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Abstract 

In this paper we continue our previous study (Zhang and Liu, J. Comput. Appl. Math. 72 (1996) 261-273) on inverse 
linear programming problems which requires us to adjust the cost coefficients of a given LP problem as less as possible so 
that a known feasible solution becomes the optimal one. In particular, we consider the cases in which the given feasible 
solution and one optimal solution of the LP problem are 0-1 vectors which often occur in network programming and 
combinatorial optimization, and give very simple methods for solving this type of inverse LP problems. Besides, instead 
of the commonly used ll measure, we also consider the inverse LP problems under I~  measure and propose solution 
methods. (~) 1999 Elsevier Science B.V. All rights reserved. 

MSC: 90C08; 90C27; 52A20; 52B12; 65K05 

Keywords." Inverse problem; Linear programming; Complementary slackness; Shortest path; Minimum spanning tree 

1. Introduction 

We know that in an optimization problem, all parameters of  the model are given, and we need to 
find from among all feasible solutions an optimal solution for a specified objective function. In an 
inverse optimization problem, however, the situation is reversed and we need to adjust the values of  
the parameters in a model as little as possible (under 11, 12, or l~  measure) such that a given feasible 
solution becomes an optimal solution under the new parameter values. See [4-6,9-12] .  Sometimes 
the adjustment of  various parameters cause different costs, and the objective is to use a minimum 
cost to change the given feasible solution into an optimal one. 
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This type of problems has potential applications. For example, if a transportation planning authority 
is going to improve a road system and to use minimum cost to make a particular path between two 
towns the quickest path or the maximum capacity path between them (the capacity of a path is 
defined as the minimum capacity of the arcs on the path), then the problem is an inverse shortest 
path problem provided that the travelling times along the arcs of the network are regarded as the 
adjustable parameters, or an inverse maximum capacity path problem if we take the capacities of  
the arcs as the parameters to be adjusted. 

Another application is inverse location problem. As we know, in a location problem a network is 
given and we need to find the best place to install a facility or to build a centre for the system. Here 
the measurement for the optimality can be either the min-max ( l ~ )  or the min-sum (l l)  criterion. 
However, sometimes the facility has already been fixed, or the centre has been constructed, at certain 
place, and we can only consider how to improve the network system with the minimum cost so that 
this particular place indeed becomes the centre location under the l~ or lo~ norm. This is just an 
inverse location problem. 

Some inverse optimization problems are not so apparent. For example, in the DEA models (see 
[7]), for each decision making unit (DMU), all inputs and outputs are known and we need to 
determine the efficiency index of the DMU. In fact this efficiency index is calculated as the optimal 
value of a particular LP problem which takes all inputs/outputs as given parameters. However, 
some practitioners met the following problems: the DEA method has once been used to analyse the 
efficiencies of the DMUs in the system, but now for a particular DMU, the inputs are increased 
and they want to forecast the outputs, or the outputs have to be increased to certain level, and they 
want to estimate the required increment of  the inputs for making the changes of  the outputs, under 
the assumption that the efficiency index of the DMU remains the same. Mathematically, these two 
questions can be described as how to adjust a part of  the parameters (either the outputs, or the 
inputs of the DMU) so that the optimal value of  the associated LP model equals the given efficiency 
index. This is an inverse DEA problem. See [8] for the details. 

There is also a kind of  generalized inverse optimization problems in which no particular feasible 
solution is requested to become the optimal solution. Instead, we should adjust the parameter values 
as little as possible so that the optimal solution or the optimal value of the adjusted model meets 
some given requirement. For example, in [3] Burton et al. posed the problem of making minimum 
adjustment on the lengths of  the arcs in a network so that the length of  the shortest path between a 
pair of  nodes will not exceed a given upper bound. Other relevant applications of  this kind can be 
found, e.g. in [1,2]. 

Most authors use ll norm as the measure so that the study of inverse optimization can be carried 
out in the field of  linear programming. Several methods have been given including column generation 
method and ellipsoid method for general inverse problems and some strongly polynomial methods 
for certain types of inverse optimization problems. In [11] we have considered some inverse LP 
problems. A general method for solving inverse LP problems was suggested which is based on 
the optimality conditions for LP problems. It has been found that when the method is applied to 
some problems, such as the inverse minimum cost flow problem, the method can achieve strongly 
polynomial complexity. 

It is found that inverse LP problems can be further delved. Especially, if the given feasible solution 
is a 0-1 vector, and one optimal solution of  the original LP problem has all components between 
0 and 1, which often happen in network or combinatorial optimization problems, then the inverse 
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LP problems can be solved very easily. Also, the study of  inverse LP problems under l~  norm can 
bring about some new features even though these problems are still in the scope of  linear 
programming. 

This paper is organized as follows. In Section 2 we specify the type of  inverse LP problems that 
we will discuss in the paper and formulate their inverse problems in a general way. Section 3 is 
devoted to study this type of  inverse LP problems under Ii norm, and Theorem 3.1 gives a simple 
method to solve such inverse problems. Then in Section 4 we extend the result of Section 3 to the 
inverse problems in which the decision variables of  the LP problem subject to bound constraints 
and obtain Theorem 4.1 as the core result. Section 5 is arranged to consider inverse LP problems 
under lo~ norm, and Theorem 5.1 summarizes the method to solve this type of  problems. Finally, in 
Section 6 we apply the methods and results obtained in the previous sections to solve some inverse 
network optimization problems as special examples. 

Unless particularly specified, in this paper vectors are considered as column vectors. 

2. Inverse LP problem 

Given a linear program 

(LP) Min crx 
s.t. Ax = b, 

x~>O, 

where A C Rmxn,b E R m and c,x E R", and let x ° be a feasible solution, we consider the problem 
of  changing the cost vector c as less as possible such that x ° becomes an optimal solution of  (LP) 
under the new cost vector ~. According to [11], this inverse problem can be formulated as 

(ILP) Min I1 - ell 
s.t. rcp/<<.Y/, j E J ,  

~pj=~j, j ~J, 

where J_ = { j  Ix ° = 0}, J = { j  ]x ° > 0}, 1)/ is the j- th column of A, ~ is a row vector of  dimension 
m, and [[. [[ is a vector norm. 

Let ~] = c~ + 0j - ~j, and 0j, aj >~ 0 for j = 1 . . . . .  n, where 0j and ~j are respectively the increment 
and decrement of  cj. Notice that in our model 0j~j = 0, i.e. 0y and aj can never be positive at the 
same time. Then problem (ILP) can be expressed as 

Min 

s.t. 

IiO + 
zcp j -Oj+~j<~c j ,  j EJ_, 

7 r p j - O / + ~ / = c j ,  j EJ ,  

0/,+>~0, j =  1 ,2 , . . . ,n ,  

(2.1) 
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Apparently, problem (2.1) is equivalent to 

Min IiO + ~,ll 
s.t. rcpj - oj <<.cj, j E J, 

zcpj-Oy+~j=cj,  j EJ, (2.2) 

Oj>>.O, j EJUJ ,  

~j>>.O, j ~J. 

Note that the second group of constraints in Eq. (2.2) can be expressed as 

-Tzpj+Oj-~/>~ -c j ,  rcp/-O/+~j>~c/, (2.3) 

which, under the condition 0j, ~j/> 0, imply 

-~zpj+O9>~ -c j ,  rcpj+og>~c j. (2.4) 

On the contrary, if Eq. (2.4) holds, and if 0j > 0 then in the optimal solution ~j = 0 and 

-np /  + O~ = - c  s, 

which ensure the condition (2.3). If ~j > 0, we again can derive Eq. (2.3). Therefore, problem (2.2) 
is equivalent to 

Min IlO + <l 

s.t. - ~ z p j + O j )  --c/,  j EJ__, 

--Tzpj+O/>>. -c j ,  j EJ, 
(2.5) 

7~pj q-~j>/c/, j E J, 

0/>10, j EJUJ ,  

ccj>/O, j EJ. 

If the LP problem with bounded variables 

(BLP) Min cTx 
s.t. gx = b, 

O<~x<~u 

is concerned, where u is a given nonnegative vector, then for a given feasible solution x °, the inverse 
problem can be formulated in a more symmetric form: 

(IBLP) Min 

s.t. 

II0+~ll 
-rcpj+Oj>~ - c j ,  j E J U J ,  

"Ir, pj-.~-O~j~Cj, j C J UJ ,  

o+>~o, j c J_uJ, 

~j>~O, j E J U J ,  

where 

J _ = { j l x ° = O } ,  J = { j l O < x  ° < u s } ,  and J = { j l x ° = u j } .  
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3. The solution of (ILP) under l l n o r m  

Under the It norm, problem (2.5) becomes 

n 

(ILP1) Min ~ 0 / +  ~ ~/ 
j = l  jCJ  

s.t .  -~rp/+O/>_.-c j ,  j E J _ u J ,  

rcp/+~/>>.c/, j c J, 

Oj>>.O, j c J_uJ, 

~/>>.0, j c J ,  

with the dual 

--cTx + c f y  

Ax - A j y  = O, 

o<<.x: <<. l, j c J uJ ,  

0~<yj~<l, j 6J,  

which is a LP problem 

Max 

s.t. 

where Aj is the submatrix of A consisting of the columns p~ for j C J, and cj is the subvector of 
c consisting of the components c/ for j E J. If we let 

[xj ,  jCJ_,  
z/ = t x j -  y/, j C J, 

then the above dual problem can be rewritten as 

(DILP1) Max - C z  
s.t. Az = 0, 

0~<z/~<l, j 6J_, 
- 1  ~<z/~< 1, j E J .  

We now establish the main result of this section which shows that in some special cases, the 
optimal solution of the /l-norm inverse problem of problem (LP) can be obtained from the dual 
optimal solution. 

Theorem 3.1. Suppose x ° is a given 0-1 feasible solution o f  problem (LP) which has an optimal 
solution x* satisfying 0 <~x* <~ 1. Let n* be the optimal solution o f  its dual problem (DLP). Define 
vectors O* = 0 and ~ = m a x { 0 , c / - n ' p / }  for  all j E J. Then {n*,0*,~*} is an optimal solution 
o f  the inverse problem (ILP1). 

Proof. The dual of problem (LP) is 

(DLP) max nb 
s.t. zrpj<~cj, j = 1,. . . ,n.  
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We first show that {~r*, 0 *, ~*} is a feasible solution to problem (ILP1). Obviously, 0 *, ~* t>0. As 
re* is a feasible solution of problem (DLP), for any j E J_ U J ,  

-n*  pj + O] = -n*  pj >~ - cj. 

Also, by the definition of  ~j*., for j E J .  

n* pj + ~ = n* pj + max{0,cj - n* pj}  

~ c j .  

So, {n*,0*,c~*} is feasible. Note that the objective value of  problem (ILP1) is ~ j ~ j  ~ .  
We now prove that {n*,O *,~*} is an optimal solution. In order to do so it suffices if we can 

show that the dual problem (DILP1) has a feasible solution with the same objective value ~jcJ  ~ .  
Since x* and n* are respectively the optimal solutions of  (LP) and (DLP), by the complementary 

slackness condition, 

(cj - rc* pj)x] = 0. (3.1) 
j@ J_uJ 

As x ° is a 0-1 vector, for each j E J, x ° = 1. By the definition of ~ and the feasibility of re* to 
problem (DLP), for each j E J, ~ = cj - n*pj. So, 

jGJ jCJ  

= Z ( c j -   *pj)x ° 
jEJ 

= Z (c'-z~*P')x°" 
jCJ_UJ 

Combining Eqs. (3.1) and (3.2), we obtain 

Since 

jEJ  jE~UJ 

=-C(x* - x ° ) + ~ * A ( x  * - x  °) 

=-cT(x * -x°). 

= J'x] E [0,1], i f j  E a  r , x; ( x ] -  1 c [ -  1,0], if j E J, 

(3.2) 

x* - x  ° is a feasible solution of  problem (DILP1) with the objective value --cT(x * --xO). Therefore, 
(n*, 0 *, ~*) and x * - x  ° are, respectively, the optimal solutions of  problems (ILP1) and (DILP1). [] 
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4. The solution of  (IBLP) under I i norm 

Under the II norm, the inverse problem (ILBP) becomes 

(IBLP1) Min ~ O r +  ~ ~j 
jEJUJ j~duJ 

s.t. -~zpj+Oj>~ - c j ,  j e J U J ,  

j c J U Y ,  

Oj>>-O, j E J U J ,  

~j/>0, j e J U J .  

Let AI and A2 be the submatrices consisting of the columns pj of A, corresponding to j E J U J 
and j C J U J,  respectively. Then the dual of the above problem is 

Max - Z c jx j+ Z cjyj 
jEJ_uJ jEJUJ 

s.t. AlX - A2y = O, 

O~<xj~<l, j e J U J ,  

O~<yj~< 1, j c J U J .  

In what follows we consider a special case of the problem (BLP): u = 1, i.e. each variable xj has a 
unit upper-bound: u~ = 1. Problem (BLP) becomes 

(UBLP) 

Its dual is 

(DUBLP) 

Min c T x 

s.t. A x  = b ,  

O~<x~<l. 

Max rob - w l  
s.t. m 4  - w<<.c  v,  

w~>0, 

in which n E R m and w E R" are two row vectors. Let x ° be a 0-1 feasible solution of problem 
(UBLP), then the inverse problem with respect to x ° is 

(IUBLP1) Min ~ 0j + ~ a s 
j C J  jEa  v 

s.t. - T z p j + O s > ~ - c  j, j E J ,  

~zpj+~s>>-c j, j c J ,  

oj> o, j c J, 

~j>>,O, j E J ,  
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or equivalently, 

(IUBLPI') Min ~ Oj + ~--~ s 
jEJ_ j cJ  

s.t .  - ~ p s + O j > ~ - %  jEJ_, 

- z c p j - ~ j + w j = - c j ,  j ~J ,  

Oj>.O, j E J ,  

~j, wj>~O, j EJ. 

Obviously the dual of  (IUBLP1) is 

- Z c, x, + Z c, y, (DIUBLP1) Max 

s.t. 

jC J jef f  

A j x  - -  Ayy = O, 

O<<.xs<<.l, j EJ,  

0~<yj~< 1, j E J .  

Or, if we define xj = - y j  for j E J, then the dual of  the inverse problem can be expressed as 

(DIUBLPI') Max --cTx 

s.t. Ax = O, 
O<~xs <<. l, j C J_, 

-l<~xs<<.O, j 6 Y .  

We now give a very simple method to obtain an optimal solution of  the inverse problem (IUBLP 1 ). 

Theorem 4.1. Let x ° be a 0-1 feasible solution of problem (UBLP), x* be an optimal solution of 
(UBLP), and (z~*, w*) be an optimal solution of the dual problem (DUBLP). Define 

0j = { w], j c J n [ ,  
0, j EJ_N{/UI},  

{ cj-=*pj,  j E J A I ,  

~J= O, j a J O { I U i } ,  

{w}, j ~ J n i ,  
wj= O, j E j N { I U I } ,  

7~-~- 7~ , 

where 

I = {jlx; = 0}, I = {jlO < x} < 1}, I - -  {jlx; = 1}, 

then {re, w, O, ~} is an optimal solution of the problem (IUBLPI'). 
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Proof. We first show that {n ,w,O,~}  is feasible to problem (IUBLPI') .  Obviously O, w>~O. If  
j E J N / ,  x] < 1, and hence by the complementary slackness condition, w] = 0 which implies that 

c j - n * p j t > - w ] = O .  So, ~j>~O for a n y j E J .  
Since (rt*, w*) is feasible to (DUBLP), 

rc* pj - w] <~cj Vj. (4.1) 

For each j E J N L Oj --- w~ and therefore Eq. (4.1) is equivalent to 

rtpj - 0j ~< cj. (4.2) 

On the other hand, if j E J_ r-1 { / N  I}, as 0j = 0 and x] < 1 which implies wj* = 0, (4.1) means 
npj  ~<cj and hence Eq. (4.2) is still true. Therefore, for any j E J ,  Eq. (4.2) holds, i.e. the first set 
of  constraints in ( IUBLPI ' )  is true. 

For j E J fq/, by definition, wj = 0 and ~j = cj - rcpj. Hence, 

~zpj + c~j - wj = cj (4.3) 

is true. Now for j C J N { I U [ } ,  by definition e j = 0  and x] > 0. Due to the complementary slackness 
condition, 

npj  - w~ = cj. (4.4) 

Note that when j C i ,  wj = w], whereas when j E I, as x] < 1, we must have wf = 0, and by 
definition wj = 0 = wf. In other words, when j E .7 A {I U [}, we always have wj -- w] and therefore, 

Eq. (4.4) means Eq. (4.3) still holds. So, we have proved that for any j E .7, the second group of 
constraints of  ( IUBLPI ' )  holds. Thus {rc, w,O,e}  is a feasible solution of  (IUBLPI') .  Its objective 
value is 

7 " =  ~ Oj + ~ c~j. (4.5) 
jEJ_N[ jEJAI 

It is easy to see that 

A(x* - x °) = O, 

_ < .  0 *~<1, j C J ,  0.~xj -x) =xj 
• 0 • - 1 . ~ . x j - x ) = x j - l < ~ O ,  j E . 7 ,  

i.e. x* - -x  ° is a feasible solution of  the dual problem (DIUBLPI') .  So, in order to prove that 
{~, w, 0, e} is an optimal solution of (IUBLPI') ,  it suffices to show that the objective value --CT(X * -  
X °) of problem (DIUBLPI ' )  at x* - x  ° equals ?*. 

By the complementary slackness condition, 

o =  (cj + w ;  - 
j = l  

= (c,  - + Z (c, + w;  - 
jEIUl jE[ 

(since for j E / U L x] < 1 and w] = 0) 
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: ~ <- ,~p,)x;+ S,  (~,-,~p,)x; 
jE zn {/tO/} jEYn {/_Ul} 

+ ~ (~,+w;-,:p,)x; + ~ (~,+w;-,:p:)~; 
jEzn i  jEYni  

: S_, (~,-.p,)(x;-x°) + Z (~,-,:p,)(~; -x°) 
jE J_n {1Ul } jEYn {lOl} 

+ Z (~,- .p,)  x°+ Z (~,-,p,)(x; -x°) 
j dn {LUl  } jE J71 !- 

+ ~ O,x;+ Z (~,+w;-.p,)(~;-x°) • 
jEJn [  jEJn[ 

In the above derivation, we  used the facts that when j E J ,  x ° = 0; when j E J 71L 0g = w] and 

when j E ~T, as x j* > 0, Cg + wj* - n* pg = 0. Furthermore, since when j E .7 71I. 0 < x] < 1, we have 
n * p g - w ]  =Cg and wj* = 0, i.e., rCpg = c j, the third summation o f  the last expression need to be 

carried only for j E .7 71/_. Also, when j E J N 1, w ]  = Wg. So, we  can obtain 

0=Z<-.p,)(x;-x°)+ Z (~, - ,~p,)(x; - x°) 
jEJ jEJA{IUI} 

+ S,(~,-,:p,>O+ ~ o,+ Z(c,+w,-,:p~)(~;-x°).  
jEJnl jEJ_n[ jEJn[ 

Notice that for j E ,7 n / ,  we  have x ° = 1 and aj = cj - n p j ,  which imply that the third sum above 
equals ~ jdn /~J "  Therefore, we  have 

n 

o=Z(c,-.p,)(x;-~°)+ Z~ w,(~;-~°)+~" 
j=l jEYn[ 

= C ( x *  - x °)  - ~ ( x *  - x °)  + 7* 

= cT(x * -- x °) + 7* 

~¢ _ _  O _ _  as xj - x )  -- 1 when j E J n I  and Ax* = A x  ° = b .  In other words, we have proved the required result 

--cT(x * - - x O ) = ?  *. [] 
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5. The solutions of (ILP) and (IBLP) under l~  norm 

If the Ioo norm is concerned, problem (2.5) becomes 

Min v 

s.t. -~zp /+O/>/ -c / ,  j E J U J ,  

npj+~zj>~cj, j 6J ,  

v-Oj>~O, j C J U J ,  

v-~j>/O, j 6 J ,  

oj> o, j c J U J  

~j>~O, j E J .  

(5.1) 

(IBLP~) Min v 

s.t. - l rp j+v>>,-c j ,  j E J U J ,  

rtpj÷v>/cj,  j E J U 3 ,  

v>~O. 

If we replace all 0j and ~j in Eq. (5.1) by v, the optimal value will not change: 

Min v 

s.t. - ~ p j + v > ~ - c j ,  j C J U J ,  
~zpj ÷ v>~cj, j E J, (5.2) 

v>~0. 

When x ° is not the optimal solution of  the problem (LP), there must be some positive adjustments 
0j or ~j for the cost vector, which means the minimum value v* of the above problem must be 
positive. So, the constraint v/> 0 would be satisfied automatically and thus can be removed. In this 
way we formulate the inverse problem under 1oo norm as follows: 

( I L P ~ )  Min v 

s.t. -z~pj+v>~ - c j ,  j EJ_UJ, 

7zp/+v>>,c/, j EJ. 

Suppose the optimal solution of (ILPc<z) is (rc*,v*). I f j  E J and 7z*pj < cj, then from the first 
two sets of  constraints in Eqs. (5.1) and (5.2), it is easy to see that we can choose 0j = 0 and 
~j---v*. We can discuss other cases in a similar way and obtain an optimal solution Y for the inverse 
LP problem (ILP): 

cj ÷ l)*, j G J U J and l~* p j  > cj, 

~j :- cj -- v*, j E J and rc* pj < cj, 

c j, otherwise. 

Obviously, when c is replaced by Y, x ° would become an optimal solution of (LP). Of course such 
a solution 6 is not unique. 

Similary, under l~  norm, the problem (IBLP) can be expressed as 
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In fact if x ° is not the optimal solution of  (BLP), then again the minimum value v* must be positive 
and thus the last constraint: v ~> 0 can be removed. 

Once we solved problem (IBLPc~) and obtained an optimal solution (n*,v*), it is easy to obtain 
the optimal solution of  the inverse problem under l~  norm as shown by the following theorem. 

Theorem 5.1. Let  

ej + v*, j E J U J and zc* pj > cj, 

~ j=  cj - v*, j E J U J and rc* pj < cj, 

c j, otherwise. 

Then, ~ is the least-change cost vector f rom the given c & the l~  measure such that under the 
cost vector ~, x ° will become the optimal solution o f  problem (BLP).  

Proof. Obviously I]( - c[l~ = v*, which is the minimum change for the inverse problem ( IBLP~) .  
(n*,v*) satisfies the constraints of  (IBLPc<~): 

- n * p j + v * ~ - c j ,  j C J U J ,  (5.3) 

rc*pj+v*>,cj, j E J U ] .  (5.4) 

In order to show that under the cost vector (, x ° is an optimal solution of  problem (BLP), it suffices 
to prove that the minimum value of  the problem: 

Min v 

s.t. - -~p j+v>/  --~j, j EJ_UJ, 

~zpj + V~Cj, j E J U J ,  (5.5) 

v >>-O 

is zero. To reach this purpose, we only need to show that v---0 and rc = zr* is a feasible solution of  
the above problem. In other words, we need to show that the following two conditions hold: 

- rc*p j>>,- ( j ,  j E J U J ,  (5.6) 

rc*pj>~(j, j E J U J .  (5.7) 

In fact when j C J U J ,  if 

rc* pj <<. cj, 

then ?j = c j  and thus Eq. (5.6) is true; otherwise Yj = c j  + v* and hence by Eq. (5.3), ?j>>,n*pj, 
i.e. Eq. (5.6) also holds. In a similar way, we are able to show that when j C J U J ,  (5.7) always 
holds. [] 

6. Some applications to inverse network optimization 

The above results for inverse LP problems can be used to analyse some inverse network opti- 
mization problems. 
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We know that the shortest path problem from node s to t in a network N(V,A ,  C) can be formulated 
as a LP problem: 

Min ~ cijxij 
(i,j)EA 

- 1 ,  i = s, 
s.t. - Z xij "-[- E xki = O, i E V \ {s,t}, (6.1) 

(i,j)EA (k,i)CA 1, i = t, 
x i j~O, ( i , j )  E A. 

Note that as the coefficient matrix is the node-edge incidence matrix of  the network, which is totally 
unimodular, each basic feasible solution must be a 0-1 solution. So, a 0-1 optimal solution x* exists 
in which the components with x~ = 1 correspond to a shortest path. Now suppose a path P from s 
to t is given. By defining 

1, ( i , j )  E P, 
x° = 0, otherwise. 

We have a 0-1 feasible solution x ° to the above LP problem and thus the conditions of Theorem 
3.1 are satisfied. Now the optimal solution of  the inverse shortest path problem in the sense of  this 
paper can be obtained very quickly by using Theorem 3.1. In fact the dual of  problem (6.1) is 

Max nt - ~Zs 
s.t. ~z/-~zi<~cij, ( i , j )  c A ,  

and it is well known that ~zi represents the shortest length from s to i (possibly plus a constant). 
Therefore, the algorithm for such type of  inverse shortest path problems consists of  the following 
three steps: 

Step 1. Find the shortest distance ~z T from s to each node i E V. 
Step 2. For each ( i , j )  E P, define 

~/ = cij + 7r~ - ~zj. 

Step 3. Let 

f cij - ~ ,  ( i , j )  c P, 

L C j, otherwise, 

then ? is the least-change (under l, measure) cost vector to make P become a shortest path 
from s to t. 

Note that when there is a negative cycle in the network, it may not have a shortest path from s 
to t. But the inverse problem is still solvable, because we can insert the constraints 

x~j<<,l, ( i , j )  EA, 

to problem (6.1), and then use Theorem 4.1 to solve the inverse BLP problem. 
Since the assignment problem can also be expressed as a LP problem with a totally unimodular 

coefficient matrix, its inverse problem can be solved by using Theorem 3.1. Note that such an 
algorithm has been given in [11], but now it can be regarded as a simple application of  Theorem 
3.1. 
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If the l~  measure is concemed, for inverse shortest path problem we can first solve the LP 
problem: 

Min v 

s.t. ~i  - -  7~j "~- 1 ) ~  - -  Cij , ( i , j )  E A, 

7zj - ni + v~ci j ,  ( i , j )  E P, 

obtaining an optimal solution (rc*,v*), and then the least-change cost vector under l~  norm is 

cij + v*, ( i , j )  E A and lt7 - rc~ > cij, 

5ij = cij - v*, ( i , j )  E P and ~zj-zc~ <ci j ,  

cij, otherwise. 

The inverse minimum spanning tree problem under l~  norm is especially simple to solve. Let 
N = ( V , E , c )  be a undirected network and T be a given spanning tree in N. For each e E E \ T ,  Tt_J{e} 
contains a unique cycle. It is easy to know that in order to let T become a minimum spanning tree, 
we only need to reduce the weights on T and increase the weights not on T. In particular, the 
inverse problem under l~  measure can be formulated to: 

( I S T ~ )  Min max{0e, ~f} 

s.t. Ce + Oe>>-Cy -- COy, e f [  T, f E C(T,e), 

Oe~O , e f[ T, 

~f  >~O, f E T, 

where C(T, e) consists of  the subset of  edges in T which together with e form the unique cycle in 
TU{e}. 

Using the method of  Section 5, we can change problem (ISTcx~) to 

Min v 
s.t. 2v>~cf - Ce, e f[ T, f E C(T ,e ) ,  

v >~O, 

without affecting the optimal value. Obviously, the optimal solution (value) of  the above problem is 

1 } 
v* = ~max [0, max max {cf - ce } , 

l ef[T fCC(T,e) 

and the least-change cost vector 5 under the l~  norm which lets T become the minimum spanning 
tree in N is 

= f cg - v*, g E T, 
5g 

t cg + v*, g E T ,  

for each edge g. 
In fact more applications of  the theorems established in this paper have been found and some of 

them shall be illustrated in a forthcoming paper. 
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