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Abstract--We formulate a group of inverse optimization problems as a uniform LP model and 
provide two computation methods. One is a column generation method which generates necessary 
columns for simplex method by solving the original optimization problem. Another is an application 
of the ellipsoid method which can solve the group of inverse problems in polynomial time provided 
that the original problem has a polynomial-order algorithm. (~) 1998 Elsevier Science Ltd. All rights 
reserved. 
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1. I N T R O D U C T I O N  

Recently, some inverse problems such as inverse shortest path and inverse minimum spanning 
tree problems have been discussed (see [1-5]). In fact, the concept of inverse problems can be 
generalized to other network or combinatorial optimization problems. Suppose solutions of an 
optimization model depend on a set of parameters (e.g., weights, costs, lengths, or capacities), 
denoted by 5. Due to frequent use of the model, knowing the values of these parameters quite 
accurately is important.  However, we often know only their estimated values c. If the optimal 
solutions of the model under certain circumstances are known by experiments or by experience, 
then we can adjust the parameter vector c by using this solution information. This process is 
just an inverse optimization problem. 

To describe the problem more generally, suppose G = (V, E,  c) is a given network consisting of 
vertices V = { v l , . . . ,  v,~} and edges E = { e l , . . . ,  era}, and each edge ej is assigned a weight cj. 
Let S i = { S i l , . . . , S  ik~} (i = 1 , 2 , . . . , r ) ,  in which each S ij, j = 1 , 2 , . . . , k i ,  is a subset of E. 
For each S ~j C E,  let A ~j -- (A]3, . . . ,  A~) n- be its incidence vector defined by setting A~ j = 1 if 

ek E S ij and A~ j -- 0, otherwise, for k = 1 . . . .  , m, then the original optimization problem can be 
written as for each i = 1 , . . . ,  r, solve 

(Pi) min cT A ij , 

s.t. S ~j E S ~. 
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We now state its inverse problem. Suppose S i* E S ~, i = 1, 2 , . . . ,  r are r given subsets of E, 
and the costs for increasing or decreasing ci by one unit are, respectively, gi and di. The inverse 
problem is to minimize the total cost of adjusting the parameter vector c such that  all given S i* 

become the optimal element in S i (i = 1, 2 , . . . ,  r).  For example, if (vs,, v,,), i = 1, 2 , . . . ,  r, are r 
pairs of vertices, S i is the set of all simple paths from v,~ to vtl, and S i* is a specified simple 
path between vs~ and vt~, then the problem becomes the inverse shortest path problem; and if 
r = 1 and S 1 consists of all spanning trees of a graph, then it is an inverse minimum spanning 
tree problem. 

Let u= (U l , . . . ,  urn) and w =  ( w l , . . . ,  win) be, respectively, the increment and decrement of c 
such that  the adjusted parameter vector is c + u - w, then the inverse problem is 

(INVP) min 

s.t. 

m m 

k=l k=l 
(e T u -- w)T  A ij >_ (e T u -- w ) T  A i*, 

i =  l , 2 , . . . , r ,  j =  l , 2 , . . . , k i ,  

O < u < a ,  0 < w < f ~ ,  

(1.1) 

(1.2) 

where a and/3 are two constant vectors giving upper bounds for the adjustments of c. 

In this paper, we shall propose two general methods for solving this type of inverse optimization 
problems. The first one, presented in Section 2, is a column generation method which is quite 
efficient computationally, and the second one, given in Section 3, is an ellipsoid method which 
can be a polynomial method. In using both methods, we assume reasonably that  the original 
problems (Pi) are solvable. In what follows, a vector may appear as either a row vector, or a 
column vector, depending on which way is more convenient. 

2. C O L U M N  G E N E R A T I O N  M E T H O D  

If we introduce a dual variable Yij for each constraint (1.1), dual variables yl = (Yl , . . . ,  Ym) 

and y2 = (Ym+l,-. .  ,Y2m) for the two groups of constraints in (1.2), then the dual problem of 
(INVP) is 

(DP1) max 

s.t. 

Z cT ( Ai* - AO)  Vii - a T Y  1 - ~Ty2, 
i , j  

~-~yi~ (AO - A'*)  - y 1 < g, 
i,j 

- ~ y , j  (A  ij - A " )  - y2 < d, 
i,j 

y l  >_0, y2 >_ O, a n d y i j _ > 0 ,  V i, V j .  

By introducing slack variables y3 = (Y2m+l,... ,Y3m) and y4 = (Y3m+l,... ,Y4m), and setting 
y = (yl, y2, y3, y4), ( a l , . . . ,  a2m) = --I2m, (a2m+l, • • • , a4m) = I2m, and 

( ~ , . . .  ,v~) = ( -a~ , . . . , - c~m) ,  (v~+1,...  ,~2m) = ( - ~ , . . . , - / ~ m ) ,  

2 m + 1  < j  _< 4m, 

_ ( A i J - A i * )  
e i j =  c T ( A  i* -- AiJ),  aij = \ A i .  A ,  j ] , V i , V j ,  

4 = 0 ,  
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problem (DP1) then can be expressed simply as 

(DP2) max 

s.t. 

a m  

i,j j = l  

4m 
+ a yj = (e, ,t) T, 

i,j j=l  

y >_ 0, and YO >- O, Vi ,  V j .  

We now consider a column generation method which starts  with choosing 2m columns to form 
a feasible basis in problem (DP2), and other columns are not required to know. In fact, we may 
choose the initial basis with the basic variables YB = (y3, y4) and ~B = 02m. The  associated basic 
feasible solution is yl  = y2 = 0, y3 = w, y4 = d, and Yii = 0 for any i and j .  I ts  associated dual 
variables are 7r = (Tr 1, 7r 2) = ~ B  -1 = 0. Let z be the corresponding reduced cost coefficients, 

then 

z j = r a j - S j = a j  > 0 ,  ( j = l , . . . , m ) ,  zj = T r a j - E j = f l j  > 0 ,  ( j = m + l , . . . , 2 m ) ,  

- = c  T(A~j  A ~*) z j = 0 ,  ( j = 2 m + l , . . . , 4 m ) ,  and zij = r a i j - c  0" - . 

Clearly, this basis is opt imal  if and only if all zij >_ 0, i.e., 

cT A ij > c T A  i*, 

in other words, each S i* is the opt imal  solution of problem (Pi), i = 1, 2 , . . . ,  r. These conditions 
can be checked by solving problems (Pi) for i = 1, 2 , . . . ,  r. 

Generally, suppose the current basis B = (ajl ,  a j2 , . . .  , a j2 m), 7r = ~ B - 1  = (Trl, r2),  we can 

use the same method to check optimali ty and to decide a pivot column when we have to continue 
computat ion.  In particular,  the reduced cost coefficient of Yij can be calculated by the following 

formula: 

_ ( A i J - A  i* ) (A  i.  , - e v _ AiJ) z 0 = ~rai3 - ci~ = (~.1 ~.2) \ A ~* A i-~ 

= ( c  + - A ' J  - + - T A i *  . 

Let 5 = c + 7r 1 - r 2, then zij >_ 0 if and only if 

5r A ij >_ 5r A~*. (2.1) 

Inequality (2.1) may  contain a huge number of constraints, but we can check all of them by 

solving problem (Pi) under the weight vector 5. If  S ~* is not an optimal  solution, a Ziojo < 0 as 
well as the corresponding element S i°j° in the set S i° should be found. Then the column 

AioJo _ A~o* ) 
a~oj o = ~ A ~°* _ Aio3o _ ' 

~ojo = cT ( Ai°* - Ai°J°) 

(2.2) 

(2.3) 

should be brought  into the basis to replace a column there, and we can employ the revised simplex 
method to obtain an improved basic feasible solution by only one extra  pivot. Obviously, this 
method is finitely convergent if the algorithm for solving the original problem is so. 
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3. E L L I P S O I D  M E T H O D  

The main advantage of the above method is tha t  it does not need to list all constraints which 
may expand in an exponential order when m and n increase, and a violated constraint in the 
inverse problem can be identified by solving the original problem. We find tha t  a suitable version 
of ellipsoid method can also well fit the inverse problem and share this feature. Furthermore, it 
provides a polynomial order algorithm for a large group of inverse problems. 

Grotschel et al. [6] have applied the ellipsoid method to combinatorial  optimization problems. 
They considered the problem 

(CP) max pT x, x • P C R n, 

and constructed a sequence of ellipsoids E0, E l , . . . ,  Ek, .  • .. Each ellipsoid Ek can be expressed 
as 

Ek = {x  • R n I ( x -  Xk)T B k l (  x -  Xk) <_ 1 ) ,  

where xk is the centre and Bk is a positive definite symmetric  matrix. The basic operation of 
their method can be divided between two routines. The master,  or optimization routine (OPT) 
performs the calculations associated with updat ing xk and Bk, and testing for termination. It  
then calls (with z = Xk) a separation routine (SEP) which solves the following problem. 

SEPARATION PROBLEM. Given a vector z • R n, decide whether z • P or not, and if not, find a 
hyperplane tha t  separates z from P,  i.e., find a vector v • R n so that  vz  > vy,  V y  • P. 

The separation routine supplies the optimization routine either with the information that  
xk • P ,  or with the required vector v. In the former case, an outward normal to the next cut is 
set to - p  and in the lat ter  case, it is set to v. The optimization routine can then calculate xk+l 

and Bk+l with some very simple formulae, see [7, equations (2.5),(2.6)]. 

If  in problem (INVP) we express variables (u, w) and parameter  vector (g, d) by x and - p ,  
respectively, and replace 2m by n and the constraints (1.1),(1.2) by x • P ,  then it just  becomes 
problem (CP). We can use the ellipsoid method to solve the inverse problem. In particular, now 
the separation problem is given (u, w) • R 2m, determine if (u, w) is a feasible solution of (INVP), 
and if not, find a violated inequality. The job of checking whether the constraints in (1.1) are 
met  can again be fulfilled by solving the original problems (Pi) for each i -- 1, 2 , . . . ,  r under 
the parameter  vector c + u - w. Note tha t  if problems (Pi) can be solved in polynomial t ime 
within a common upper  bound P ( m , n ) ,  then we can check the constraints (1.1) in r P ( m ,  n) 
time. Therefore, if r subjects to a given polynomial upper bound P~(m, n), then the separation 
problem can be solved in polynomial t ime Pt(m,  n) • P ( m ,  n). I t  is a well-known result that  
the optimization routine of the ellipsoid method need to call the separation routine for only a 
polynomial number  of times with respect to the size of the LP problem and the length L of the 
input (see [6,7]). So, we have the following. 

THEOREM. When  the ellipsoid method is applied, the inverse optimization problem ( INVP) can 

be solved in polynomial t ime with respect to m, n, and L, provided that a polynomial order 
algorithm is available for the original problems (Pi) and r has a polynomial upper bound. 
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