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Abstract 

In this paper we consider some inverse LP problems in which we need to adjust the cost coefficients of a given LP 
problem as less as possible so that a known feasible solution becomes the optimal one. A method for solving general 
inverse LP problem including upper and lower bound constraints is suggested which is based on the optimality 
conditions for LP problems. It is found that when the method is applied to inverse minimum cost flow problem or inverse 
assignment problem, we are able to obtain strongly polynomial algorithms. 
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1. Introduction 

Recently there are several papers discussing some inverse combinatorial optimization problems. 
In these problems a feasible solution x ° is given which is not an optimal solution under the current 
objective function, and it is required to revise the cost coefficients in the objective function as less as 
possible so that x ° becomes an optimal solution. 

Main application of these problems, as explained in [2, 5], is that in some cases although an 
optimization model is established, the costs (or other amounts such as weights or utilities) 
associated with the decision variables in the model are very difficult to determine accurately. If by 
experience or by conducting some experiments, the optimal solution in certain particular cases is 
known, we wish to adjust the data in the objective function by using this information. 
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In [2], Burton and Toint considered the computations of an inverse shortest path problem. As 
they use 12 norm to measure closeness between two vectors, they transform the inverse problem 
into a quadratic programming problem to solve. In [7], Zhang et al. use ll norm and deal with the 
inverse shortest path problem as a special LP problem. The combinatorial  structure of the feasible 
region for inverse shortest path problem is exposed in [5]. Some inverse minimum spanning tree 
problems are studied in [4, 6]. 

In this paper we are going to propose a method for solving general inverse LP problems. The 
method is based on the optimality conditions for LP problems. As some particular examples, we 
shall apply the method to two classes of problems: inverse minimum cost flow problem and inverse 
assignment problem. It will be seen that when this method is used, the calculation of the first 
problem is reduced to a minimum cost circulation problem, whereas the second one can be solved 
by calculating the original assignment problem or a minimum cost circulation problem depending 
on different additional requirements. In all these cases we are able to obtain strongly polynomial 
algorithms. 

This paper is organized as follows. In Section 2, we first prove equivalence of the general inverse 
LP problem to other two related models, from which a method for calculating inverse LP problems 
is derived. Section 3 is devoted to the application of the method to solve inverse minimum cost flow 
problems. In Section 4 we use the method to calculate inverse assignment problems. If some 
weights in the assignment model are not allowed to adjust, we call such problems restricted inverse 
assignment problems, and a special case of which is solved in Section 5. 

2. General inverse LP problems 

Given a general LP problem 

(LP) min {cx [Ax  = b, x >t 0}, 

where c, x ~ ~n, b ~ ~m and A is a m x n matrix. Let x ° be a feasible solution. We need to change the 
vector c as less as possible and let x ° become an optimal solution of the adjusted (LP). If we define 

Y ( x  °) = { ~ R " l m i n { ~ x l A x  = b, x >>, 0} = ~x°}, (2.1) 

then the inverse problem of (LP) can be expressed as 

min{ l ie  - ~ll I ~ ~ ( x ° ) } .  (2.2) 

Throughout  this paper we take the 11 norm for IIc - ~11, i .e. ,  IIc - ~11 = E j l c ~  - ~ j l .  

Lemma 2.1. Let  x ° be a feasible solution o f  problem (LP). Then  x ° is an optimal solution o f  the 
problem if and only i f  there exists n ~ ~m such that for  all j = 1, . . . ,  n, 

(a) 7zPj <<, c j, and 
o rcPj C j ,  (b) x~ > 0  =*- = 

where Pj are the columns o f  A. 

From this lemma we know that if x ° is a feasible, but not optimal solution, then for any vector 
7z ~ ~m, there must be a j such that either condition (a), or condition (b) fails for the index j. 



J. Zhang, Z. Liu/Journal of Computational and Applied Mathematics 72 (1996) 261-273 263 

Lemma 2.2. For any n6  Era, a vector c ~ can be constructed which belongs to the set ~ ( x ° ) .  

Proof .  A 

A + = { P j l n P j > c j } ,  A ° = { P r l n P j = c r } ,  

We then define 

Cj, 

c'~ = ~cj - O r, 

( Cj JF O j, 

given n divides the columns of A into three groups: 

A -  = {PrlnPj < cr}. 

0 = 0 ,  PjeA°;  or P j e A -  and x r 
o P r e A -  and xj  > 0 ,  where O j = c  r - r i P  r, 

Pr e A +, where 0 r = nPj - cj. 

(2.3) 

Clearly, c] has the following properties: 

o = 0, (2.4) nP r < cj,  i fPr ~ A -  a n d x j  

nPj = c], otherwise; (2.5) 

from which it is easy to verify that c r = c'] ( j  = 1 , . . . ,  n) satisfy the conditions (a) and (b) in Lemma 
2.1. Therefore, vector c ~ = (c7 . . . . .  c'~)~,~(x°).  [] 

We denote by ~'(Xo) the set of vectors c ~ defined by (2.3) for all n~  Rm. AS we proved in Lemma 
2.2, 

ff'(Xo) --- i f(x°) .  (2.6) 

Theorem 2.3. min{ IIc ~ - c l l l c ~ ' ( x ° ) }  = min{ I1~- cll I ~ g ( x ° ) } .  

Proof i  Due to (2.6), we only need to show that for every ( e f t ( x ° ) ,  there exists a c ~ e ~ ' ( x  °) such 
that I [ ~ - c l [  ~> IIc ~ - c l [ .  

As ~ f f ( x ° ) ,  x ° is an optimal solution of the LP problem m i n { ~ x l A x  = b, x ~ 0}. So, by 
Lemma 2.1, there is a vector n e  ~"  satisfying 

(a) rcPj ~< {j, and 
o nPj ~j ( b )  x j  > 0 ~ = 

for j = 1, . . . ,  n. We now define c ~ by the formula (2.3) in Lemma 2.2 and show that for each j, 
I~j - cj l  >i Ic~ - cjl.  

In fact if nPj >~ cr, then as c] = n P  r, ?j >~ nPj = c] >~ c r. Thus, cr - cj >>, c] - cj >~ O. On the other 
o =  0, then ~ =  c j, and of course hand, if nPj < cr, there are two possible cases: if x r c r 

o '~ = nPr = cr and hence I? r - Crl = I c] - cjl. 0 = [ c ] - c j l  ~ I ? j - c r l ;  i fxr  > 0, then c r 
From the above analysis we see that for each j = 1, . . . ,n ,  I? r - c r l  >t ]c ' ] -  crl, and therefore, 

115-cll/> lie ~ -  cll. [] 

We now consider the inverse LP problem from another  viewpoint. For  any n ~ W ~, we try to 
make necessary adjustment for ci by Oj so that cj + Oj satisfies the optimality conditions in Lemma 
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2.1, that is, 

0 if xj > 0, then find 0j such that rcPj = cj + Oj; 
o = 0, then find 0j ~> 0 such that rcPj <<. cj + Oj. if xj 

Note that in the second case any adjustment of 0j < 0 is unnecessary as 0j = 0 already meets the 
optimality condition and we want to make as less adjustment as possible. So, for each j we can 
define 

{ OjOj ° 00} 
n P i  = Cj -']- O j ,  if xj > 

= 0 Dj c j +  satisfies: ~p~ <<. cj + Oj and 0j>10, if xj = 

" ° 00} 
f^ I Pj = if xj  > 

^ 0 " - cj ~pj<<.cj and c j ~ c j ,  i f x j  = 

It is easy to check that the c] defined by (2.3) meets the above conditions on 6j, i.e., 

c i n D y .  

Now if we let 

D ~ {(cb. ,c,) ^ ~ "=  • = ^ .. A I c j ~ D j , )  1,. .  ,n} 

and 

D(x °) = ~ D ~, 

then (2.5) implies 

~ ' ( x  °) ~ D(x  °) ~_ o~(x °) 

and therefore, by Theorem 2.3 we know that 

m i n { [ ] ~ -  c n l ~ D ( x o ) }  = m i n { l l ~ -  cll l ~ ( x ° ) } .  

In other words, we have proved the following result: 

Theorem 2.4. The  inverse LP problem (2.2) is equivalent to 

min II011 

s.t. ~zPj -- Oj = c j, j ~ J, 

xPj  - Oj <. c j, j ~ J, 

Oj >~ O, j e J ,  

o 0 } , Y = { j l  o 0}. where J =  { j [ x j  = xj  > 

(2.7) 

(2.8) 
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We can extend the above result to the inverse LP problems where the variables have both lower 
and upper bounds. Let x ° be a feasible solution of the LP problem 

(BLP) min cx 

s.t. Ax = b, l <~ x <~ u, 

where I < u, and let ~-~(x °) be the set of cost vectors ~ under which x ° becomes an optimal solution 
of problem (BLP). Then the inverse problem min { II ~ - c II1~ ~(x°)} is equivalent to the follow- 
ing problem: 

min II011 

s.t. nPj <~ Oj + c j, j e J - ,  

nP~ = cj - O j, j = jo, (2.9) 

n e  t >>. cj - Oj, j e J + ,  

Oj >~ O, j ~ J - w J  +, 

where Pj is the j th  column of matrix A, and 

0 j +  o J -  = { j l x  ° = l  j}, j o = { j l l j < x j  < u  j}, = { j l x j  = u  s}. 

Suppose (n*, 0") is an optimal solution of problem (2.9), then the solution for the inverse (BLP) 
problem is 

cT=O* +cj ,  j = J - ;  and cff = c j - O * ,  j e J ° w J  +. 

A special case of problem (BLP) is I = 0 and u = 1. (1 is the all-1 vector.) If in addition x ° is a 0-1 
feasible solution, then (2.9) becomes 

min II011 

s.t. nPj -- Oj <<, cj, j e J - ,  

7zPj + Oj >/cj, j e J + ,  (2.10) 

Oj ~ O, j 6 J - ~ J J  +. 

3. Inverse minimum cost flow problem 

If problem (BLP) is a minimum cost flow problem 

min ~ C i jX i j  
(i,j)~o~ 

s.t. - -  Z x i J  "q'- E XJ i = bi, i • ~t/', 
j ~f(i) j e t(i) 

lij <<. xij <<. ulj, ( i , j )e~¢,  

(3.1) 
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where d and ~ are respectively the sets of arcs and nodes in the concerned graph; (i,j) stands for 
an arc from i t o j  and x~j is the flow on the arc; f ( i )  is the set of nodes to which there are arcs from 
the node i, and t(i) is the set of nodes from which there are arcs to node i, then according to (2.10), 
its inverse problem can be expressed as 

min ~ 0,i + + I/  jl 
(i,j) ~ J -  (i,j) e J + (i,j) ~ jo 

s.t. - rci + rcj - Oij <~ cij, ( i , j ) e J - ,  

- 7zi + ltj + flij = cij, ( i , j ) e J  °, (3.2) 

- 7zi + 7zj + ctij >~ cij, ( i , j ) ~ J  +, 

O~j, ~tij >1 O, 

and the adjusted costs are c~j + O~j, cij - fl~j and cij - ct~j for the arcs in J - ,  jo  and J+ respectively. 
Let fl~j = I~ij - 7~j, #i~, ?ij >~ O, then (3.2) becomes 

min ~ Oij  -'}- ~ O~ij 31- ~'~ (~2ij 31- ? i j )  
(i,j) z J -  (i,j) ~ J + (i,j) ~ jo 

s.t. -- ~zi + nj -- Oij <<, clj, ( i , j ) ~ J - ,  

- 7zi + nj + I~ij - ?ij = cij, ( i , j ) ~ J  °, (3.3) 

- 7ri + nj + o~ij >~ cij, ( i , j ) e J  +, 

Oij, #~j, 7~j, ~ij >~ O. 

If we let J f ( i )  denote the set of nodes in J to which there are arcs from node i, and J t(i) the set of 
nodes in J from which there are arcs to node i, the dual LP problem of (3.3) is 

min E ciJYiJ - ~ ciJYiJ - ~ ¢ijYij 
(i,j) e J (i j) ~ jo (i,j) ~ J + 

s.t. ~ Y i j - -  ~ Y j i -  ~ Y i j +  ~ Y j i -  ~.  Y i j +  ~ Y j i = O ,  
j ~ J ~f (i) j ¢  J- t( i )  j~  J°f  (i) j e J°t(i) j e  J+ f (i) jc~ J+ t(i) 

(3.4) 
0 <<. yij <~ 1, ( i , j ) ~ J - ~ J  +, 

- 1 <<. Yij ~ 1, ( i , j ) ¢ J  °. 

Problem (3.4) is a minimum cost circulation problem. 
When problem (3.1) is a minimum cost flow problem with unit capacity, i.e., all llj -- O, u~j = 1, 

and if x ° is a 0-1 solution, then its inverse problem has the form 

min 

s.t. 

01j + Z 
(i,j)ei J -  (i,j)~ J + 

- -  ni -k- n j  - -  Oij ~ Cij , (i,j)~ J - ,  

-- rci + nj + ~ij >~ cij, ( i , j ) ~ J  +, 

O~j, ~ j  >/O, 

(3.5) 
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where J - =  {(i , j) lx ° = 0}, J + =  {(i,j)l x°  = 1}. The dual of the above LP problem can be 
expressed as 

min ~ cijYij-- ~_~ cijyij 
(i,j)~J- (i,j)~J + 

s.t. ~ Yij-- Z Yij-- Y'. Yj i+ Z YJi =0 ,  (3.6) 
j~J - f ( i )  j6J+f(i} j~J- t ( i )  j~J+ t(i) 

0 <~ Yij <, 1, (i,j)~ d .  

If for any arc in J+,  we reverse its direction, i.e., swap J+f(i) and J+t(i), and change its original cost 
into the opposite value, but still maintain unit capacity, then it is obvious that problem (3.6) 
becomes a typical minimum cost circulation problem. 

. 

(AS) 

Inverse a s s i g n m e n t  prob lems  

Let x ° be a feasible solution of the assignment problem 

min ~ c~jxij 
( i , j ) e~  

s.t. ~ X i j  : 1, i =  1, . . . ,  n, 
j~f(i)  

xij = 1, j = 1, . . . ,n ,  
le t ( j )  

0 <~ xij <~ 1, ( i , j ) e d  

and assume that the components  o fx  ° are either 0 or 1. By (2.10) we know that the inverse problem 
of problem (AS) with respect to x ° can be formulated as 

min ~ 0~j 
(i,j)~,~ 

s.t. ui -}- Uj - -  Oij  ~ Cij  , ( i , j ) e J - ,  
(4.1) 

U i At- Vj  -~- Oij ~ Cij  , (i,j)6J +, 

Oij >1 O, ( i , j ) e ~ .  

Without loss of generality, we may assume that J +  = {(1, 1), (2, 2), . . .  ,(n, n)} and  J -  = d \ J  + so 
that problem (4.1) can be written as 

min 

s.t. 

0ij 

U i + Vj  - -  Oij  ~ Cij , (i,j)6J-, 

ui + vi + Ou = Cu, i = 1,2, . . . ,n ,  

Oij >1 O, ( i , j ) 6 d .  

(4.2) 



2 6 8  J. Z hang, Z. Liu /Journal of Computational and Applied Mathematics 72 (1996) 261-273 

Note that in the second set of constraints we changed "i>" into " = "  as we can, if necessary, reduce 
the value of ui letting the inequality become equality while maintaining the first set of constraints to 
be satisfied and not altering the objective value. 

Lemma 4.1. Problem (4.2) is equivalent to the fol lowing problem: 

min ~ O~j 
(i, j) • ,~ 

s.t. v j  - -  v i - -  (Oii -~- Oij ) ~ d i j  , (i,j)~J-, 

Oij >- O, ( i , j ) 6~ l ,  

where d~j = c~j - cu. 

(4.3) 

Proof. If (u, v, O) is a feasible solution of problem (4.2), then it is easy to see that (v, O) meets the 
constraints of problem (4.3). Conversely, if (v, O) is feasible to problem (4.3), then by defining 
ui = cu - v~ - Oil, (u, v, O) meets all constraints of problem (4.2). So, the two problems have the 
same objective function and feasible region. [] 

Lemma 4.2. Problems (4.2) and (4.3) have an optimal solution in which Oij = O for  all ( i , j )e  J - .  

Proof. Suppose (z3, O) is an optimal solution of problem (4.3). Let 

(5* = max {Oi~ + O~j I all j such that (i, j ) ~  J - } ,  

(i = 1, . . . ,  n). Obviously, for each (i,j) E J - ,  

~j - -  Ui - ( ~  ~ Vj - -  Ui - (Oii "~ Oij)  ~ d i j ,  

which means that ~, Ou = tS* and Oij = 0 (i = 1 . . . .  , n; ( i , j )~ J - )  form a feasible solution of problem 
(4.3). Furthermore,  as for this 0), 0), 

(i,j)E,9/ i = 1 

=i 
i = l  

=i 
i = 1  

max{Ou + Oijl ( i , j ) e J - }  

Ou + ~ m a x { O i j l ( i , j ) e J - }  
i = 1  

i :  l i= l {jl(i , j)~J-} 

= Z Oij, 
(i,j)~,~/ 

Oij 

we know that (~, 0") must be an optimal solution of problem (4.3), and in this solution all Oij = 0 if 
( i , j ) 6 J - .  [] 
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Due to the above lemma, we can obtain an optimal solution of problem (4.2) by solving problem 

min ~ O, 
i= l  

s.t. u~ + vj <~ c~j, ( i , j )eJ- ,  
(4.4) 

ui + vi + Ou = cii, i = 1,...,n, 

Oii ~ O, i = 1,..., n. 

If we substitute Ou = cu - (ui + v~) into the objective function, problem (4.4) can be reduced to 

max ~ (ui + vi) 
i=1 

(4.5) 
s.t. ui "q- Vj ~ Cij , ( i , j ) e~ .  

We summarize the above analysis in the following theorem: 

Theorem 4.3. The optimal solution of the inverse assignment problem can be obtained by solving 
problem (4.5). 

It is interesting that (4.5) is just the dual problem of the assignment problem (AS). So, an O(n 2) 
algorithm for solving the inverse assignment problem can be stated as follows: 

Step 1: Change the order of the nodes on one side of the bipartite graph corresponding to the 
assignment problem (AS) so that J+ = {(1, 1), (2, 2) . . . . .  (n, n)}. 

Step 2: Solve the assignment problem (AS) to obtain its dual optimal solution (u*, v*). 
Step 3: 

~ c i i - u * - v * ,  if j = i, 
O* = [0, if ( i , j )~J-  

is the minimum adjustment for vector c in the inverse assignment problem, i.e., the new cost vector 
is 

fu* + v*, if j = i, 
C~ 

) ~cij, if ( i , j )~J- .  

We now use an example to explain the method. 

Example 4.4. An assignment problem with the following cost matrix 

I 5 7 3 oo 1 
4 7 4 2 

3 8 3 
8 7 4 6 
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has a feasible solution x ° in which x ° = 1, i = 1, 2, 3, 4; and x ° = 0, ive j. We first solve the 
assignment problem, obtaining its optimal solution x l l  = x24 = Xa2 = X4a = 1, other x~j = 0 
and a dual optimal solution: u~ = 3, u* = 2, u* = 3, u* = 4; vT = 2, v~ = v~ = v* = 0. So, 
by the formula in Step 3, 0"2 = 5, 0~'a = 5, 0~4 = 2, and all other 0* = 0, i.e., the adjusted cost 
matrix is 

E 
5 7 3 oo 

4 2 4 2 
oo 3 3 3 
8 7 4 4 

and the total adjustment of the cost coefficients is 12. 

5. A restricted inverse assignment problem 

It is seen from the previous section that for inverse assignment problem, the minimum adjust- 
ment can be realized by changing only the cost coefficients cij that correspond to the components  
x ° = 1 in the given solution x °. If some of these cij are not allowed to change, the solution of the 
inverse problem of course may be different. For  brevity, we call this type of problems restricted 
inverse problems. 

Restricted inverse problems may have some potential applications. For  example, in a toll traffic 
network a route (path) P has not been used sufficiently meanwhile congestion occurs on other 
roads. In order to change the situation and to encourage more vehicles to use this route, the 
network manager can: (i) reduce the tolls for passing the roads (arcs) in P; or (ii) increase the tolls for 
access to the roads not in P; or (iii) do both, so that P becomes the cheapest route between its two 
endpoints. F rom profit making viewpoint, choice (ii) would be the best one to the network owner. 
As it is well known that a shortest path problem in a directed network can be transformed into an 
assignment problem (see [3] for example), choice (ii) is equivalent to an inverse assignment problem 
in which the weights of a given assignment pattern should be fixed. 

In this section we discuss such a restricted inverse assignment problem. Again, let J + = {(i, j ) [ x  ° 
= 1}; J -  = {(i,j)l x ° = 0} and assume J+ = {(1, 1), ...,(n, n)}. It is requested that all c ,  cannot 

change. In other words, we consider the question: if only ci~, ( i , j ) e J - ,  are permitted to change, 
what is the minimum total adjustment of c, and how to change these c~j so that x ° becomes an 
optimal solution of problem (AS)? 

As now 0u must be zero, from problem (4.3) we see immediately that the restricted inverse 
problem is 

min ~ Oij 
(i,j)eJ- 

s.t. vj -- vl -- Oij <<. d o, ( i , j ) e J - ,  (5.1) 

Oij >~ O, ( i , j ) ~ J - .  
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- - 5  2 

Fig. 1. 

It is not difficult to obtain its dual LP problem: 

min ~ dijyij 
( i , j )6J-  

s.t. ~ Y l j -  ~ Yji = 0, i =  1, . . . ,n ,  (5.2) 
j~f( i )  j~  t(i) 

0 <~ yij <~ 1, ( i , j )6J- .  

Problem (5.2) is a minimum cost circulation problem with unit capacity, which has many quick 
methods to solve. A strongly polynomial algorithm for solving minimum cost circulation problems 
is the minimum mean cycle-cancelling algorithm, see [-1] for example. 

Let V = {1,2, . . . ,n} and J -  and d~ be defined as before, then G ( V , J - , d )  is the network 
corresponding to problem (5.2). For  the assignment problem given in Example 4.4, the graph of 
problem (5.2) is shown in Fig. 1. 

We now consider how to obtain the cost adjustment 0~j associated with the optimal y~j, i.e., after 
solving the dual problem (5.2), how to get the primal optimal solution. Suppose we use any version 
of cycle-cancelling algorithm to solve problem (5.2). Let y* be the optimal basic solution, which 
must be a 0-1 vector. Let (~(y*) be the residual network of G with respect to y*. According to the 
algorithm, G(y*) must not contain any negative cost cycle. By the definition of residual network 
(see [1]), let f f  = d l u d 2 ,  where 

~/1 = {(i , j)[(i , j)6J- and y* = 0}, J 

d 2  = {(i,j)l(j, i ) 6 J -  and yj* = 1}, 

and define 

dij = { dij' ( i , j )~  ~ 1 ,  
-d j i ,  ( i , j )6d2 ,  

then G(y*) = (V, d ,  9). We add another node s together with n arcs (s, i) into G(y*) and let dsi = 0 
(i = 1 . . . . .  n). Denote the resulting augmented graph by (~+(y*). 

As (7(y*) has no negative cycle, so does G+(y*), which means the shortest distance from s to each 
i is well defined under the length vector d. Say the shortest distance is zci. So, for each arc (i,j)~ ~ ,  
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7rj -- rc~ ~< d~j. Considering the arcs in ~¢1 and ~ 2  separately, we know that  

( i , j ) ~ d l  ~ rcj - rci ~ d/j = dij, 

(j, i)~ d 2  ~ rci - zci <<. dji = - dij 

7~j - -  7~ i ~ d i j .  

Based on the above result, for each ( i , j ) ~ J - ,  we define 

0 *  = 
if (i,j) ~ ~¢1, 

7[j - -  7f, i - -  dij, if (j, i ) ~ ¢  2. ( 

(5.3) 

(5.4) 

(5.5) 

Theorem 5.1. The  so defined ni and 0* (i = 1 , . . . ,  n; (i,j) ~ J - )  must  be an optimal solution o f  problem 
(5.1). 

Proof. Obviously (re, 0") is feasible as it always satisfies the constraints of problem (5.1). By the 
optimali ty condi t ion for LP problems, (z~, 0") is an optimal  solution if it and y* meet the 
complementary  slackness condition,  i.e., if 

(a) 0 " > 0  ~ y * j = l ,  and 
(b) y * j = l  ( > 0 )  =~ r t j - ~ i - O * - - d i j .  
It is easy to verify that  (a) and (b) are true. First, i f0* > 0, then by (5.5), (j, i) ~ d 2  so that  yi* must  

be 1; second, if y* ~ = 1, then (j, i) ~ d 2 ,  and from (5.5) we see that  7zj - rci - 0* = dlj holds. []  

We now summarize the me thod  that  we proposed  in this section for solving the restricted inverse 
assignment problem: 

Step 1: Solve the min imum cost flow problem (5.2) to obtain y* and its corresponding residual 
network G(y*). (The residual network shall be generated automatical ly if a cycle-cancelling 
algori thm is used to solve problem (5.2).) 

Step 2: Formula te  the augmented  network G ÷ (y*), f rom which find the shortest distance ~zi from 
s to each i~ V. 

Step 3: Use formula (5.5) to obtain 0* for ( i , j ) ~ J -  
Let us return to Example 4.4. The optimal  solution of the min imum cost flow of Fig. 1 is 

Y*3 = Y*I = Y*4 = Y*2 = Y*4 = Y:2 = Y~3 = 1; other y* = 0, J 

with a m in imum objective value - 2 1 .  The associated graphs (~(y*) and G+(y*) are shown 
respectively in Figs. 2 and 3. Note  that  in Fig. 2 dot ted  curves represent the arcs in ~ 1  whereas the 
solid arcs are in ~¢z- 

F r o m  Fig. 3 we see that  the shortest distances from s to i = 1, 2, 3, 4 are rta = - 1, re2 = 0, 
7"/7 3 = - -  3, 7~ 4 = - -  1. We then use (5.5) to determine 0": 0"1 = 2, 0*4 = 4, 0*2 = 8, 0*4 = 7, and 
other 0* = 0. Therefore, the adjusted cost matrix becomes 

I 5  7 3 ~ 1 6  6* 7 4 6* 
11" 8 10" 

8 7 4 
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2 \' 

- \ ~ 5  -3\\, 

Fig. 2. 

-1 

- 1 2  5 

Fig. 3. 

in which the costs with asterisk are increased from the original data by corresponding values of 
0 >0. 
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