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Abstract

Given a (combinatorial) optimization problem and a feasible solution to it, the correspond-
ing inverse optimization problem is to find a minimal adjustment of the cost function such
that the given solution becomes optimum.

Several such problems have been studied in the last ten years. After formalizing the notion
of an inverse problem and its variants, we present various methods for solving them. Then
we discuss the problems considered in the literature and the results that have been obtained.
Finally, we formulate some open problems.
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1 Introduction

When solving a (possibly combinatorial) optimization problem, we usually assume that the pa-
rameters such as costs, capacities, . . . are known and that we are interested in finding an optimal
solution. However, in practice, it may happen that we only know estimates for the parameters.
Additionally, we might know that certain solutions are optimal from observations or experiments.
The idea of inverse optimization is to find values of the parameters which make the known solutions
optimum and which differ from the given estimates as little as possible.

For instance, an important application comes from geophysical sciences and concerns predicting
the movements of earthquakes. To achieve this aim, geologic zones are discretized into a number
of cells. Adjacency relations can be modeled by arcs in a corresponding network (cf. Moser [66]).
Although some estimates for the transmission times are known, precise values are hard to obtain.
By observing an earthquake and the arrival times of the resulting seismic perturbations at various
points and assuming that earthquakes travel along shortest paths, the problem is to refine the
estimates of the transmission times between the cells. This is just an inverse shortest path problem.

Another possible application actually changes the real costs: Assume that we are given a road
network and some facility in it. The aim is to place the facility in such a way that the maximum
distance to the customers is minimum. However, we are often faced with the situation that the
facility already exists and cannot be relocated with reasonable costs. In such a situation, we may
want to modify the network as little as possible (improving roads . . . ), such that the location of
the facility becomes optimum (or such that the distances to the customers do not exceed some
given bounds). This is an example of the inverse center location problem. When modeling traffic
networks, a further option is to impose tolls in order to enforce an efficient use of the network (see
Dial [18]).

The choice of the word ,,inverse optimization“ was motivated in part by the widespread use of
inverse methods in other fields, cf. for instance [65] or [52].

Burton and Toint [9] first investigated an inverse shortest paths problem in 1992. Since then,
many problems have been considered by various authors, working at least partly independently.

∗The author has been partially supported by the Spezialforschungsbereich F 003 “Optimierung und Kon-
trolle”/Projektbereich Diskrete Optimierung.
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The notion of “inverse optimization” is always similar, but not the same. This paper first proposes
a uniform terminology for the numerous variants of “inverse problems” in Section 2. Then a survey
on the methods that have been employed is given in Section 3. Section 4 discusses those problems
and results that have been considered up to now. Finally we formulate some open problems in
Section 5.

2 Terminology

Before we formally introduce the concept of inverse optimization, we fix a few notations.
R, R+, Z, Z+ denote the set of reals, non negative reals, integers, and non negative integers,

respectively. We define R̄ := R ∪ {±∞}. We will use the convention that 0 · ∞ = 0. Vectors will
always be column vectors. 1 and ∞ will denote the vectors (1, . . . , 1)t and (∞, . . . ,∞)t in the
appropriate dimension.

If X is a set, we write P(X) for its power set. The notation R
X will sometimes be used for the

set {f : X → R} of real valued functions defined on X . In this notation, R may be substituted by
any other set. For finite sets X , we will usually identify R

X and R
|X|. For instance, if f, g ∈ R

X ,
we will write f tg for

∑

x∈X f(x)g(x). Furthermore, we will frequently represent P(X) by {0, 1}X .
In this situation, the characteristic vector xS of S ⊆ X is defined by xS(e) = 1 if e ∈ S and
xS(e) = 0 otherwise.

If f : X → R, we extend it to a function fΣ : P(X) → R by fΣ(S) :=
∑

x∈S f(x) for S ⊆ X .
We will usually omit the subscript Σ if this does not cause any ambiguity.

Let D = (V, A) be a directed graph with set of vertices V and set of arcs A. For a set
S ⊆ V , we define δ+(S) := {(v, w) ∈ A : v ∈ S, w /∈ S} as the set of arcs leaving S and
δ−(S) := δ+(V \ S) as the arcs entering S. We will write δ+(v) and δ−(v) instead of δ+({v})
and δ−({v}) for v ∈ V . Similarly, if G = (V, E) is an undirected graph and S ⊆ V , we define
δ(S) := {[v, w] ∈ E : v ∈ S, w /∈ S}.

2.1 Inverse Optimization in the Narrow Sense

Let (Fg)g∈G be a sequence of subsets Fg ⊆ R
n, called “sets of feasible solutions”, c ∈ R

n a given
cost vector and f : R

n×R
n → R a fixed objective function. We consider the family of optimization

problems
min f(c, x)

s. t. x ∈ Fg

(2.1)

where g ∈ G. Note that the cost vector c and the objective function f do not depend on the
particular set Fg.

Example 2.1 (Shortest paths in networks). Let D = (V, A) be a digraph and n = |A|. ca is the
length of the arc a ∈ A. For i 6= j ∈ V we define F(i,j) to be the set of characteristic vectors
of directed paths from i to j in D. Let G be some subset of {(i, j) : i 6= j ∈ V }. We define the
objective function f as f(c, x) := ctx. Then (2.1) models the shortest paths problem in D for
origin-destination pairs represented in G.

In applications it can happen that we do not know the costs c precisely. For instance, if we
model some road network as in Example 2.1, we know the natural length of the arcs. But the
real travel times usually depend on many factors that we may not be able to describe precisely.
Instead, we may run experiments for some origin-destination pairs Fg, g ∈ G, and find “real life”

shortest paths P̂g ∈ Fg. The idea of inverse optimization is to adjust the costs c to costs ĉ as little

as possible such that the given paths P̂g are indeed shortest paths under costs ĉ.
More formally, let x̂g ∈ Fg, g ∈ G, be given feasible solutions and l ≤ u ∈ R̄

n vectors
representing lower and upper bounds for the modified costs. Let ‖ · ‖ denote some vector norm.
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Then the inverse problem to (2.1) is

min ‖ĉ− c‖

s. t. f(ĉ, x̂g) = min{f(ĉ, x) : x ∈ Fg}, g ∈ G,

l ≤ ĉ ≤ u,

ĉ ∈ R
n.

(2.2)

In the literature, the inverse optimization problem is mostly not considered in its general form,
but in some special case. We introduce names for the different special formulations as follows:

• If |G| = 1, we will refer to the single feasible object inverse problem. In this case, we will
omit the subscript g and write F , x̂ instead of Fg , x̂g , {g} = G.

If |G| > 1, but Fg = Fh for all g, h ∈ G, we will speak of the multiple feasible object inverse
problem. The general case (there exist g, h ∈ G such that Fg 6= Fh) will be called the multiple
feasible set inverse problem.

• If l = −∞ and u = ∞, we will speak of the unconstrained inverse problem. If c ≥ 0, l = 0,
and u = ∞, we will call the problem sign constrained. The general case will be named
constrained.

• We will consider the following norm functions: Let w+, w− ∈ R
n with w+, w− > 0. The

functions

‖x‖1,w+,w−
:=

n
∑

i=1

(w+
i max{0, xi}+ w−

i max{0,−xi}),

‖x‖∞,w+,w−
:= max

i=1,...,n
(w+

i max{0, xi}+ w−
i max{0,−xi})

will be called asymmetric weighted l1 and l∞ norms, respectively. Of course, in general (i. e.,
if w+ 6= w−) these two functions are not vector norms. But it will not cause any problem
to call them a “norm” just for convenience. Sokkalingam [25] calls them “unorms”.

If w− = w+, we will call the norm symmetric weighted. If w+ = w− = 1, we will speak of the
unit weight norm. We note that the distinction between asymmetric weighted and symmetric
weighted norms will not be very important. In many cases, the signs of the components of x
will be clear: For instance, in order to make a given tree T̂ shortest, we certainly only have
to decrease the weights of edges in T̂ and to increase the others. However, the distinction
between weighted and unit weight norms will be much more important.

Furthermore, we will consider the unit weight l2 norm ‖x‖2 :=
√

∑n
i=1 x2

i .

In the subsequent sections of this paper, most of the polynomially solvable optimization prob-
lems considered will turn out to have polynomially solvable inverse problems. Actually, we will
prove this for a large class of problems where f(c, x) = ctx.

However, it should be noted that this is not true for arbitrary combinatorial optimization prob-
lems. Indeed, Cai, Yang, and Zhang [16] prove that the minmax inverse center location problem
is NP-hard, although the original minmax center location problem is known to be polynomially
solvable (cf. Hakimi [61]). See Section 4.18 for a more detailed discussion. The reverse question
“If the inverse problem is polynomially solvable, does this also hold for the original problem?” is
still open (cf. the list of open problems in Section 5).

2.2 Related Problems

There are several variations of inverse optimization problems that have been considered.
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2.2.1 Inverse Problems with Partially Given Solution

Let |G| = 1, F ⊆ R
n, M ⊆ {1, . . . , n}, x̂p : M → R, ‖ · ‖ some norm and consider the optimization

problem (2.1). The inverse problem with partially given solution is

min ‖ĉ− c‖

s. t. f(ĉ, x̂) = min{f(ĉ, x) : x ∈ F},

l ≤ ĉ ≤ u,

x̂i = x̂p
i for i ∈M,

x̂ ∈ F , ĉ ∈ R
n.

(2.3)

Example 2.2 (Minimum Spanning Tree). Assume that G = (V, E) is some connected undirected
graph, c : E → R and S ⊆ E. The aim is to modify c as little as possible such that there is a
minimum spanning tree of E which contains S. This problem can be encoded by (2.3).

This class of inverse problems has been investigated for the assignment problem (see Section 4.7)
and the minimum cut problem (see Section 4.14).

2.2.2 Reverse Problems with Prescribed Objective Function Ranges

Consider the original problems (2.1). Let Îg ⊆ R, g ∈ G, be some prescribed ranges for the
objective function values and ‖ · ‖ some norm. Then the problem

min ‖c− ĉ‖

s. t. min{f(ĉ, x) : x ∈ Fg} ∈ Îg , g ∈ G,

l ≤ ĉ ≤ u,

ĉ ∈ R
n

(2.4)

is called the reverse problem with prescribed objective function range. We avoid the term “inverse
problem” in order to exclude any possible ambiguity.

In contrast to the inverse problem, we do not specify a solution which we want to become
minimum, but we give objective function values we want to achieve with an arbitrary optimal
solution. In fact, Îg will be either an interval or a single number.

This type of problems has been investigated for the shortest paths problem (cf. Section 4.5)
and for the maximum capacity path problem (cf. Section 4.19).

A similar problem is addressed by the Critical Path Method with Crashing, cf. for instance
Winston [73, Section 8.4].

2.2.3 Reverse Problems with Budget Constraints

We consider the case |G| = 1 in (2.1). Let x̂ ∈ F , B ∈ R+ and ‖ · ‖ be some norm. The reverse
problem with budget constraints is

min f(ĉ, x̂)

s. t. ‖ĉ− c‖ ≤ B.
(2.5)

Here, we do specify a solution, but we do not require it to become an optimal solution. Instead,
we want to find the best improvement that does not exceed a certain budget B. This problem has
been studied for the center location problem (cf. Section 4.18).
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2.2.4 Improvement Problems with Budget Constraints

Assume |G| = 1 in (2.1). Let B ∈ R+ and ‖ · ‖ be some norm. The problem

min f(ĉ, x)

s. t. ‖c− ĉ‖ ≤ B,

x ∈ F ,

ĉ ∈ R
n.

(2.6)

may be called an improvement problem with given budget B.
In this case, we neither specify a solution that we want to improve nor a certain objective

value we want to reach. In this sense, the problem is already rather distant from the inverse
problems which are the subject of this survey. Therefore, we will not cover it in detail. We only
note that there is a broad literature in this field, which includes the shortest path problem (see for
instance Fulkerson and Harding [58]), the minimum spanning tree problem (see for instance Fred-
erickson and Solis-Oba [57, 56], Krumke, Marathe, Noltemeier, Ravi, and Ravi [63], Drangmeister,
Krumke, Marathe, Noltemeier, Ravi [50]), maximum flow problems (see for instance Phillips [68]),
bottleneck capacity expansion problems (see Yang and Zhang [74], Zhang, Yang, and Lin [76],
Burkard, Klinz, and Zhang [48], and [75]), and weight reduction problems (see Burkard, Lin, and
Zhang [49]).

3 Methods

This section presents some of the methods that have been used to solve inverse problems. We will
focus on ideas which may be applicable in many problems. Apart from these methods, several
ad-hoc methods can be applied to special problems.

3.1 Linear Programming Based Methods

Many inverse problems in the literature are solved by using linear programming methods. Either
a result on the inverse linear programming problem is derived and used, or the ideas are directly
applied. Although we will focus on combinatorial optimization problems, the inverse problems—
as the problem of modifying costs—are continuous problems. Using l1 or l∞ norms yields linear
programs. If the original problem can be formulated as a linear program, we further have a
convenient way of characterizing optimal solutions by duality properties.

3.1.1 The Inverse Linear Programming Problem

The inverse linear programming problem has first been investigated by Zhang and Liu [35]. They
formulate the inverse linear programming problem as a new linear program. Huang and Liu [23]
achieve the same result.

Ahuja and Orlin [2] also consider the dual of the inverse program. They show how the solution
to a problem which is similar to the original problem and the associated dual solutions can be
used to solve the inverse problem. Since their approach is rather general and can be used to solve
several inverse optimization problems, we sketch their approach in the following.

Let A ∈ R
m×n, c ∈ R

n, b ∈ R
m, r < s ∈ R̄

n, I := {1, . . . , m}, and J := {1, . . . , n}. We
consider the linear program

min ctx

s. t. Ax ≥ b,

r ≤ x ≤ s.

(3.1)

We note that in the case of unconstrained inverse optimization, the usual equivalence of the
various standard forms of linear programs does not hold: For instance, the linear program (3.1)
cannot be transformed to a linear program min{c̃tx̃ : Ãx̃ = b̃, x̃ ≥ 0}, because this requires the
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introduction of slack variables and corresponding objective function coefficients. These coefficients
would be allowed to vary in the inverse problem to the transformed linear program, which is not
the case in the original formulation.

We associate dual variables π ∈ R
m, ρ, σ ∈ R

n with the constraints in (3.1) and obtain the
dual problem

max πtb + ρtr − σts

s. t. πtA + ρt − σt = ct,

π ≥ 0, ρ ≥ 0, σ ≥ 0.

(3.2)

Let x̂ be a feasible solution to (3.1). We want to solve the corresponding single object uncon-
strained inverse problem

min ‖c− ĉ‖

s. t. ĉtx̂ = min{ĉtx : Ax ≥ b, r ≤ x ≤ s}.
(3.3)

We define B :=
{

i ∈ I :
∑

j∈J aij x̂j = bi

}

, R := {j ∈ J : x̂j = rj}, S := {j ∈ J : x̂j = sj}, and
T := J \ (R ∪ S) = {j ∈ J : rj < x̂j < sj}. Then B, R, and S correspond to the constraints in
(3.1) that hold with equality for x = x̂.

By the complementary slackness conditions, x̂ is an optimal solution to (3.1) where c has been
replaced by ĉ if and only if there are dual variables π, ρ, σ such that

∑

i∈B

aijπi + ρj = ĉj , j ∈ R,

∑

i∈B

aijπi − σj = ĉj , j ∈ S,

∑

i∈B

aijπi = ĉj , j ∈ T,

π ≥ 0, ρ ≥ 0, σ ≥ 0.

(3.4)

Note that the only components of π that actually occur in (3.4) are those that correspond to B,
but for simplicity we will still write π ∈ R

m. Similar remarks are valid for the other dual variables.
Therefore, the inverse linear programming problem (3.3) associated to (3.1) and the feasible

solution x̂ can be reformulated as

min{‖c− ĉ‖ : There are π ∈ R
m, ρ, σ ∈ R

n such that (3.4) holds}. (3.5)

We will restrict ourselves to the symmetric weighted l1 norm: This (or a weighted l∞ norm)
enables us to formulate (3.5) as a linear program. We set ĉ = c + α − β for some α, β ∈ R

n
+ and

obtain (we can omit βj for j ∈ R because it is cheaper to increase ρj if necessary; similarly αj = 0
for j ∈ S)

max −wtα− wtβ

s. t.
∑

i∈B

aijπi + ρj − αj = cj , j ∈ R,

∑

i∈B

aijπi − σj + βj = cj , j ∈ S,

∑

i∈B

aijπi − αj + βj = cj , j ∈ T,

π ≥ 0, ρ ≥ 0, σ ≥ 0, α ≥ 0, β ≥ 0.

(3.6)

Associating a dual variable ỹj to constraint j and making the linear change of variables ỹj = yj−x̂j

(which does not change the variables π, α, β, ρ, σ), we end up with the following translated dual
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of (3.6):
min cty

s. t. ABy ≥ bB ,

rj ≤ yj ≤ rj + wj for j such that rj = x̂j ,

sj − wj ≤ yj ≤ sj for j such that x̂j = sj ,

x̂j − wj ≤ yj ≤ x̂j + wj for j such that rj < x̂j < sj ,

y ∈ R
n,

(3.7)

where AB and bB denote the rows of A and b that are induced by B.
Therefore, in order to solve the inverse problem (3.3), we have to solve the linear program (3.7)

for the variable y. This problem is very similar to the initial problem (3.1): Only the inequalities
that were inactive for x̂ have been dropped and the upper and lower bounds on the variables have
been changed.

Theorem 3.1 (Ahuja and Orlin [2]). Let x̂ be a feasible solution to (3.1), y be an optimal
solution to (3.7), π the values of the dual variables associated with the constraints ABy ≥ bB in
an optimal solution to the dual of (3.7) and cπ

j := cj −
∑

i∈B aijπi. Then an optimal solution to
(3.3) for the symmetric weighted l1 norm is given by

ĉj =











cj −
∣

∣cπ
j

∣

∣ if cπ
j > 0 and x̂j > rj ,

cj +
∣

∣cπ
j

∣

∣ if cπ
j < 0 and x̂j < sj ,

cj otherwise.

(3.8)

We note that (3.8) easily follows from (3.6).
If the original matrix A is a {0,±1}-matrix, then (3.7) is a combinatorial linear program. This

implies that there is a strongly polynomial algorithm to solve the inverse problem by a result of
Tardos [72].

Note that if the original problem (3.1) comes from a combinatorial optimization problem, we
typically have r = 0, s = 1, and x̂ will be a binary vector. If we consider the case of the unit
weight l1 norm, then (3.7) reduces to the problem

min cty

s. t. ABy ≥ bB ,

0 ≤ y ≤ 1,

(3.9)

which is just a relaxation of the original problem (3.1). Moreover, if all constraints in Ax̂ ≥ b are
satisfied with equality, the inverse problem (3.9) is identical to the original problem. This is also
proved by Zhang and Liu [36].

The case of the l∞ norm can also be handled by linear programming methods. As an example
for the results in this direction, we cite the following theorem:

Theorem 3.2 (Ahuja and Orlin [2]). Let x̂ be a feasible solution to (3.1) and y be an optimal
solution to

min cty

s. t. ABy ≥ bB for B =
{

i ∈ I :
∑

j∈J aij x̂j = bi

}

,
∑

j∈J

1

wj
|yj − x̂j | ≤ 1,

yj ≥ x̂j for j such that x̂j = rj ,

yj ≤ x̂j for j such that x̂j = sj .

(3.10)

Let π : B → R+ be the values of the dual variables associated with the constraints ABy ≥ bB

in (3.10) in an optimal dual solution to (3.10). Define cπ
j := cj −

∑

i∈B aijπi. Then an optimal
solution to (3.3) for the symmetric weighted l∞ norm is given by (3.8).
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3.1.2 Column Generation Method

Zhang, Ma, and Yang [43] propose a column generation method for the inverse shortest path
problem. In Yang and Zhang [31], this method is formulated for general inverse combinatorial
optimization problems. We will follow their exposition to sketch the method.

We consider the general inverse optimization problem (2.2) with the linear cost function
f(c, x) = ctx and the asymmetric weighted l1 norm. We assume that all Fg, g ∈ G, and G
itself are finite sets. Write ĉ = c+α−β for some α, β ≥ 0. Then it is clear that (2.2) is equivalent
to

min w+t
α + w−t

β

s. t. (c + α− β)tx ≥ (c + α− β)tx̂g , g ∈ G, x ∈ Fg,

0 ≤ α ≤ u− c,

0 ≤ β ≤ c− l.

(3.11)

This is a linear program in the 2n variables α, β with 2n +
∑

g∈G |Fg| constraints. We note that
in general, the number of constraints will be rather large.

Introducing dual variables ygx, y1, y2, the dual of (3.11) is

max (c− u)ty1 + (l − c)ty2 +
∑

g∈G

∑

x∈Fg

ygxct(x̂g − x)

s. t. −y1 +
∑

g∈G

∑

x∈Fg

ygx(x− x̂g) ≤ w+,

−y2 +
∑

g∈G

∑

x∈Fg

ygx(x̂g − x) ≤ w−,

ygx ≥ 0, g ∈ G, x ∈ Fg,

y1 ≥ 0, y2 ≥ 0.

(3.12)

This linear program can be solved using the revised simplex method and starting with y1 = y2 = 0.
Pivot columns can be chosen as follows: Either we take one of the 4n columns that correspond to
y1, y2, and the slack variables, or we take the column that corresponds to some ygx. The latter is
the case if and only if the constraint (c + α− β)tx ≥ (c + α− β)tx̂g in (3.11) is violated. In order
to find such a constraint, we have to solve the original optimization problem (2.1) for all g ∈ G.
Therefore, in each step, we have to calculate the current dual solution (α, β) and we have to check
whether for all g ∈ G the solution x̂ is optimum under costs ĉ = c + α−β. If this is true, we stop,
if not, a pivot column has been found.

To summarize, this method has the advantage that no linear programming formulation of the
original problem has to be used. The price is that the original problem has to be solved many
times. Numerical experiments have been carried out for the inverse shortest paths problem by
Zhang, Ma, and Yang [43] and for several inverse problems by Yang [29].

3.1.3 Ellipsoid Method

Ahuja and Orlin [2] and Yang and Zhang [31] point out that the ellipsoid method (cf. Grötschel,
Lovász, and Schrijver [60]) can be used to prove polynomial solvability of inverse problems in
many cases.

Theorem 3.3 (Ahuja and Orlin [2], Yang and Zhang [31]). Let f(c, x) := ctx, Fg finite for
all g ∈ G, G finite, and consider the weighted l1 norm.

Assume that there is an algorithm to solve (2.1) for an arbitrary l ≤ c ≤ u and a given Fg,
g ∈ G, in polynomial time.

Then the inverse problem (2.2) can be solved in polynomial time with respect to n, |G|, the size
of the objective function in (3.11) and the maximum size of a single constraint in (3.11).
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This follows from the fact that the separation problem for (3.11) can be solved by solving
the original problems Fg, g ∈ G, in polynomial time and by applying the ellipsoid method (cf.
Grötschel, Lovász, and Schrijver [60, Theorem 6.4.9]).

3.2 Duality for Inverse Problems under a General Norm

Sokkalingam [25] develops a duality theory for inverse linear problems under general “unorms”
using duality results in convex analysis. A function k : R

n → R is called an unorm, if

1. k(x) ≥ 0 for all x ∈ R
n and k(x) = 0 if and only if x = 0,

2. k(λx) = λk(x) for λ > 0 and x ∈ R
n,

3. k(x + y) ≤ k(x) + k(y) for x, y ∈ R
n.

Its polar k0 : R
n → R is defined by k0(x) := supy 6=0 xty/k(y).

Sokkalingam proves the following duality theorem:

Theorem 3.4. Let c ∈ R
n, P ⊆ R

n a polyhedron, x̂ ∈ P and k be a unorm. Then there exist the
optima in

min{k(ĉ− c) : ĉtx̂ ≤ ĉtx for all x ∈ P} = max{−cty : y ∈ cone(P − x̂), k0(y) ≤ 1} (3.13)

and they are equal.

Since the polar of the l1 norm is the l∞ norm (and conversely), the result corresponds to
Theorems 3.1 and 3.2 for these norms. The polar of the l2 norm is again the l2 norm.

3.3 Newton Type Methods

Zhang and Liu [37] propose a Newton type method to solve inverse combinatorial problems under
the l∞ norm.

The method can be used for the following class of combinatorial optimization problems: Given
a set E, a set of feasible solutions F ⊆ P(E), and a cost function c : E → R. We consider the
optimization problem

min c(x)

s. t. x ∈ F .
(3.14)

We assume that we have a characterization of an optimal solution in the following form: A
feasible solution x̂ is an optimal solution to (3.14) if and only if

c(C \ S)− c(C ∩ S) ≤ δ, C ∈ C (3.15)

for some δ ∈ R, some collection of subsets C ⊆ P(E) and some set S ⊆ E that depend on x̂.

Example 3.5 (Minimum spanning tree). Let G = (V, E) be a graph, F := {T ⊆ E : T is a spanning
tree of G} and c : E → R. The minimum spanning tree problem is to solve (3.14). It is well-known
that a spanning tree T̂ is minimum if and only if

cf ≥ ce (3.16)

holds for all f ∈ E \ T̂ and all e ∈ T̂ ∩ CT̂ (f), where CT̂ (f) denotes the unique cycle in T̂ ∪ {f}

(cf. for example Ahuja, Magnanti, and Orlin [46, Theorem 13.3]). Let S := E \ T̂ , C := {{f, e} :
f ∈ E \ T̂ , e ∈ T̂ ∩ CT̂ (f)}, δ := 0, then we see that (3.15) is equivalent to (3.16).

Similarly, the minimum cost flow, the maximum perfect matching and the maximum matroid
intersection problems can be modeled by (3.15), cf. [37].
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Let x̂ ∈ F be fixed, and let δ, C, and S as in (3.15). The unconstrained single object inverse
problem under symmetric weighted l∞ norm can be written as

min ‖ĉ− c‖∞,w

s. t. ĉ(C \ S)− ĉ(C ∩ S) ≤ δ, C ∈ C,

ĉ ∈ R
n.

(3.17)

Of course, if c is already a feasible solution to (3.17), there is nothing to do. Therefore, we assume
the contrary.

We observe that if ĉ is an optimal solution to (3.17) with objective value θ̂, then

c∗(e) :=

{

c(e) + θ̂/w(e) if e ∈ S,

c(e)− θ̂/w(e) if e /∈ S

is also an optimal solution to (3.17). We define b(e) := 1/w(e). We conclude that in order to solve
(3.17), we only have to solve the problem

min θ

s. t. c(C \ S)− c(C ∩ S)− θb(C) ≤ δ, C ∈ C,

θ ≥ 0.

(3.18)

It is not difficult to show (cf. Zhang and Liu [37, Lemma 2]) that θ̂ is optimal for (3.18) if and
only if

max
C∈C
{c(C \ S)− c(C ∩ S)− δ − θ̂ · b(C)} = 0. (3.19)

This means that we are looking for a zero of the function

h(θ) = max
C∈C
{c(C \ S)− c(C ∩ S)− δ − θ · b(C)}. (3.20)

Another equivalent formulation is

θ̂ = max
C∈C

{

c(C \ S)− c(C ∩ S)− δ

b(C)

}

. (3.21)

This is a linear fractional combinatorial optimization problem. Radzik [69] proposes a finite
Newton method to solve it (cf. Algorithm 1).

Algorithm 1 Newton method to solve (3.19)

i← 0
θi ← 0
repeat

Solve the optimization problem h(θi):
Determine Ci ∈ C such that h(θi) = c(Ci \ S)− c(Ci ∩ S)− δ − θ · b(Ci).

θi+1 ← θi − h(θi)/(−b(Ci))
until h(θi) = 0

Theorem 3.6. Let n := |E|. Algorithm 1 finds a solution θ̂ to (3.19) in O(n2 log2 n) iterations,
where each iteration requires the solution of h(θ) for some θ.

If b(e) = 1 for all e ∈ E, it requires at most n + 1 iterations.

This theorem is proved by Radzik [69, Theorems 3.5 and 3.9] for δ = 0. The affine case δ 6= 0
can be proved analogously. The only significant change is to use [69, Lemma 3.6] in dimension
n + 1.

Therefore, if we have a strongly polynomial algorithm to solve h(θ) for arbitrary nonnegative
θ, this yields a strongly polynomial algorithm for the inverse problem.
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3.4 Feasible Solutions to Inverse Problems

The aim of this section is to summarize results on the set of feasible solutions to a sign constrained
multiple feasible object (but single feasible set) inverse optimization problem with f(c, x) = ctx.
We write F instead of Fg. We assume that F is finite and F ∈ R

n
+.

By definition, ĉ is feasible for (2.2) if and only if

ĉ ∈ Ω := {c ≥ 0 : ctx ≥ ctx̂g for all g ∈ G, x ∈ F}. (3.22)

Define

Ω′ := {c ≥ 0 : ctx̂g = 1 for g ∈ G and ctx ≥ 1 for x ∈ F},

C := {c ≥ 0 : ctx̂g = 0 for g ∈ G and ctx ≥ 0 for x ∈ F}.

It is clear that
Ω =

⋃

λ>0

λΩ′ ∪ C. (3.23)

Let J := {j : x̂gj = 0 for all g ∈ G} and let uj denote the j-th unit vector. We see that C is the
recession cone of the pointed polyhedron Ω′. We note that x̂g ≥ 0 implies C = cone({uj : j ∈ J}).
Let ci, i ∈ I , be the vertices of Ω′. Then (3.23) yields

Ω = cone({ci : i ∈ I} ∪ {uj : j ∈ J}). (3.24)

We note that Ω′′ := {c ≥ 0 : ctx ≥ 1, x ∈ F} is a polyhedron of blocking type. By Schrijver [71,
Theorem 9.2], the vertices of Ω′′ are the rows of the matrix B such that {y ≥ 0 : By ≥ 1} is the
blocking polyhedron of Ω′′. Therefore, ci, i ∈ I , are those rows of B that are contained in Ω′.

In several cases, there is a combinatorial interpretation of blocking pairs of polyhedra, which
leads to a combinatorial interpretation of (3.24) (cf. Nemhauser and Wolsey [67, Section III.1.6]).
This is shown by Zhang and Ma [42] for the shortest paths problem (Section 4.5), the assignment
problem (Section 4.7), the shortest arborescence problem (Section 4.13), and the minimum cut
problem (Section 4.14).

Sokkalingam [25] describes Ω for the case of a polyhedron F : He shows that the polar of Ω is
given by − cone(F − x̂). The cone generated by F − x̂ is the set of feasible directions to F at x̂.

4 Solved Inverse and Reverse Combinatorial Optimization

Problems

In this section, we will give a survey on the results on inverse and reverse problems that have
been studied up to now. Most problems have been considered by several authors; we will sort
the presentation by problems. We start with more general problems and will specialize step by
step. We note that our approach is in contrast to the evolution of inverse optimization in the last
decade, which obviously started with the special cases. Therefore, some of the results obtained by
earlier papers may be seen to be corollaries of the newer general results. However, we will mention
the earlier results to give proper credit and/or to point out that in special cases, special methods
may be more attractive than the general results.

4.1 Linear Programming

The inverse linear programming problem has been discussed in Section 3.1.1.

4.2 Submodular Function Maximization

We start the description of the submodular function maximization problem by some definitions.
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Let X be a set. A collection C ⊆ P(X) of subsets of X is called a crossing family, if S ∪ T ∈ C
and S ∩ T ∈ C for all S, T ∈ C such that S ∩ T 6= ∅ and S ∪ T 6= X . A function f : C → R is said
to be submodular on crossing sets, if

f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T ) (4.1)

holds for all S, T such that S ∩ T 6= ∅ and S ∪ T 6= X .
Similarly, a collection C ⊆ P(X) of subsets of X is called an intersecting family, if S ∪ T ∈ C

and S ∩T ∈ C for all S, T ∈ C such that S ∩T 6= ∅. A function f : C → R is said to be submodular
on intersecting sets, if (4.1) holds for all S, T such that S ∩ T 6= ∅.

Let D = (V, A) be a directed graph, c : A→ R be a cost function, r ≤ s ∈ R̄
A some lower and

upper bounds, C ⊆ P(V ) a crossing family on V and b : C → R a submodular function on crossing
sets on C. Then the submodular function problem is

max ctx

s. t. x(δ−(S))− x(δ+(S)) ≤ b(S), S ∈ C,

r ≤ x ≤ s,

x ∈ R
A.

(4.2)

The problem has been introduced by Edmonds and Giles [51]. They prove that (4.2) is total dual
integral. This implies that if c, b, r, s are integral, all vertices of the polyhedron defined by (4.2)
are integral and the same holds for its dual.

It turns out that many combinatorial optimization problems such as network flow problems
and the matroid intersection problem can be embedded in this model, we refer to the original
paper of Edmonds and Giles [51] and to Schrijver [70].

Cai, Yang, and Li [15] consider the constrained single object inverse problem under asymmetric
weighted l1 norm. The authors combine the linear programming approach (cf. Section 3.1.1) with
techniques due to Frank [54] (who uses it for providing a combinatorial algorithm for (4.2)).
These reduce the number of variables in the inverse problem drastically (note that the number of
constraints in (4.2) may be exponential). This yields the following theorem:

Theorem 4.1 (Cai, Yang, and Li [15]). Let x̂ be a feasible solution to (4.2). Define

P (v) := {u ∈ V : There is no S ∈ C such that x̂(δ−(S))− x̂(δ+(S)) = b(S), v ∈ S and u /∈ S},

R := {e ∈ A : r(e) = x̂(e) < s(e)},

S := {e ∈ A : r(e) < x̂(e) = s(e)},

T := {e ∈ A : r(e) < x̂(e) < s(e)}.

Let ĉ = c + α − β. Then the constrained inverse problem to (4.2) under asymmetric weighted l1
norm with respect to the single feasible solution x̂ is equivalent to the combinatorial linear program

max −
∑

e∈S∪T

w+(e)α(e)−
∑

e∈R∪T

w−(e)β(e)

s. t. p(v) − p(u) + β(e) ≥ c(e), e = (u, v) ∈ R,

p(v) − p(u) − α(e) ≤ c(e), e = (u, v) ∈ S,

p(v) − p(u) − α(e) + β(e) = c(e), e = (u, v) ∈ T,

p(u) ≥ p(v), u ∈ P (v), v ∈ V,

0 ≤ α(e) ≤ u(e) − c(e), e ∈ A,

0 ≤ β(e) ≤ c(e) − l(e), e ∈ A,

p ∈ R
V , α ∈ R

S∪T , β ∈ R
R∪T .

(4.3)

This linear program has at most |V |2 + 3 |A| constraints and |V |+ 2 |A| variables.



4 SOLVED INVERSE AND REVERSE PROBLEMS 13

Assume that there is a strongly polynomial oracle available, which answers the question: “Given
any feasible solution x̂ and vertices u, v ∈ V , is u ∈ P (v)?” We note that such an oracle exists
in many special cases. Then the inverse submodular function problem can be solved in strongly
polynomial time using Tardos’ result [72], because (4.3) is a combinatorial linear program.

Cai, Yang, and Li [15] show that the dual of (4.3) can be interpreted as a minimum cost
circulation problem in a digraph D′ with

|R|+ |S|+2 |T |+ |{e ∈ S ∪ T : u(e) <∞}|+ |{e ∈ R ∪ T : l(e) > −∞}|+
∑

v∈V

|P (v)| ≤ 4 |A|+ |V |2

arcs and the original set of vertices V . It is well known that this problem can be solved by strongly
polynomial algorithms, we refer for instance to Ahuja, Magnanti, and Orlin [46]. When a minimal
flow is calculated, the corresponding dual variables can be obtained by applying the out-of-kilter
method starting with the optimal flow. This yields a strongly polynomial combinatorial algorithm
for the solution of the inverse submodular function problem under the same hypothesis on the
existence of a strongly polynomial oracle for P (v). The inverse problem is feasible if and only if
D′ does not contain any negative cycle with infinite capacity.

Cai, Yang, and Li [15] also consider the multiple feasible object constrained inverse problem to
(4.2) under asymmetric weighted l1 norm. In analogy to Theorem 4.1, they obtain a combinatorial

linear program with at most |G| (|A| + |V |2) + 2 |A| constraints and |G| · |V | + 2 |A| variables. If
there is a strongly polynomial oracle for Pg(v), g ∈ G, (where Pg(v) is the analogue of P (v) for x̂g),
this yields a strongly polynomial algorithm by Tardos [72]. However, no combinatorial strongly
polynomial algorithm is known.

4.3 Polymatroidal Flow

Let D = (V, A) be a directed graph. For v ∈ V , let C+
v ⊆ P(δ+(v)) and C−v ⊆ P(δ−(v)) be

intersecting families on δ+(v) and δ−(v) for v ∈ V and b+
v : C+

v → R+ and b−v : C−v → R+ be
submodular functions on intersecting sets. Let c : A→ R be a cost function.

Then the polymatroidal flow problem is

min
∑

e∈A

c(e)x(e)

s. t. x(δ+(v)) = x(δ−(v)), v ∈ V,

x(S) ≤ b+
v (S), v ∈ V, S ∈ C+

v ,

x(S) ≤ b−v (S), v ∈ V, S ∈ C−v ,

x ≥ 0,

x ∈ R
A.

(4.4)

The problem has been introduced independently by Lawler and Martel [64] and by Hassin [62].
It turns out that the polymatroidal flow problem and the submodular function problem discussed
in Section 4.2 can be reduced to each other (cf. Schrijver [70]).

Cai, Yang, and Li [14] consider the single object constrained inverse polymatroidal flow problem
under asymmetric weighted l1 norm. As in the case of submodular functions (Section 4.2), it can

be formulated as a combinatorial linear program with at most |A|2+7 |A| constraints and |V |+4 |A|
variables. This linear program is linearly transformed to another program, whose dual can again
be interpreted as a minimum cost circulation problem on a related network. Since the methods
and the type of the results are rather similar to those obtained in the case of submodular functions,
we refer to the original article for a detailed exposition.
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4.4 Minimum Cost Flow

Let D = (V, A) be a directed graph, s ∈ R
A
+, c ∈ R

A, b ∈ R
V . We consider the minimum cost flow

problem
min ctx

s. t. x(δ−(v))− x(δ+(v)) = b(v), v ∈ V,

0 ≤ x ≤ s,

x ∈ R
A.

(4.5)

Let x̂ be a feasible solution to (4.5). The single object unconstrained inverse problem under unit
weight l1 norm is considered by Zhang and Liu [35] and Ahuja and Orlin [2] using the linear
programming approach described in Section 3.1.1. They show that the inverse problem can be
formulated as a minimum cost circulation problem in the residual network D′ corresponding to x̂
(cf. Ahuja, Magnanti, and Orlin [46, Section 9.1]) with unit capacities. Since the minimum cost
flow problem is the special case C =

⋃

v∈V

{

{v}, V \ {v}
}

, b({v}) = b(v), b(V \ {v}) = −b(v)
of the submodular function problem considered in Section 4.2, it turns out that their result is
contained in the result of Cai, Yang and Li [15]. Note that in this setting, P (v) = {v} for all
v ∈ V . The same result is also obtained by Ahuja and Orlin [3] using combinatorial methods and
by Sokkalingam [25] using Theorem 3.4.

The unconstrained case of unit weight l∞ norm is considered by Ahuja and Orlin [2] using The-
orem 3.2, by Zhang and Liu [37] using the approach sketched in Section 3.3, by Sokkalingam [25]
using Theorem 3.4, and by Ahuja and Orlin [3] using combinatorial methods. All three papers
prove that under this norm the unconstrained inverse problem is equivalent to the minimum mean
cycle problem in the residual network D′ corresponding to x̂. Ahuja and Orlin [2, 3] and Sokka-
lingam [25] also consider the weighted l∞ norm and prove that the inverse problem is equivalent
to a minimum cost-to-weight ratio cycle problem in D′.

The single object unconstrained inverse minimum flow problem under unit weight l2 norm is
transformed by Sokkalingam [25] to a quadratic cost flow problem using the duality Theorem (3.4).

Dial [18, 19] studies the problem of computing minimal-revenue tolls in a road network. The
problem is to impose tolls in such a way that the paths chosen by the users (which choose “user
optimal” paths) are indeed the “system optimal” paths (which use the network most efficiently)
and such that the total amount of tolls raised is minimum. The author formulates the problem
as an inverse minimum cost flow problem and (implicitly) uses the linear programming approach
(Section 3.1.1).

4.5 Shortest Paths

The shortest paths problems has already been introduced in Example 2.1. Its inverse problem
has attracted particular attention. Actually it was the first inverse optimization problem that has
been considered (Burton and Toint [9]).

We consider first the case of multiple feasible sets, i. e., there are several origin-destination
pairs that we want to be optimal under modified costs. Burton and Toint [9] consider this problem
using the l2 norm. They formulate the problem as a quadratic program and use Goldfarb and
Idnani’s [59] algorithm to solve it. We also refer to Burton [7].

The unconstrained case under unit weight l1 norm is considered by Zhang, Ma, and Yang [43]
who propose the column generation method discussed in Section 3.1.2. We remark that this method
is not guaranteed to be polynomial. Cai and Yang [13] give a combinatorial linear program for
the constrained multiple object inverse problem under l1 norm with asymmetric weights. If all
origin-destination pairs share a common origin, they transform the problem to a minimum cost
circulation problem.

We now turn to the single feasible object case. It is well known that the shortest s-t-path
problem can be written as a special minimum cost flow problem (if we assume that D does not
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contain any negative cost cycle):

min ctx

s. t. x(δ−(v))− x(δ+(v)) =











1 if v = t,

−1 if v = s,

0 otherwise,

x ≥ 0,

x ∈ R
A.

(4.6)

This implies that the results cited in Section 4.4 apply. Zhang and Liu [36] and Ahuja and Orlin [2]
use (3.9) to show that the unconstrained inverse shortest path problem under unit weight l1 norm
is again a shortest path problem in the same graph. Therefore shortest path algorithms can
be used, which is more efficient than just applying the methods for the more general case of a
minimum cost flow problem. Hu and Liu [22] use their O(|V |3) algorithm for the inverse shortest
arborescence problem (see Section 4.13) to solve the single object sign constrained inverse shortest
path problem under unit weight l1 norm.

Zhang and Liu [36] apply the linear programming approach from Section 3.1.1 to state a linear
program for the inverse shortest path problem under unit weight l∞ norm.

A reverse shortest paths problem with prescribed objective function values is studied by Burton,
Pulleyblank, and Toint [8]. They consider the sign constrained version of (2.4) with Îg = (0, f̂g] for

some f̂g ∈ R, g ∈ G, and use the unit weight l2 norm. By reducing the 3-satisfiability problem to
this problem, they show that it is NP-hard. The set of feasible solutions to the reverse problem is
non-convex. They give an algorithm to search a local optimum of the reverse problem, which uses
the quadratic programming approach to the inverse problem considered in Burton and Toint [9]
as a subroutine.

Let s ∈ V be a fixed vertex, G = V \ {s}, and Fg , g ∈ G, be the set of paths from s to g in D.

Let f̂ : G → R+ and Îg = (0, f̂g], g ∈ G. This special case of the constrained reverse shortest paths
problem with prescribed objective function values is considered by Zhang, Yang, and Cai [45]
under weighted l1 norm. This problem may also be seen as some reverse formulation of the center
location problem, but such a description does not fit into the categories defined in Sections 2.2.2
and 2.2.3. By reduction of the satisfiability problem, the authors show that the problem is NP-
hard even in the sign constrained case under unit weight l1 norm and with a constant function
f̂g. The authors give a mixed integer programming formulation of their problem, where binary
variables correspond to the shortest path tree that realizes the shortest paths from s to the vertices
of V . They propose the following heuristic algorithm: Solve the linear relaxation of the mixed
integer program, round the binary variables to obtain a directed s-rooted spanning tree, and fix
this tree. In a second step, they give an O(|V |2) algorithm to solve the problem restricted to this
tree. The problem is also considered by Berman, Ingco, and Odoni [5] who give a mixed integer
programming formulation. The restriction on tree networks is also considered by Zhang, Liu, and
Ma [40].

Fekete, Hochstättler, Kromberg, and Moll [20] consider the feasibility of the sign constrained

reverse shortest paths problem (2.4) in undirected graphs with Îg = {f̂g} for some f̂g ∈ R, g ∈ G.
As in Example 2.1, G ⊆ V × V is a collection of origin-destination pairs. Their motivation is
the following: When observing travel times in a road network, it may be easier to collect the
travel times between some source-destination-pairs (for instance by evaluating tachograph data)
than to measure travel times for single streets. They show that the set of feasible solutions is
not necessarily connected. Using the NP-completeness of the vertex disjoint paths problem (cf.
Frank [55]) they show that the problem is NP-complete. They discuss various special cases where
the problem is still NP-complete. For instance, the problem is NP-complete when restricted to
the case that the auxiliary graph G′ = (V,G) can be covered by two stars (where a star is a set
S ⊆ {v}× V for some v ∈ V ). However, the problem is polynomially solvable if G is a star or if it
is the union of complete stars (a complete star is a set S = {v}× V ). They also consider the case
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of directed graphs: They show for instance that the problem on directed graphs is NP-complete
even if it is restricted to |G| = 3.

Applying the methods of Section 3.4, Zhang and Ma [42] show that the set of feasible solutions
to the sign constrained multiple feasible object inverse shortest s-t-path problem is a polyhedral
cone. Its extreme directions are the unit vectors ue corresponding to the arcs not contained in any
of the prescribed paths x̂g plus the incidence vectors of minimal (with respect to inclusion) s-t
cuts that intersect each x̂g exactly once. The same result has been proved earlier (without using
blocking theory) by Xu and Zhang [28].

The concept of an inverse shortest paths problem with correlated costs is considered by Burton
and Toint [10] and Yang [29]. Let (A1, . . . , Ar) be a partition of A and π : A → {1, . . . , r} the
function such that a ∈ Aπ(a) for all a ∈ A. The idea is that the costs of the arcs contained in one
Ai will not be allowed to change independently. Instead, let ρ : A × R

r → R be a function that
calculates the cost of an arc a depending on the “cost variables” associated to the sets Ai. For
instance, when modeling a traffic network, signalized junctions can be modeled by several arcs for
the various possible turns, and the costs of all these arcs will only depend in some fixed way on
the relevant traffic light cycle. Let G ⊆ V ×V be a set of origin-destination pairs, F(s,t) be the set
of incidence vectors of paths from s to t in D. Fix c ∈ R

r and some paths x̂g ∈ Fg, g ∈ G. Then
the inverse shortest paths problem with correlated costs is

min ‖ĉ− c‖

s. t.
∑

a∈A

x̂g
aρ(a, ĉ) ≤

∑

a∈A

xaρ(a, ĉ), g ∈ G, x ∈ Fg ,

ĉ ∈ R
r.

(4.7)

Burton and Toint [10] study this problem for ρ(a, c) = γacπ(a), where the γ ∈ R
A is a fixed vector

of ratios. They use the l2 norm and allow some further linear constraints on ĉ. They transform
the problem to a quadratic programming problem, which is solved by using a specialized variant
of the Goldfarb-Idnani [59] algorithm. Yang [29] considers the partition {δ+(v) : v ∈ V } of A and
considers the case ρ((s, t), c) = c(s) + c0(s, t) for some fixed c0 : A → R. He uses the asymmetric
weighted l1 norm and gives a linear programming formulation of the problem. The dual problem
can be seen as a minimum cost multicommodity circulation problem.

4.6 Shortest Path Tree

Let D = (V, A) be a directed graph, s ∈ V and c ∈ R
A
+. A directed spanning tree rooted from s is

a set T ⊆ A such that T contains no arc pointing to s, exactly one arc pointing to each vertex in
V \ {s}, and such that for each j ∈ V \ {s}, T contains exactly one path from s to j. A directed
spanning tree rooted from s is called a shortest path tree with root s, if for each j ∈ V \ {s} the
path from s to j is the shortest path from s to j in the graph D. It is known (cf. Ahuja, Magnanti,
and Orlin [46, Section 1.2]) that the shortest path tree problem can be formulated as a minimum
cost flow problem:

min ctx

s. t. x(δ−(v))− x(δ+(v)) =

{

−(|V | − 1) if v = s,

1 otherwise,

x ≥ 0,

x ∈ R
A.

(4.8)

Zhang and Ma [41] use the linear programming method outlined in Section 3.1.1 to transform
the constrained single object inverse shortest path tree problem under unit weight l1 norm to a
minimum cost circulation problem. This also follows from Section 4.4.
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4.7 Assignment

Let V1, V2 be two sets of equal cardinality, A = V1 × V2, c : A → R̄. The assignment problem is
to find a bijection π : V1 → V2 such that

∑

v∈V1
cv,π(v) is minimum. Let D = (V1 ∪ V2, A) be the

associated bipartite graph. Then the assignment problem can be formulated as a minimum cost
flow problem:

min ctx

s. t. x(δ−(v)) − x(δ+(v)) =

{

−1 if v ∈ V1,

1 if v ∈ V2,

x ≥ 0,

x ∈ R
A.

(4.9)

This implies that the single object inverse assignment problem under (possibly weighted) l1 norm
can be stated as a minimum cost circulation problem by the results of Section 4.4 (or Section 4.2
in the constrained case). This is derived using the linear programming methods (Section 3.1.1) by
Zhang and Liu [35, 36], Zhang and Ma [41], and Ahuja and Orlin [2].

It follows from (3.9) that the unconstrained inverse assignment problem under unit weight l1
norm is again the same assignment problem. This is pointed out by Zhang and Liu [35, 36] and
Ahuja and Orlin [2].

The constrained inverse problem with partially given solution is proved to be NP-hard by
Yang [33].

4.8 Minimum Weight Bipartite Perfect k-Matching

Let V1, V2 be two sets of equal cardinality, E ⊆ V1 × V2, c : E → R, and k ∈ Z+ an integer. Then
the minimum weight perfect k-matching problem in the bipartite graph G = (V1 ∪ V2, E) is

min c(S)

s. t. |δ(v) ∩ S| = k, v ∈ V1 ∪ V2,

S ⊆ E.

(4.10)

It is clear that this problem can be formulated as a minimum cost flow problem, and therefore
the results of Section 4.4 imply that the single object inverse problem can be transformed to a
minimum cost circulation problem. Using their linear programming results, Huang and Liu [23]
prove that the unconstrained single object case under unit weight l1 norm can be transformed to
a minimum cost circulation problem in a bipartite graph. Note that Theorem 3.1 implies that the
inverse problem equals the original problem.

Zhang and Ma [42] study the set of feasible solutions to the sign constrained multiple object
inverse maximum weight bipartite matching (not necessarily perfect). They use anti-blocking
polyhedra instead of the blocking polyhedra used in Section 3.4. They show that the feasible
solutions form a polyhedral cone. Its extreme directions are

⋃

v∈V {xS : S ⊆ δ(v) and |S ∩ M̂g| =

1 for all g ∈ G}, where the M̂g, g ∈ G, are the given matchings and xS denotes the incidence
vector of a set S.

4.9 Weighted Matroid Intersection

Let S be a set, M1 = (S, I1) and M2 = (S, I2) two matroids defined on S, c : S → R, and k ∈ Z+.
Then the weighted matroid intersection problem is

max c(I)

s. t. I ∈ I1 ∩ I2,

|I | = k.

(4.11)
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The matroid intersection problem contains many other combinatorial optimization problems as
special cases. It is known (cf. Edmonds and Giles [51, Section 4]) that it can be formulated as a
submodular function problem.

Let Î ∈ I1 ∩ I2 with |Î | = k. We consider first the case of the constrained single object
inverse problem under weighted l1 norm. From Section 4.2 we can directly derive a formulation of
the inverse matroid intersection problem as a minimum cost circulation problem in an auxiliary
network containing 2 |S| + 1 nodes and 6 |S| + 1 +

∑

e/∈Î(|C1(e, Î)| + |C2(e, Î)| − 2) arcs, where

Ci(e, Î) denotes the unique I ′i-cycle in Î∪{e} and I ′i is the truncation of Ii to k elements. Cai [11]
uses such an approach (his paper predates the results presented in Section 4.2). Cai and Li [12]
derive a similar minimum cost circulation problem directly from a theorem used by Frank [53]
to formulate his weighted matroid intersection algorithm. In both cited papers, a combinatorial
linear program for the multiple object inverse matroid intersection problem is given.

Zhang and Liu [37] consider the unconstrained case under unit weight l∞ norm. They use
Frank’s result to show that the problem can be seen as a maximum mean cycle problem.

4.10 Maximum Matroid Basis

Let M = (S, I) be a matroid and c : S → R. The maximum matroid basis problem is

max c(I)

s. t. I is a basis of M.
(4.12)

The unconstrained single object inverse maximum matroid basis problem under unit weight l1
norm and c ≥ 0 is investigated by Dell’Amico, Maffioli, and Malucelli [17]. They associate another
matroid MÎ on S to M and Î , called a “base matroid”. The inverse matroid basis problem turns
out to be a maximum matroid basis problem in MÎ , which can be solved by the greedy algorithm.

The maximum matroid basis problem can be seen as a special case of the matroid intersection
problem or can directly be reduced to a submodular function formulation, therefore, the results
of Section 4.2 apply.

It should be noted that most of the extensive literature on the minimum spanning tree problem
(see Section 4.11 below) can also be applied to the maximum matroid basis problem.

4.11 Minimum Spanning Tree

Let G = (V, E) be an undirected graph and c : E → R. The minimum spanning tree problem

min c(T )

s. t. T is a spanning tree of G
(4.13)

can be seen as a maximum matroid basis problem on the graphic matroid induced by G.
Therefore, the results of Section 4.2 imply that the single object inverse minimum spanning

tree problem under weighted l1 norm can be formulated as a minimum cost circulation problem
with |E| nodes and O(|V | · |E|) arcs.

The unconstrained unit weight l1 case is studied by Zhang, Xu, and Ma [44] using a direct
combinatorial approach. They use the minimum cover problem on a bipartite graph as a sub-
problem and result in an O(|E|4) algorithm. Sokkalingam, Ahuja, and Orlin [26] reduce the same

problem to a matching problem in a bipartite graph and obtain an O(|V |3) algorithm. Dell’Amico,
Maffioli, and Malucelli [17] use the result cited in Section 4.10 to derive an algorithm of the same
complexity. Recently, Ahuja and Orlin [1] refined the algorithm and achieved a time complexity

of O(|V |2 log |V |).
The constrained multiple object inverse problem under unit weight l1 norm is studied by Zhang

and Ma [41]. Unlike in the general case of submodular functions (Section 4.2), this can still be
formulated as a minimum cost flow problem with |E|+ 2 nodes and O(|V | · |E|) arcs.

The unconstrained single object unit weight l∞ norm case can be solved by calculating δ :=
max{cf − ce : f /∈ T̂ , e ∈ CT̂ (f)} and subtracting δ/2 from the costs of tree arcs and adding the
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same amount to the costs of non tree arcs (CT̂ (f) denotes the unique cycle in T̂ ∪ {f}). This is
observed by Sokkalingam, Ahuja, and Orlin [26] and by Zhang and Liu [36].1

4.12 Minimum Spanning Tree with Partition Constraints

Let G = (V, E) be an undirected graph, c : E → R, P = (E1, . . . , Et) be a partition of E, and
r ≤ s ∈ Z

P
+. Then the minimum spanning tree problem with partition constraints is

min c(T )

s. t. T is a tree in G,

r ≤ |T ∩ Ei| ≤ s, i = 1, . . . , t.

(4.14)

If r = 0, this can be seen to be a matroid intersection problem.
The single object unconstrained unit weight l1 norm inverse problem is considered by Zhang,

Liu, and Ma [38]. Using the linear programming approach (cf. Section 3.1.1) they show that it is
equivalent to a minimum cost flow problem in an auxiliary digraph with 2 + 2 |P | + |E| vertices
and at most 2 |P |+ |E|+ |V | · |E| arcs. They also considered the sign constrained version. In this
case, a similar result holds with |E| more arcs in the auxiliary digraph.

4.13 Shortest Arborescence

Let D = (V, A) be a directed graph, c : A→ R+, and v0 ∈ V . The shortest arborescence problem
is

min c(T )

s. t. T is a tree in the underlying undirected graph,

∣

∣δ−(v) ∩ T
∣

∣ =

{

1 if v ∈ V \ {v0},

0 if v = v0.

(4.15)

It is well-known that the shortest arborescence problem can be seen as a matroid intersection
problem, therefore the results of Section 4.9 apply. It can also be considered as a special minimum
spanning tree problem with partition constraints.

Hu and Liu [22] give an O(|V |3) combinatorial algorithm to solve the single object sign con-
strained unit weight l1 norm inverse shortest arborescence problem.

Zhang and Ma [42] prove that the set of feasible solutions to the sign constrained multiple
object inverse shortest arborescence problem is a polyhedral cone. Its extreme directions are the
unit vectors corresponding to arcs not in any of the prescribed trees plus the incidence vectors of
minimal v0-cuts that intersect each prescribed v0 tree exactly with one arc. (A v0-cut is a subset
S ⊆ A such that (V, A \ S) does not contain a v0-arborescence.)

4.14 Minimum Cut

Let D = (V, A) be a digraph, c : A→ R+, and s, t ∈ V . The minimum cut problem is

min c(δ+(S))

s. t. s ∈ S,

t ∈ V \ S,

S ⊆ V.

(4.16)

Note that c is usually called a capacity vector, but in our general framework outlined in Section 2.1,
it is more convenient to think of it as a cost vector.

The single object sign constrained inverse minimum cut problem under unit weight l1 norm
with respect to a given cut Ŝ is transformed to a maximum flow problem in (V, A \ δ−(Ŝ)) by

1Note added in proof: Cf. also Hochbaum [21].



4 SOLVED INVERSE AND REVERSE PROBLEMS 20

Yang, Zhang, and Ma [32] and Ahuja and Orlin [3] using combinatorial arguments, and by Ahuja
and Orlin [2] using the linear programming approach (cf. Section 3.1.1).

The constrained case leads to a minimum cost flow problem in an auxiliary network with at
most 2 |A| edges (Yang, Zhang, and Ma [32]). The sign constrained case under weighted l1 norm
can also be reduced to a minimum cost flow problem (Ahuja and Orlin [2]).

The multiple object constrained inverse problem under asymmetric weighted l1 norm is studied
by Zhang and Cai [34]. This case also leads to a minimum cost flow problem in an auxiliary network
with at most 2 |A| arcs.

The single object sign constrained weighted l∞ case where c : A → Z+ and w : A → Z+

is studied by Ahuja and Orlin [3] using combinatorial arguments and a binary search algorithm.
Their method requires to solve O(log(|V |maxe∈A |ce|maxe∈A |we|)) minimum cut problems. They
note that their method can be turned into a strongly polynomial method by using Radzik’s [69]
method (cf. Theorem 3.6).

Yang [33] shows that the constrained inverse problem with partially given solution is NP-hard.
Zhang and Ma [42] use the methods of Section 3.4 to describe the polyhedral cone of the

feasible solutions to the sign constrained multiple feasible object minimum cut problem. Its
extreme directions are the unit vectors corresponding to edges not in any of the prescribed cuts
plus the incidence vectors of the simple s-t paths that intersect each given cut exactly once.

4.15 Maximum Flow

Let G = (V, A) be a digraph, c : A→ R+, and s, t ∈ V . Then the maximum flow problem is

max x(δ+(s))

s. t. x(δ+(v)) = x(δ−(v)) v ∈ V \ {s, t},

0 ≤ x ≤ c,

x ∈ R
A.

(4.17)

Observe that this is not a problem of the type (2.1).
However, we can define an inverse maximum flow problem as follows: Given a feasible solution

x̂ to (4.17), l ≤ u ∈ R
A, change the capacities minimally such that x̂ becomes a maximum flow,

i. e.,

min ‖c− ĉ‖2

s. t. x̂(δ+(s)) = max{x(δ+(s)) : 0 ≤ x ≤ ĉ, x(δ+(v)) = x(δ−(v)) for v ∈ V \ {s, t}},

x̂ ≤ ĉ,

l ≤ ĉ ≤ u,

ĉ ∈ R
A.

(4.18)

This problem is studied by Yang, Zhang, and Ma [32]. Using the maximum flow minimum cut
duality, they transform the problem into a minimum cost flow problem on an auxiliary digraph
with at most 3 |A| arcs.

4.16 Maximum Weight Perfect Matching

Let G = (V, E) be an undirected graph, c : E → R. Then the maximum weight perfect matching
problem is

max c(M)

s. t. |δ(v) ∩M | = 1, v ∈ V,

M ⊆ E.

(4.19)

Using Berge’s [47] characterization of maximum weight perfect matchings involving alternating
cycles, Liu and Zhang [24] formulate the unconstrained single object inverse problem by constraints



4 SOLVED INVERSE AND REVERSE PROBLEMS 21

as in (3.15). In the unit weight l1 norm case, they propose to use the ellipsoid method (cf.
Section 3.1.3), since the number of alternating cycles may be exponential, but the separation
problem can be solved polynomially by a maximum weight matching algorithm.

Liu and Zhang [24] also study the problem for an integral weight vector c under unit weight l∞
norm. Using binary search, they achieve an O(|V |3 log(|V |C)) algorithm, where C := maxe∈E ce.

They also propose a strongly polynomial “ascending” algorithm with running time O(|V |4).

4.17 Fractional Matching

Let G = (V, E) be an undirected graph and c : E → R+. The fractional matching problem is

min ctx

s. t. x(δ(v)) = 1, v ∈ V,

xe ≥ 0.

(4.20)

Zhang, Liu, and Ma [39] consider the multiple object constrained inverse problem under unit
weight l1 norm. By using the results on inverse linear programming (cf. Section 3.1.1), they show
that it is equivalent to a minimum cost flow problem in an auxiliary bipartite digraph. They
generalize their results to the symmetric transportation problem.

4.18 Center Location

Let D = (V, A) be a digraph, h : V → R+ and c : A → R+. For u, v ∈ V , dc(u, v) denotes
the length of the shortest directed path from u to v under weight c in D. The “minmax” center
location problem is

min max
v∈V

h(v)dc(s, v)

s. t. s ∈ V.
(4.21)

The “minsum” center location problem is

min
∑

v∈V

h(v)dc(s, v)

s. t. s ∈ V.

(4.22)

Cai, Yang, and Zhang [16] consider the sign constrained single object inverse problem under unit
weight l1 norm with h(v) = 1 for all v ∈ V . They give a polynomial reduction of the satisfiability
problem to the decision problem of the inverse center location problem. Since the satisfiability
problem is known to be NP-complete, the inverse center location is also NP-hard.

Berman, Ingco, and Odoni [5] study the constrained reverse minmax center location problem
with budget constraints under weighted l1 norm. By reduction of the minimum cover problem,
they prove that this problem is NP-hard. For the special case that D is a tree network, they give
a combinatorial algorithm for the unit weight l1 norm case and a linear programming formulation
for the weighted l1 norm case. Zhang, Liu, and Ma [40] consider the same problem with h(v) = 1
for all v ∈ V and give a combinatorial algorithm, which is based on the calculations of maximum
flows in an associated network. The time complexity of this algorithm is O(|V |2 log |V |). Berman,
Ingco, and Odoni [5] propose heuristic algorithms for the case of a general network. They also
study the case where the network is improved by adding new arcs (which is also NP-hard).

The following generalization to several prescribed nodes is studied: Let ŝ1, . . . , ŝk ∈ V and
consider

min max
v∈V

h(v) min
i=1,...,k

dĉ(ŝi, v)

s. t. ‖ĉ− c‖ ≤ B,

ĉ ∈ R
A
+.

(4.23)
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Berman, Ingco, and Odoni [5] remark that this problem can be reduced to the case k = 1 by
introducing a dummy node connected with all ŝi. However, this construction does not yield a
tree. Zhang, Liu, and Ma [40] showed that the case of k = 2 (and h(v) = 1 for v ∈ V ) and a tree

network can be solved in O(|V |2 log2 |V |) time.
The problem where we fix a center and want to minimize the costs needed in order to achieve

a given objective function value can be considered as a reverse shortest paths problem with pre-
scribed objective function values, cf. Section 4.5.

Berman, Ingco, and Odoni [4] study the constrained reverse minsum center location problem
with budget constraints under weighted l1 norm. As in the case of the minmax center location
problem, the reverse problem can be solved easily on tree networks. The only exception is when
the changes c− ĉ are required to be integral: This case contains the knapsack problem. For general
networks and the case of addition of arcs, heuristics are given. The analogous problem to (4.23)
can again be reduced to k = 1 by introducing a dummy vertex.

4.19 Maximum Capacity Problem

Let E be a finite set, F ⊆ P(E) a family of subsets of E, and c : E → R. Then the maximum
capacity problem is

max min
e∈F

c(e)

s. t. F ∈ F .
(4.24)

Yang and Zhang [30] consider single object unconstrained inverse maximum capacity problems
under unit weight l1 norm. They give an algorithm for the solution of the inverse problem, which
requires solving |{c(e) : e ∈ E}| problems

min d(E′)

s. t. E′ ∩ F 6= ∅, F ∈ F ,

E′ ⊆ E,

(4.25)

where d : E → R is some cost vector.
If G = (V, E) is an undirected graph, s, t ∈ V , and F is the set of paths from s to t in G,

problem (4.25) is an s-t minimum cut problem. If F is the set of spanning trees, then (4.25) is a
minimum unrestricted cut problem.

Yang [29] considers the maximum capacity path problem, i. e., problem (4.24) where D =
(V, A) is a digraph, E = A, G ⊆ A × A, and F(s,t) = {P ⊆ A : P is an s-t path in D}. He
considers the multiple feasible set unconstrained reverse problem with given objective function
ranges Îg = (−∞, f̂g] for some f̂g ∈ R, g ∈ G, under symmetric weighted l1 norm. He notes that
the set of feasible solutions is non convex. By reduction of the 3-satisfiability problem, he proves
that the problem is NP-hard and gives an algorithm to find a local optimum.

4.20 Data Envelopment Analysis

Wei, Zhang, and Zhang [27] study an inverse formulation of a generalized output-oriented data
envelopment analysis program and transform it to a multi-objective programming problem. In
special cases, it is only required to solve just one single-object linear program.

Note added in proof: We refer to the paper on inverse median problems by Burkard, Pleschi-
utschnig, and Zhang [6].

5 Open Problems

At the end of this survey, we propose the following types of problems in the area of inverse
combinatorial optimization which—to the best of our knowledge—are still open:
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1. Although most combinatorial problems that are polynomially solvable have polynomially
solvable inverse problems (cf. Theorem 3.3), there are examples of polynomially solvable
optimization problems that have NP-hard inverse problems (e. g. the inverse center location
problem, see Section 4.18).

Consider the following “inverse” question: Given an optimization problem (2.1) with a
polynomially solvable inverse problem (2.2) (for all c and x̂). What does this imply for the
complexity of the original problem (2.1)? Does it necessarily belong to P?

Since the verification problem (given a c and a feasible x̂, prove that x̂ is optimal) can
be answered by solving the inverse problem (x̂ is optimal if and only if c = ĉ), the original
problem has to belong to co-NP. Hence it is unlikely that one can find an NP-hard problem
with polynomial-time solvable inverse problem because this would imply co-NP = NP .

2. For some common and strongly polynomial combinatorial optimization problems, the inverse
problem can be proved to be solvable in strongly polynomial time, too. But there are some
strongly polynomial combinatorial optimization problems, where no strongly polynomial
time algorithm for the inverse problem is known. For instance, this is the case for the
inverse maximum weight perfect matching problem under l1 norm in general graphs (cf.
Section 4.16).

3. For those inverse problems that are NP-hard, only heuristic methods or special cases have
been considered. Find approximation results for these problems.
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