have $\hat{d}^1 + \sum_{j=2}^l d^j = \overline{d} - d + \sum_{j=1}^l d^j = \overline{d}$. As a result

of the definition of the set $I^0(\overline{x})$ there are index sets $I_j \in \mathcal{I}(\overline{x})$ with $j \notin I_j$ for all $j \in \{1, \ldots, l\} = I(\overline{x}) \setminus I^0(\overline{x})$. So \hat{d}^1 is an element of the tangent cone of problem (A_{I_1}) and d^j are elements of the tangent cones of the problems (A_{I_j}) for $j = 2, \ldots, l$, see the definition of these cones. Finally \overline{d} is the sum of a finite number of elements of $T(\overline{x})$ and therefore $T_R(\overline{x}) \subseteq \operatorname{cone} T(\overline{x})$.

By combining Lemma 2 and Remarks 2 and 4, one obtains:

Corollary 3. Let \overline{x} be a point of differentiability of f. Then, at most n systems of linear equalities inequalities are needed to be investigated in order to compute the index set $I^0(\overline{x})$. Furthermore, verification of local optimality of a feasible point of problem (2) is possible in polynomial time.

Example 3. This example will show that (FRC) is not necessary for equality in (8).

Fig. 4. Illustration of Example 3

Consider the point $\overline{x} = (1, 1, 1, 0, 0, 0, 0, 2)^{\top}$. Hence we get $I(\overline{x}) = \{4, 5, 6, 7\}, I^0 = \emptyset$ and $T_R(\overline{x}) = \{d : Ad = 0, d_i \ge 0 \quad \forall i \in I(\overline{x})\}$. The

feasible region of (5) consists of the four faces $x_4 = 0$, $x_5 = 0$, $x_6 = 0$ and $x_7 = 0$ (t = s = 0; t = 1, s = 0; t = 0, s = 1 respectively $t = -\frac{1}{3}, s = \frac{2}{3}$). Obviously we have $T_R(\overline{x}) = \operatorname{cone} T(\overline{x})$.

Now delete the second vector in \mathcal{C} , that means $\mathcal{C} = \{c = -e_2^{(8)} + t(2e_1^{(8)} + 3e_2^{(8)} - e_3^{(8)}): t \in \mathbb{R}\}$. Then we also get $I^0 = \emptyset$. That is why the tangent cone of the relaxed problem is the same as above. But the convexified tangent cone conv $T(\overline{x})$ of (5) is a proper subset of this cone. Because the feasible set consists only of the two faces $x_4 = 0$ and $x_5 = 0$, the cone conv $T(\overline{x})$ is spanned by the four bold marked vertices where the apex of the cone is \overline{x} , see Fig. 4.

Acknowledgement. The authors sincerely thank the anonymous referee, whose comments led to an improvement of the note.

References

- 1. Ahuja RK, Orlin JB (2001) Inverse Optimization. Operations Research 49:771–783
- 2. Bard JF (1998) Practical Bilevel Optimization: Algorithms and Applications. Kluwer Academic Publishers, Dordrecht
- 3. Dempe S (2002) Foundations of Bilevel Programming. Kluwer Academic Publishers, Dordrecht
- 4. Dempe S (2003) Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints. Optimization 52:333–359
- Outrata J, Kočvara M, Zowe J (1998) Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer Academic Publishers, Dordrecht