Logic - Homework I

Piotr Wojciechowski LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

May 27, 2013

1 Problems

1. Question 1 Solution: $x_i \to x_j$ is a boolean function that represents logical implication. While $F_i \Rightarrow F_j$ is the provable statement that $I \vdash F_j$ for all interpretations I such that $I \vdash F_j \square$

2. Question 2 Solution:

1	P	Hypothesis
2	$Q \lor R$	Hypothesis
3	$\neg Q \rightarrow R$	Implication Equivalence (2)
4	$\neg Q \vee \neg P$	Assumption
5	$P \rightarrow \neg Q$	Implication Equivalence (4)
6	$\neg Q$	Modus Ponens $(1,5)$
7	R	Modus Ponens $(3, 6)$
8	$P \wedge R$	Conjunction $(1,7)$
9	$(\neg Q \lor \neg P) \to (P \land R)$	Conditional $(4, 8)$
10	$\neg (P \land Q) \to (P \land R)$	deMorgan (9)
11	$(P \land Q) \lor (P \land R)$	Implication Equivalence (10)

3. Question 3 Solution: To get a contradiction we assume that there is an interpretation I such that:

1	$I \not\vdash [(P \land Q) \to R] \to [P \to (Q \to R)]$	Hypothesis
2	$I \vdash [(P \land Q) \to R] \land \neg [P \to (Q \to R)]$	Implication equiv (1)
3	$I \vdash [(P \land Q) \to R] \land P \land \neg(Q \to R)$	Implication equiv (2)
4	$I \vdash [(P \land Q) \to R] \land P \land Q \land \neg R$	Implication equiv (3)
5	$I \vdash [(P \land Q) \to R]$	Simplification (4)
6	$I \vdash P \land Q$	Simplification (4)
7	$I \vdash \neg R$	Simplification (4)
8	$I \vdash R$	Modus Ponens $(5, 6)$
9	$I \vdash \perp$	Contradiction $(7, 8)$

4. Question 4 Solution: We will express the CNF formula as a 3CNF formula by transforming each CNF clause as a series of 3CNF clauses. Let the *j*th clause of the orininal formula be (x_1, x_2, \ldots, x_m) we create the m - 3 variables $y_{j_1}, \ldots, y_{j_{m-3}}$ and replace the clause with the following:

$$(x_1, x_2, y_{j_1}) \land (\neg y_{j_1}, x_3, y_{j_2}) \land \ldots \land (\neg y_{j_{m-4}}, x_{m-2}, y_{j_{m-3}}) \land (\neg y_{j_{m-3}}, x_{m-1}, x_m)$$

if all the x_i literals are false then this series of clauses becomes:

 $(y_{j_1}) \land (\neg y_{j_1}, y_{j_2}) \land \ldots \land (\neg y_{j_{m-4}}, y_{j_{m-3}}) \land (\neg y_{j_{m-3}})$

This is equivalent to the implication chain:

$$(y_{j_1}) \land (y_{j_1} \to y_{j_2}) \land \ldots \land (y_{j_{m-4}} \to y_{j_{m-3}}) \land (\neg y_{j_{m-3}})$$

Which cannot be satisfied by any assignment to the y_{j_k} literals.

However if any literal is true then the implication chain is broken and the clauses are satisfiable. \Box

- 5. Question 5 Solution: For each pair of vertex, v_i , and color, c_j create the variable $x_{(i,j)}$ which is true iff vertex v_i is color c_j . We construct the clauses as follows.
 - (a) For each vertex v_i add clause $(x_{(i,1)}, \ldots, x_{(i,k)})$ so that vertex v_i has at least one color.
 - (b) For each vertex v_i and pair of colors c_j and c_l add clause $(\neg x_{(i,j)}, \neg x_{(i,l)})$ so that vertex v_i cannot be both colors c_j and c_l .
 - (c) For each edge $(v_i, v_h) \in E$ and color c_j create clause $(\neg x_{(i,j)}, \neg x_{(h,j)})$ so that both endpoints are not color c_j .