
Discrete Applied Mathematics 129 (2003) 83–98
www.elsevier.com/locate/dam

Inverse optimization in high-speed networks
Andr$as Farag$oa ;∗, $Aron Szentesib , Bal$azs Szviatovszkib

aErik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas,
MS-EC31, P.O. Box 830688, Richardson, TX 75083-0688, USA

bEricsson Tra.c Lab, Budapest, P.O. Box 107, Budapest, H-1300, Hungary

Abstract

A general approach is presented for handling the following inverse optimization problem:
given solutions to each member of a family of combinatorial optimization tasks on a common
underlying set, .nd a positive linear objective function (weighting) on the common underlying
set that simultaneously makes each solution optimal in its own optimization task. Our motivation
stems from the inverse shortest path problem that is made practically important in high-speed
telecommunication networks by the Asynchronous Transfer Mode Forum’s Private Network–
Network Interface architecture, in which route .nding can be based on administrative weights.
Di5erent variants of the problem are investigated, including uniqueness requirements and reserve
routes.
? 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

There is recently an increasing interest in inverse optimization problems related
to combinatorial optimization and linear programming. The most general formulation
of the tasks that have been studied so far is given by Ahuja and Orlin [2], where
several motivating applications are also listed (our motivating application is rooted in
telecommunications and will be detailed in Section 2). The following general inverse
optimization problem is considered by Ahuja and Orlin [2]. Given a set S of feasible
vectors (solutions), a cost vector c and a vector x0 ∈ S; .nd a new cost vector d such
that x0 becomes an optimal solution with respect to the new cost and the perturbation
‖d−c‖ of the original cost is minimum in terms of some norm. This is the “inverse” of
the original optimization problem max{cx | x∈ S}; in the sense that now the solution

∗ Corresponding author.
E-mail addresses: farago@utdallas.edu (A. Farag$o), ethasi@eth.ericsson.se (A. Szentesi),

ethbsii@eth.ericsson.se (B. Szviatovszki).

0166-218X/03/$ - see front matter ? 2002 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(02)00235 -4

84 A. Farag5o et al. / Discrete Applied Mathematics 129 (2003) 83–98

x0 is given, which may not be optimal with respect to the original cost c; and the
goal is to .nd a minimal perturbation of the cost vector that makes x0 an optimal
solution.

The most general result in the above direction is that if the original optimization
problem is solvable in polynomial time, then this inverse is also polynomially solvable
when the deviation of the cost vectors is measured by the L1 or L∞ norm [2]. The
general solution is based on the Ellipsoid Algorithm with a separation oracle. On the
other hand, in most of the interesting cases the original optimization problem has some
special structure which can be further exploited to obtain more eGcient algorithms for
speci.c problems. Utilizing the structure, a number of papers addressed special inverse
optimization problems, for example (based on the overview in [2]): inverse linear
programming [2], inverse shortest paths [4–7,23,26], inverse spanning tree [16,21,3],
inverse sorting [1], inverse shortest arborescence [12], inverse bipartite k-matching
[13], inverse minimum cut [24,25], inverse minimum cost Jow [14,20], inverse matroid
intersection [15], inverse polymatroidal Jow [8].

Note that in the above problems, especially in the purely combinatorial settings,
the diGculty typically stems from the fact that a minimal perturbation of the original
cost vector is searched for. Otherwise, the problem would trivialize in most cases. For
example, .nding just any cost vector that makes, say, a given spanning tree optimal
could easily be achieved by assigning small cost to the tree edges and large costs to
all others.

In the family of inverse problems that we consider in this paper the source of diG-
culty is di5erent. We do not have an original cost function from which the deviation is
to be minimized. On the other hand, we have a family of combinatorial optimization
problems with di5erent sets of feasible solutions over the same underlying .nite set
and a given solution is speci.ed for each. We are looking for a positive weighting of
the common underlying set that makes each of the speci.ed solutions simultaneously
optimal for its own problem. Thus, the diGculty is that while for one optimization task
one could easily make a given solution optimal, those weights may be poor for some
others. We also consider two further variants: (1) the issue of making the speci.ed
solutions unique optimums, and, (2) how to .nd a cost vector that works approxi-
mately, in the sense of minimizing the maximum absolute deviation from the optimum
in the respective tasks, if no cost vector exists that makes each prescribed solution
optimal.

The general framework is motivated by inverse shortest path problems that are raised
in the context of Asynchronous Transfer Mode (ATM) networks (see Section 2). Below
we de.ne three such tasks.

As input we are given an undirected graph G = (V; E) with vertex and edge sets
V; E; respectively, with no parallel edges and loops. Also given a set P = {Pij} of
paths in the graph between certain (but not necessarily all) pairs (i; j) of nodes. We
want to assign positive weights to the edges of the graph. The weights are to be
chosen such that with respect to these weights the given paths arise as minimum
weight paths between their endpoints. The weights are restricted to be strictly positive
to exclude the trivial case when each weight is 0, since then every path would be a
minimum weight path with zero total weight. Below we list three di5erent versions of

A. Farag5o et al. / Discrete Applied Mathematics 129 (2003) 83–98 85

this inverse shortest path problem. Each speci.es a di5erent task, in increasing order of
diGculty:
Task I: Find the weights such that each given route in P arises as a minimum

weight path between its endpoints.
Task II: Find the weights such that each given route in P arises as a unique min-

imum weight path between its endpoints. (That is, for each given path Pij ∈P; any
other path between i and j has strictly larger weight.)
Task III: Assume that P is such that for each Pij it also contains another path Qij

between the same endpoints. Pij and Qij are assumed edge-disjoint and their intended
meaning is that they are the primary and reserve routes, respectively, between nodes
i; j. Find the weights such that each given route Pij arises as a minimum weight path
between its endpoints. Moreover, if any edge of Pij is removed from the graph, then,
under the same weights, Qij becomes a minimum weight path between i and j; while
any path Pkl ∈P that does not contain the removed edge remains the shortest path.
This is required to hold for any choice of i; j; k; l with the same weights.

In Section 3 we present a general solution which contains all these and many other
possible tasks as special cases, after reviewing the telecommunications-based motivation
in Section 2. In Section 4 we consider the case when no weighting exists that can make
each given solution exactly optimal, so we search for a weighting which minimizes
the maximum di5erence between the actual weights of the prescribed solutions and
the optimal ones. In Section 5 we present a case study concerning the unique inverse
shortest path problem (Task II). As a .rst step of the case study, we show that using
the special structure it can be solved by a simpler and more direct LP formulation than
the one which would follow from the general framework. Then we apply the solution to
demonstrate that one can achieve improved network performance in a realistic scenario.
This is done via a simulated hypothetical pan-European ATM network with randomly
generated traGc.

2. Networking motivation

ATM is generally accepted as an eGcient and standardized transfer mode that pro-
vides the transport network technology for emerging integrated networks, carrying a
wide scale of services, including voice, data and video. The Jexibility and eGcient
bandwidth utilization capability of ATM makes it suitable to support service integra-
tion both in wired and wireless networks. For these networks a general framework to
provide a scalable, hierarchically organized routing and signalling solution was intro-
duced by the ATM Forum. This is the Private Network–Network Interface (PNNI)
Speci@cation [17] that has the main objectives of supporting Quality of Service (QoS)
based, scalable routing with as much auto-con@guration as possible.

In PNNI networks no routing information has to be con.gured manually when adding
a new node or link to an existing network. With the help of a dynamic, link-state
Jooding protocol, signi.cant changes in link parameters (availability, load, delay or
delay variation) are distributed automatically to other nodes in the network. Based on
the Jooded information each node builds a link-state database, which represents the

86 A. Farag5o et al. / Discrete Applied Mathematics 129 (2003) 83–98

network as a graph with several parameters on each link. The path-selection algorithm
operates on this topology database to compute the routes for traGc sources. In PNNI
if a call establishment fails, it is handed back to the originating node that can make
more trials. To bene.t from this crankback procedure the path-selection algorithm is
expected to provide more than one path between a source and a destination.

By adapting automatically to the actual traGc situation, the PNNI dynamic routing
framework can entirely take over the task of managing routes for traGc through the
network both at the design and management phase of the system. This is an essential
advantage of PNNI.

On the other hand, the practical implementation of such a dynamic routing mech-
anism is far from trivial. There are a number of concerns that arise in the practical
implementations. For example, since dynamic routing inherently contains several con-
trol and feedback loops, stability is an important concern. Moreover, the use of existing
network design and dimensioning methods become questionable when dynamic routing
is brought into the picture.

These potential drawbacks may deter operators from the deployment of a truly dy-
namic routing in ATM networks, since the operators naturally prefer solutions that
have been thoroughly tested, that are proven to be stable, and for which there ex-
ist well-tried, reliable control, design and dimensioning methods. For this reason, the
ATM Forum provides an interim solution that combines the simplicity of .xed routing
with some of the advantages of a dynamic scheme. This is achieved by the use of
manually con.gured Administrative Weights that are assigned to the links to express
the potentially complex link state information in an aggregated way.

With the use of Administrative Weights the route selection is simpli.ed to .nd-
ing shortest paths by well-known algorithms, such as Dijkstra’s. Via con.guring the
weights the operator can direct the traGc in the network similar to the .xed routing
paradigm, but eliminating the maintenance of large routing tables and bene.ting from
a reliable, self-con.guring system without stability problems. This solution provides
a smooth transition towards fully dynamic routing, and, indeed, all vendors of PNNI
equipment support it. In this way, one can design the Jow of traGc in the dynamic
PNNI environment similar to the static .xed routing and utilize the existing network
design methodology for the new technology.

A key question in implementing this strategy is: how to set the Administrative
Weights in a network? This naturally leads to the inverse shortest path problem men-
tioned in the Introduction. Thus, one can design the traGc Jow as in a network with
.xed routing (see e.g. [9,18,10]) and then, via solving the inverse shortest path prob-
lem, the administrative weights can be obtained.

Beyond the above simplest version, there are other considerations that require more
complex versions of the inverse shortest path problem in large networks. One of them
is the issue of uniqueness. If the Administrative Weights are set such that they allow
several di5erent minimum weight paths between the same end nodes, then the equip-
ment may not choose the one which was chosen as desirable in the design phase. This
can severely deteriorate the network throughput, since the network is dimensioned on
the assumption that the designed paths are used. This leads to the unique inverse short-
est path problem, where the weights are to be chosen such that the prescribed paths

A. Farag5o et al. / Discrete Applied Mathematics 129 (2003) 83–98 87

become unique shortest paths between their endpoints. At this point it is worth men-
tioning that if we only want to design any route system that provides unique shortest
paths under some weighting, then it is easily achieved by .nding shortest paths using
weights given by wi = 2m+1 + 2i for edge i; where m is the number of edges. Such
a solution however, may not satisfy other route design criteria. For example, it has
poor load-balancing properties, as edges with small index will always be preferred,
possibly leading to disproportionate overload on these links, while leaving others with
high index underutilized.

Another more complex concern is network reliability and survivability. In a large
network that carries high-traGc volume, the failure of a link or node may result in an
essential loss of revenue. To avoid this, for every traGc route a reserve route is planned
and whenever the primary route is not available, due to e.g. a link failure, the system
will automatically select the secondary (reserve) route. If we want to incorporate this
into the PNNI framework with Administrative Weights, then we obtain a new inverse
shortest path task version. This is given by specifying two disjoint paths for each traGc
origin–destination pair, one is the primary, the other is the reserve route. We want to
set the weights such that all primary routes become shortest paths when all links are in
operational state. On the other hand, if any given link disappears from the network due
to failure, then we require that the same weights will automatically turn the reserve
routes into shortest paths between those node pairs for which the primary routes are
not available because they contain the failed link, while the available primary routes
still remain the shortest paths.

3. A general framework

In this section we introduce a general model that contains all the inverse shortest
path problems, as well as many other inverse optimization tasks as special cases.

Let H be a .nite set. Assume there are certain set systems F1; : : : ;Fm over the
underlying set H; that is, each Fi is a family of subsets of H . Assume further that for
each Fi an algorithm Ai is given. The algorithm Ai can do the following. As input
it receives a weight vector w that de.nes a weighting of the underlying set H . As a
result, the algorithm returns a set A∈Fi that has minimum weight among the sets
in Fi ; that is, w(A)6w(A′) holds for any A′ ∈Fi ; where w(A) denotes the weight
of A. The relationship that A is such a minimum weight set is shortly denoted by
w(A) =Ai(w); where Ai(w) is the weight of the set returned by the algorithm.

A .rst general formulation of the (non-unique) inverse optimization problem, using
the above introduced notations, can be given as follows (later this will be re.ned to
incorporate further cases):
Task A
Input: Subsets A1 ∈F1; : : : ; Am ∈Fm:
Find: A positive weight vector w; such that w(Ai)=Ai(w) holds for every i=1; : : : ; m:
Let us see .rst how the non-unique inverse shortest path problems .t in this frame-

work. For Task I of the Introduction we take H as the set of all edges in the graph. For
each origin-destination pair p= (i; j) we de.ne a set system Fp such that a set F is

88 A. Farag5o et al. / Discrete Applied Mathematics 129 (2003) 83–98

in Fp if and only if F is the set of edges in a simple (=loop-free) path between i and
j. The associated algorithm Ap is any shortest path algorithm that .nds a minimum
weight path between i and j. Finally, the sets A1; : : : ; Am ⊆ H are the sets of edges in
the prescribed paths Pij that are to be made shortest paths. In this simple case, it is
clear that these assignments specialize Task A exactly into Task I.

It is important to note that the set systems need not be given explicitly, as they
usually contain exponentially many sets. It will be clear from the solution later, that
each set system is represented by the corresponding algorithm only and no other rep-
resentation is needed.

For Task III we start similarly, but here, in addition to the set systems used for
Task I, we introduce more set systems that are indexed by triples. Let q = (i; j; e)
be a triple in which i; j denote nodes and e runs over the edges. If p = (i; j); then
let Fp and Ap be the same as for Task I above. For q = (i; j; e) let F ∈Fq if and
only if F is the set of edges in a simple i − j path that does not contain the edge e.
The corresponding algorithm Aq is any shortest path algorithm that .nds a minimum
weight path between i and j; such that the path does not contain e (i.e., it .nds the
shortest path in the graph with e deleted). Finally, the sets A1; : : : ; Am ⊆ H are sets of
edges in the prescribed paths, such that for each primary path an edge-disjoint reserve
path is also given. Again, a little thought can easily convince the reader that with this
setting Task A specializes exactly to Task III.

Using this framework we can de.ne many other (non-unique) inverse shortest path
problems. For example, one can take for Fp with p = (i; j) the sets F that are sets
of edges in simple i− j paths with the restriction that they do not contain more edges
than a given constant. A networking motivation for this is a restriction on the number
of hops to satisfy e.g. delay constraints. The corresponding algorithm .nds minimum
weight paths among these restricted paths. Even if this is algorithmically diGcult (being
NP-hard), the general framework and the inverse problem, as de.ned generally above,
still makes sense.

With other restrictions many other versions arise and quite a few makes sense from
the telecommunications point of view, as well. For example, we can restrict ourselves
to the paths that contain the minimum number of edges from a given subset. This is
motivated by the fact that certain network links may be overloaded. Naturally, those
routes are preferred that contain the minimum number of overloaded links and we
search for a minimum weight path only among these. Another restriction is to con-
sider only those paths that do not exceed certain prescribed weights under other given
weightings. This allows to represent requirements on quality of service parameters. All
these and a good number of other cases can easily be cast in our general framework,
just as Tasks I and III above.

Thus, Task A is a common generalization of many inverse problems that do not
demand unique solutions. Let us now introduce further re.nement by requiring unique
solutions for some, but not necessarily all, set systems. For easy de.nition let us use
the notation A= Ã(w) to denote that A is a minimum weight set under the weighting
w and it is unique, i.e., there is no other set in the corresponding set system with the
same weight (that is, the algorithm can only return A). Now we can de.ne the problem
that accounts for uniqueness, as well.

A. Farag5o et al. / Discrete Applied Mathematics 129 (2003) 83–98 89

Task B
Input: Subsets A1 ∈F1; : : : ; Am ∈Fm and an integer i0 with 06 i06m:
Find: A positive weight vector w; such that w(Ai)=Ai(w) holds for every i=1; : : : ; m

and for the .rst i0 indices Ai = Ãi(w) also holds.
In search for a solution it is enough to restrict ourselves to Task B, as it contains

Task A as a special case, since with i0 = 0 we directly get back to Task A. Task B,
however, allows to require uniqueness for some (or possibly all) subsets. Thus, beyond
containing Tasks I and III, it already incorporates Task II, as well. The solution is given
by the following theorem.

Theorem 1. There exists an algorithm A with the following properties:
• Using the algorithms A1; : : : ;Am as subroutines; algorithm A @nds a weighting
w that satis@es the conditions of Task B if such a weighting exists; otherwise
declares that there is no solution.

• If any call to Ai ; i = 1; : : : ; m; is counted as a single step; then algorithm A
runs in polynomial time.

Before proving the theorem it is worth mentioning that the complexity of the al-
gorithms A1; : : : ;Am is irrelevant here, since they are considered “black boxes”: sub-
routines which run in unit time whenever called, independently of what computations
they do inside. In the language of theoretical computer science A1; : : : ;Am are used
as oracles and the solving algorithm A runs in oracle polynomial time, using these
oracles. As an immediate consequence we obtain the following important corollary.

Corollary 1. If the algorithms A1; : : : ;Am run in polynomial time; then a weighting
w that satis@es the conditions of Task B can be found in polynomial time; if such a
w exists.

This means, if the original problems can be solved in polynomial time, then the
inverse can also be solved, both with and without uniqueness requirements. Now we
can turn to the proof of the theorem.

Proof of Theorem 1. Let us use the notations H = {1; : : : ; n} and w = (w1; : : : ; wn).
Furthermore; let s(x) be a function de.ned by s(x) = 1 if x¿ 0 and s(x) = 0 if x¡ 0:
Now let us consider the following system of linear inequalities:

wi¿ 1 (i = 1; : : : ; n); (1)
∑
j∈F

wj −
∑
j∈Ak

wj¿ s(i0 − k) (∀F ∈Fk − {Ak}; k = 1; : : : ; m): (2)

We show .rst that this system of linear inequalities has a solution if and only if there
exists a weighting w that satis.es the conditions of Task B. To show this, assume that
there is a vector w that satis.es (1) and (2). Then by (1) w is a positive weighting.
For any k ¿ i0 (which can occur only if i0¡m) from (2) we have∑

j∈F
wj −

∑
j∈Ak

wj = w(F)− w(Ak)¿ 0

90 A. Farag5o et al. / Discrete Applied Mathematics 129 (2003) 83–98

since s(i0 − k) = 0 holds for k ¿ i0. Hence, for k ¿ i0 we have w(Ak)6w(F) for
every F ∈Fk ; that is, Ak is a minimum weight set in Fk . For the case k6 i0 (which
can occur only if i0¿ 0), using that now s(i0 − k) = 1 holds, we similarly obtain
w(Ak)6w(F) − 1 for every F ∈Fk ; F
=Ak . Thus, in this case Ak is a unique min-
imum weight set in Fk . Conversely, if there is a positive weighting that satis.es the
conditions of Task B, it must clearly satisfy (2). If (1) is possibly violated, then after
multiplying the solution by 1=wmin all the inequalities will be satis.ed, where wmin

is the minimum of the positive weights. Note that the size of the factor 1=wmin does
not matter, since it merely serves to prove that the solvability of Task B implies the
solvability of the system (1) and (2).

This system of linear inequalities, however, can contain exponentially many inequal-
ities and, additionally, they may not even be explicitly listed. Nevertheless, we can
still apply those linear programming algorithms that do not need an explicit list of the
inequalities, they can work with a separation oracle. A well known such method is
the Ellipsoid Algorithm, the .rst polynomial-time solution for linear programming (for
an overview see e.g. [19]). It is known that the Ellipsoid Algorithm with separation
oracle runs in time that is polynomially bounded in terms of the number of variables,
the number of bits that describe any given inequality, and the running time of the
separation oracle. In our case this means that for any given vector w we should be
able to check in polynomial time, using the algorithms Ak as subroutines, whether w
satis.es (1) and (2), or, if it does not, we have to .nd a violated inequality. If we can
do this, then the Ellipsoid Algorithm .nds the solution in (oracle) polynomial time,
since our inequalities have all 0; 1;−1 coeGcients and constants.

Now let w be a vector. We can directly check if it satis.es (1). If it does not, then
we have directly found at least one violated inequality in (1), so suppose w¿ 1 holds.
Let us take an index k. We check (2) depending on which of k ¿ i0; k6 i0 holds
(and we do this for each k):
Case 1: k ¿ i0. In this case we run algorithm Ak with input w. Let A be the returned

minimum weight set. We compare w(Ak) and w(A). If w(Ak)6w(A) (in fact, only
equality can hold), then Ak is a minimum weight set in Fk ; so all inequalities with
this k must be satis.ed in (2). On the other hand, if w(Ak)¿w(A); then this provides
a violated inequality, namely∑

j∈A
wj −

∑
j∈Ak

wj¿ 0

is violated.
Case 2: k6 i0. Now we start again as in Case 1. If w(Ak)¿w(A); then we found

a violated inequality, since with s(i0 − k) = 1∑
j∈A

wj −
∑
j∈Ak

wj¿ 1 (3)

is violated. If w(Ak) = w(A); i.e., Ak has minimum weight in Fk ; but Ak
=A; then
we again found a violated inequality, since (3) is still not satis.ed, the left-hand side
being 0. The remaining possibility is Ak = A. In this case, we have to check whether
for any A′ ∈Fk the inequality w(A′)¿w(Ak)+1 holds whenever A′
=Ak . This can be

A. Farag5o et al. / Discrete Applied Mathematics 129 (2003) 83–98 91

done as follows. Let x be an element of Ak . For each such x we de.ne a new weight
vector w(x) de.ned by increasing the weight on x by 1 and leaving the rest unchanged,
i.e., we introduce |Ak | new weight vectors, one for each x∈Ak; by

w(x)
i =

{
wi + 1 if i = x;
wi if i
= x: (4)

Let us now run algorithm Ak with each of the new weight vectors and denote by Bx

the returned minimum weight set when w(x) is used. We claim that w(A′)¿w(Ak)+1
holds for every A′ ∈Fk ; A′
=Ak; if and only if

∀x∈Ak : w(x)(Bx)¿w(Ak) + 1: (5)

To show this let A0 be a set with minimum w(A0) in Fk − {Ak}; i.e., it is a “second
minimum” in Fk . Assume w(A0)¡w(Ak) + 1. Then, by w¿ 1; Ak ⊆ A0 cannot
hold, so there must be an x0 ∈Ak with x0
∈ A0. For this x0 we have w(x0)(Ak) =
w(Ak)+1¿w(A0)=w(x0)(A0)¿w(x0)(Bx0); implying Bx0
=Ak and w(x0)(Bx0)=w(Bx0);
by the special choice of A0: Hence, (5) is not satis.ed and w(B(x0))¡w(Ak) + 1
generates a violated inequality. Conversely, if (5) is satis.ed, then no such A0 with
w(A0)¡w(Ak) + 1 can exist, so all inequalities in (2) are satis.ed for this index k:

Thus, doing the above for all k; we can check whether w satis.es (1) and (2) and, if
not, we .nd a violated inequality. The procedure requires running the algorithms Ak

at most nm times, along with simple recordkeeping, so we constructed a separation
oracle that works in polynomial time if the Ak are used as oracles. The rest of the
work is done by the Ellipsoid Algorithm.

4. Finding a weighting with minimum error when no exact solution exists

As we have seen in the previous section, all of our considered inverse problems,
along with many conceivable similar ones, can be cast in a general framework. An
important question still remains, however: what can be done if no weight vector exists
that satis.es the requirements? From the practical point of view it is desirable that if no
w can satisfy the conditions exactly, then we at least aim at providing one that satis.es
them with minimum error, rather than not .nding anything at all. In the present section
we show how to .nd such a solution in a general framework, such that the solution
is optimal in the sense that it minimizes the maximum absolute error.

Let us de.ne the problem version we consider for this situation, using the notations
of the previous section.
Task C
Input: Subsets A1 ∈F1; : : : ; Am ∈Fm:
Find: A weight vector w¿ 1; that minimizes the maximum absolute error

E = max
i

|w(Ai)−Ai(w)|:
Note that the constraint w¿ 1 is needed for normalization purposes, otherwise one

could trivially make the error arbitrarily small by assigning suGciently small positive
weights to everything. We also note that the absolute value can be omitted from the
de.nition of E; as w(Ai)¿Ai(w) always holds, being Ai ∈Fi :

92 A. Farag5o et al. / Discrete Applied Mathematics 129 (2003) 83–98

Theorem 2. There exists an algorithm A with the following properties:
• Algorithm A; using the given algorithms A1; : : : ;Am as subroutines; @nds an

optimal weighting w for Task C; i.e.; w minimizes the maximum absolute error
under the conditions of Task C.

• If every call to Ai ; i = 1; : : : ; m; is counted as a single step; then algorithm A
runs in polynomial time.

Proof. Let us use the same notations as in Theorem 1 and consider the following
linear program:

y → max!; (6)

y6 0; (7)

wi¿ 1 (i = 1; : : : ; n); (8)
∑
j∈F

wj −
∑
j∈Ak

wj¿y (∀F ∈Fk − {Ak}; k = 1; : : : ; m): (9)

Note that (8) and (9) are the same as (1) and (2); with the only change that s(i0 − k)
is replaced by the new variable y. On the other hand; these constraints can always
be satis.ed; since for any non-negative weighting with y = −w(H) (9) becomes
w(F)¿w(Ak)− w(H) which is always true.

Now, similarly to Theorem 1, we can again construct a separation oracle, as follows.
Given a vector (w; y); .rst we directly check if (7) and (8) are satis.ed. If not, we have
directly found a violated inequality. If they are satis.ed, then we proceed as follows.
For each index k run algorithm Ak with input w: Assume that for a given k the returned
minimum weight set is A: Let us compare w(Ak) and w(A). If w(A)¿y+w(Ak) then
all inequalities with this k must be satis.ed in (9), since A is a minimum weight
set. On the other hand, if w(A)¡y + w(Ak); then this provides a violated inequality,
namely∑

j∈A
wj −

∑
j∈Ak

wj¿y

is violated.
Having constructed the separation oracle, we can .nd an optimum solution (w0; y0)

to the linear program by the Ellipsoid Algorithm. It follows from the construction that
|y0| is the smallest possible value for which w0(Ak) di5ers form Ak(w0) (∀k) at most
by |y0|; which proves the theorem.

5. A case study using unique inverse shortest paths

To support applicability in telecommunications, in this section we present a case
study that uses the unique inverse shortest path problem (Task II in the Introduction).
First in Section 5.1 we show that using the special structure the unique inverse shortest
path problem can be solved by a simpler and more direct LP formulation than the
one which would follow from the general framework. Then, in Section 5.2 we apply

A. Farag5o et al. / Discrete Applied Mathematics 129 (2003) 83–98 93

the solution to demonstrate that one can achieve improved network performance in
a realistic scenario. This is shown via a simulated hypothetical pan-European ATM
network with randomly generated traGc.

5.1. A direct LP solution for the unique inverse shortest path problem

Using the special structure of shortest paths we show that it allows a direct LP
formulation that is simpler than the separation oracle-based formulation in the general
framework. To describe the details let us de.ne two sets of variables. For each we
also provide the intended meaning that will help in understanding the constraints (note
that these are variables, that is, they do not have a known value at the beginning):
wij: the weight of the edge (i; j). If the pair e = (i; j) is denoted by a single letter

e; then the notation we will be used.
dij: the distance (= weight of a min-weight path) between i and j:
Naturally, if i = j then dii = 0 is expected from the intended meaning, therefore,

these values are set in advance.
For the easy description of some of the inequalities we introduce further notations.

Let us say that an edge e = (k; l) is a shortcut for a path Pij ∈P if e connects two
non-consecutive nodes k; l on the path. The set of shortcut edges for the path is denoted
by S(Pij) and so the relationship that e is a shortcut for Pij is denoted by e∈ S(Pij).
Further, let B(e; Pij) denote the subset of edges on Pij that are bridged by e; i.e., those
edges of Pij that are between the two endpoints of e:

Now let us de.ne the following sets of linear inequalities (“s.t.” stands for “such
that”):

dij¿ 0 (∀i; j); (10)

wij¿ 1 (∀e = (i; j)∈E); (11)

dik + wkj¿dij (∀i; j; k; s:t: (k; j)∈E); (12)

∑
e∈Pij

we6dij (∀i; j; s:t: Pij ∈P); (13)

dik + dkj¿dij + 1 (∀i; j; k; s:t: Pij ∈P; k
∈ Pij); (14)

we¿ 1 +
∑

f∈B(e;Pij)
wf (∀e; i; j; s:t: Pij ∈P; e∈ S(Pij)): (15)

Using these inequalities the unique inverse shortest path problem can be characterized
as follows.

Theorem 3. Task II has a solution if and only if system (10)–(15) of linear inequali-
ties has a solution. Moreover; in every solution of the linear inequality

94 A. Farag5o et al. / Discrete Applied Mathematics 129 (2003) 83–98

system; the values of the we variables de@ne a weighting that satis@es the requirements
of Task II.

Proof. Assume .rst that systems (10)–(15) has a solution. Let us denote a solution
by w∗

e ; d
∗
ij. Further; let D∗

ij be the distance between nodes i and j; that is; the weight
of a minimum weight path between i and j with respect to the weights w∗

e :
First we show that d∗ij6D∗

ij holds. Assume that indirectly this is not true and take
a pair (i; j) for which d∗ij ¿D∗

ij and D∗
ij is the smallest possible among the counterex-

amples. Since d∗ii = D∗
ii = 0; therefore, i
= j must hold. Now take a minimum weight

path P from i to j; that is, the weight w∗(P) of the path is equal to D∗
ij. Let k be the

node on the path directly preceding j (k = i may possibly hold). Since on the path k
precedes j; therefore with the positive weights D∗

ik ¡D∗
ij holds. This implies d∗ik6D∗

ik
because D∗

ij was the smallest counterexample with d∗ij ¿D∗
ij ; so for the smaller D∗

values the inequality must be already in the desired “6” direction. Now, using the
fact D∗

ik + w
∗
kj = D

∗
ij and the assumption d∗ij ¿D∗

ij ; combined with (12), we obtain

d∗ij6d∗ik + w
∗
kj6D∗

ik + w
∗
kj = D

∗
ij ¡d∗ij ;

a contradiction. This proves that d∗ij6D∗
ij holds for all i; j. Now, for any path Pij; the

combination of (13) with d∗ij6D∗
ij yields

d∗ij¿
∑
e∈Pij

w∗
e = w∗(Pij)¿D∗

ij¿d∗ij ;

which can only hold with equality throughout, implying w∗(Pij) =D∗
ij. Thus, Pij must

be a minimum weight path with respect to the weighting w∗
e :

To show the uniqueness suppose indirectly that for some path Pij ∈P there is another
path P′

ij between the same endpoints with equal weight. Now we have to consider two
possible cases.
Case 1: Assume P′

ij has a node k that is not on Pij: The node k divides P′
ij into

two subpaths, let these be A and B; in the order of traversal from i. Then we have

w∗(P′
ij) = w(A) + w(B)¿D∗

ik + D
∗
kj¿d∗ik + d

∗
kj¿d∗ij + 1 = w∗(Pij) + 1;

contradicting to w∗(P′
ij) = w

∗(Pij):
Case 2: Each node of P′

ij is also on Pij. Then, moving along on P′
ij from i to j;

in each step we either move along an edge of Pij or we bridge over certain edges of
Pij (forward or backward). Since at least one of the moves must be such a shortcut
(otherwise the two paths would coincide) and by (15) the shortcut has strictly larger
weight than the bridged subpath; therefore, we have w∗(P′

ij)¿w∗(Pij) (taking into
account that each edge of Pij must be either bridged over at least once or traversed
directly). This contradicts again to the indirect assumption.

The above reasoning shows that we must have unique shortest paths. Conversely, if
there is a weighting that provides a solution to Task II, then one can directly check
that all the inequalities have to be satis.ed, except possibly (11). Since, however, mul-
tiplying the (positive) weights by any positive constant does not change the properties,
therefore, (11) can also be satis.ed by multiplying the solution with 1=wmin ; where
wmin is the minimum weight that occurs in the weighting. In this way a solution is
obtained to the full system of linear inequalities, which proves the theorem.

A. Farag5o et al. / Discrete Applied Mathematics 129 (2003) 83–98 95

Remarks.

• The size of the 1=wmin factor does not matter; since it is needed only to prove
that the solvability of Task II implies the solvability of the system of linear
inequalities; but it is not needed when we actually solve the system.

• The known solving algorithms for linear programming are not strongly polynomial;
i.e.; their running time depends not only on the dimension of the problem; but also
on the size of numbers in the input; even if the elementary arithmetic and logical
operations are done in unit time; independently of the sizes of the numbers. This
can happen; however; only if the input can contain numbers that are exponentially
large in terms of the number of variables and constraints. One can observe that
all the coeGcients and constants in (10)–(15) are 0; 1 or −1; which implies that
this system can be solved in strongly polynomial time. In fact; a weaker condition
would be already enough: it is known [22] that if the coeGcients in the matrix
are small but the constants are arbitrary; the system can still be solved in strongly
polynomial time (see also [19; Chapter 15.2]).

• From formulation (10)–(15) one can directly see that for a graph with n vertices
and m edges the number of variables is m+ n(n− 1)=2 and the number of linear
inequalities is O(min(mn2; n4)):

5.2. A simulated network example

To gain some experience on how a network behaves if routing is done using our
methods and to judge whether one can achieve improved network performance in a re-
alistic scenario, we simulated a 15-node hypothetical pan-European ATM network with
randomly generated traGc demands, using the unique inverse shortest path formulation
presented in the preceding subsection. The simulation was done with PLASMA, a
PNNI-capable ATM network simulator of Ericsson [11].

The graph that describes the network topology is shown in Fig. 1. We compared
two situations. In the .rst version, a shortest (minimum-hop) path was .xed between
each origin–destination pair and the network was dimensioned with the assumption that
the traGc will travel on these .xed routes. Having dimensioned the network this way,
in the simulation the actual routes were chosen using unit Administrative Weights in
PNNI. The unit weights, naturally, resulted in minimum-hop paths, but not necessarily
the same ones that were assumed in the dimensioning.

In the second version we used the same dimensioning phase, i.e., everything was the
same as in the .rst version, except that in the simulation the Administrative Weights
were computed according to Task II. That is, due to the weighting that generated
unique shortest paths, PNNI was forced to always choose the preset .xed routes, as
opposed to the .rst version when any of the parallel minimum-hop paths could be
chosen.

We measured in both cases the average blocking probability in the network and the
average load on each link. The average blocking probability in the .rst case was 20%,
while in the second case it went down to 3.5%.

The average loads on links are shown in Fig. 2. It is interesting to observe that
the optimized weights (second case) provide much better load balancing. On the other

96 A. Farag5o et al. / Discrete Applied Mathematics 129 (2003) 83–98

Fig. 1. Network topology for simulation.

100%

0%

50%

Links

100%

0%

50%

Links

Lo
ad

Lo
ad

Uniform Administrative Weights case

Optimized Administrative Weights case

Fig. 2. Average link loads.

A. Farag5o et al. / Discrete Applied Mathematics 129 (2003) 83–98 97

hand, for certain links, this can result in increasing average load which implies higher
blocking probability. Nevertheless, the overall network performance was dramatically
improved, as shown by pushing down the average blocking probability from 20% to
3.5%.

Note that the only di5erence between the two cases was that in the second one traGc
could not deviate from the .xed routes because the Administrative Weights were chosen
to generate the preset routes in a unique manner. This example shows that it can bring
real practical gain in network performance (and, therefore, in network revenue) if the
inverse shortest path methodology is applied to guide the routing protocol.

6. Conclusion

We have presented solutions to various versions of general inverse combinatorial
optimization tasks, motivated by inverse shortest path problem versions. We have
shown that all the tasks can be handled by linear programming, even in the gener-
alized case when little is known about the inherent structure. We also pointed out
the relevance of this problem family to high-speed telecommunication networks and
demonstrated through simulation the direct gain that can be obtained using our approach
in PNNI-based ATM networks.

Acknowledgements

The authors are grateful for the continuous support and encouragement of Dr. Mikl$os
Boda, Head of TraGc Lab, Ericsson, Dr. G$eza Gordos, Head of the Department of
Telecommunications and Telematics, Technical University of Budapest, and Dr. Tam$as
Henk, Head of the High Speed Networks Lab at the same Department.

References

[1] R.K. Ahuja, J.B. Orlin, Solving the convex ordered set problem with applications to isotonic regression,
Working Paper SWP# 3988, MIT Sloan School of Management, Cambridge, MA, 1997.

[2] R.K. Ahuja, J.B. Orlin, Inverse optimization, Part I: linear programming and general problem, Working
Paper SWP# 4002, MIT Sloan School of Management, Cambridge, MA, 1998.

[3] R.K. Ahuja, J.B. Orlin, A fast algorithm for the bipartite node weighted matching problem on path
graphs with application to the inverse spanning tree problem, Working Paper SWP# 4006, MIT Sloan
School of Management, Cambridge, MA, 1998.

[4] D. Burton, B. Pulleyblank, Ph.L. Toint, The inverse shortest path problem with upper bounds on shortest
paths costs, in: P. Bartalos, D.W. Hear, W.H. Hager (Eds.), Network Optimization, Lecture Notes in
Economics and Mathematical Systems, Vol. 450, pp. 156–171.

[5] D. Burton, Ph.L. Toint, On an instance of the inverse shortest path problem, Math. Programming 53
(1992) 45–61.

[6] D. Burton, Ph.L. Toint, On the use of an inverse shortest path algorithm for recovering linearly correlated
costs, Math. Programming 63 (1994) 1–22.

[7] M. Cai, X. Yang, Inverse shortest path problems, Technical Report, Institute of Systems Sciences,
Academia Sinica, Beijing, China, 1994.

98 A. Farag5o et al. / Discrete Applied Mathematics 129 (2003) 83–98

[8] M. Cai, X. Yang, Y. Li, Inverse polymatroidal Jow problem, Research Report, Institute of Systems
Science, Chinese Academy of Science, Beijing, China, 1996.

[9] A. Farag$o, S. Blaabjerg, L. Ast, G. Gordos, T. Henk, A new degree of freedom in ATM network
dimensioning: optimizing the logical con.guration, IEEE J. Selected Areas Commun. 13 (1995=7) 1199–
1206.

[10] A. Girard, Routing and Dimensioning in Circuit-switched Networks, Addison-Wesley, Reading, MA,
1990.

[11] Zs. Haraszti, I. Dahlquist, A Farag$o, T. Henk, PLASMA—an integrated tool for ATM network operation,
International Switching Symposium (ISS’95), Berlin, 1995, pp. 314–318.

[12] Z. Hu, Z. Liu, A strongly polynomial algorithm for the inverse shortest arborescence problem, Working
Paper, Institute of Systems Sciences, Academia Sinica, Beijing, China, 1995.

[13] S. Hunag, Z. Liu, On the inverse problem of k-matching of bipartite graphs, Working Paper, School of
Business and Management, Hong Kong University of Science and Technology, Hong Kong, 1995.

[14] S. Hunag, Z. Liu, On the inverse version of the minimum cost Jow problem, Working Paper, School
of Business and Management, Hong Kong University of Science and Technology, Hong Kong, 1995.

[15] Y. Li, Inverse combinatorial optimization problems and connected factor problems, Dissertation, Institute
of Systems Science, Chinese Academy of Science, Beijing, China, 1996.

[16] Z. Ma, S. Xu, J. Zhang, Algorithms for inverse minimum spanning tree problem, Working Paper,
Department of Mathematics, City Polytechnic of Hong Kong, Hong Kong, 1996.

[17] Private Network–Network Interface Speci.cation, Version 1.0 (PNNI 1.0), The ATM Forum, Technical
Committee, March 1996.

[18] J. Roberts, U. Mocci, J. Virtamo (Eds.), Broadband Network TraGc, Springer, Berlin, 1996.
[19] A. Schrijver, Theory of Linear and Integer Programming, Wiley, New York, 1990.
[20] P.T. Sokkalingam, The minimum cost Jow problem: primal algorithms and cost perturbations,

Dissertation, Department of Mathematics, Indian Institute of Technology, Kanpur, India, 1996.
[21] P.T. Sokkalingam, R.K. Ahuja, J.B. Orlin, Solving the inverse spanning tree problems through network

Jow techniques, Working Paper SWP# 3890, MIT Sloan School of Management, Cambridge, MA,
1996.

[22] $E. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs, Oper. Res. 34
(1986) 250–256.

[23] S. Xu, J. Zhang, An inverse problem of the weighted shortest path problem, Japan J. Ind. Appl. Math.
12 (1995) 47–59.

[24] C. Yang, J. Zhang, Z. Ma, Inverse maximum Jow and minimum cut problem, Optimization 40 (1997)
147–170.

[25] J. Zhang, M.C. Cai, Inverse problem of minimum cuts, Math. Methods Oper. Res. 47 (1998) 1.
[26] J. Zhang, Z. Ma, C. Yang, A column generation method for inverse shortest path problems, ZOR-Math.

Methods Oper. Res. 41 (1995) 347–358.

	Inverse optimization in high-speed networks
	Introduction
	Networking motivation
	A general framework
	Finding a weighting with minimum error when no exact solution exists
	A case study using unique inverse shortest paths
	A direct LP solution for the unique inverse shortest path problem
	A simulated network example

	Conclusion
	Acknowledgements
	References

