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Abstract

The main purpose of this paper is to determine the computational complexity of the Inverse Integer Programming

Problem. This differs from regular optimization in which you are given the optimization function and solution space and

are asked to find an element contained within the solution space that either minimizes or maximizes the given function. In

the case of Integer Programming the regular optimization problem consists of finding a point x in Zn that satisfies a system

of constraints and either minimizes or maximizes the function f(x) = c · x for a given vector c. For the inverse problem

we are given the point x, the system of constraints, and a target vector c and the goal is to find a vector c′ such that x either

minimizes or maximizes c′ · x and which is as close to the target vector c as possible. We will show that this problem is

∆P
2 -hard. This extends the results in [] which show that this problem is contained within ∆P

2 .

1 Introduction

A normal optimization problem consists of finding the optimal input, which must meet a set restriction, to a function. In the
corresponding inverse optimization problem we are given an input, which satisfies the same set of restrictions, and a target
function. We are then expected to find a function for which the given input is optimal and is which is closest to the target
function. The method through which functions are compared to determine closeness depends on the problem.

Having this requirement of being close to a target function is necessary to prevent a constant function being produced as
an output. Since such a function has the same value for every input it would be trivially optimal for the given input.

In general Inverse Optimization is used in problems where we know the outcome but want to find out what factors
contributed to it.

The principal contributions of this paper is establishing that Inverse Integer Programming is ∆P
2 -hard.

The rest of this paper is organized as follows: Section 2 provides a formal description of the problem under consideration.
The motivation for our work is described in section 3. Related papers are discussed in Section 4. In Section 5 we prove our
complexity results. Finally we conclude in section 6 by summarizing our contributions and identifying avenues for future
research.

2 Statement of Problem

In this section we define the problem at hand. We will start by defining Integer Programming.
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Definition 2.1 An Integer Constraint on the vector x consists of a vector a and integer b, and is said to be satisfied by

x ∈ Zn if c · x ≤ b.

Example (1): 2 ·x1 +3 ·x2 ≤ 1 is an integer constraint where a = (2, 3) and b = 1. It is satisfied by the point x = (0, 0)

but not by the point x = (1, 1).

Definition 2.2 A system of integer constraints A · x ≤ b. is a collection of multiple integer constraints. The system

A · x ≤ b is satisfied by x ∈ Zn if for each constraint in the system Ai · x ≤ bi.

Example (2): Consider the system of integer constraints

x1 + 2 · x2 ≤ 3

x1 + x2 ≤ −1

−x1 ≤ 0

The point x = (1,−2) satisfies each constraint and thus satisfies the system. However, the point x = (0, 0) fails to satisfy
the constraint x1 + x2 ≤ −1 and so does not satisfy the system.

We can now define an Integer Program.

Definition 2.3 An Integer Program consists of a system of integer constraint A · x ≤ b and vector c. The goal is to find a

point x ∈ Zn such that x satisfies the system A · x ≤ b and so that for every other point x′ which also satisfies the system

c · x ≥ c · x′. This referred to as a maximization problem and is written

max c · x

A · x ≤ b

Example (3): In the Integer Program

maxx1

x1 + x2 ≤ 2

−x2 ≤ 0

The optimal solution occurs when x = (2, 0).
From the definition of an integer program we can now define inverse integer programming. In an inverse integer program

instead of trying to find a value of x that maximizes c · x we are already given a value for x, say x′, and asked to find a
vector c such that for all x that satisfy the system c · x′ ≥ c · x. However without any restrictions on c this problem can be
trivially solved by setting c = 0. Thus we restrict ourselves to finding the vector c that is closest to a target vector d. The
distance between two vectors can be measured in several ways. These distance measures are called norms and in this paper
we will focus on two in particular.

Definition 2.4 The l1 norm of two vectors c and d is ||c− d||1 =
∑n

i=1 |ci − di|

Definition 2.5 The l∞ norm of two vectors c and d is ||c− d||∞ = maxi=1...n |ci − di|
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Example (4): Consider the vectors c = (1, 2,−4) and d = (0,−1,−2). We have that ||c− d||1 = 1 + 3 + 2 = 6 and
that ||c− d||∞ = 3.

We can now fully define an Inverse Integer Program.

Definition 2.6 Given a system of integer constraints, A · x ≤ b, an integer point x′ such that A · x′ ≤ b, and a target

vector d. The Inverse Integer Program is

min ||c− d||

∀x [A · x ≤ b→ c · x ≤ c · x′]

Where ||c− d|| is either ||c− d||1 or ||c− d||∞.

The goal of this paper is to show that this problem is ∆P
2 -hard.

3 Motivation

In this section we will mention several ares where Inverse Programming is used. Generally these ares deal with determining
what factors are important when trying to predict possible outcomes.

One such area is the field of earthquake prediction. We currently do not know what factors are important in determining
when earthquakes will occur or how they will propagate. Inverse optimization can be used to try and extrapolate these
important factors given the results of how actual earthquakes occur and propagate.

The parameters involved in modeling earthquakes may be very difficult or impossible to determine. Thus scientists
need to estimate these parameters, and values of the observable parameters are used to improve these estimates. This
means that inverse problems are extensively studied by geophysical scientists (see, for example, [Neumann84], [Nolet87],
[Tarantola87], and [Woodhouse84]).

An important application in this area concerns predicting the movements of earthquakes. To model earthquake move-
ments, consider a network obtained by the discretization of a geologic zone into a number of square cells. Nodes corre-
sponding to adjacent cells are connected by arcs. The cost of an arc represents the transmission time of certain seismic
waves from corresponding cells, and is not accurately known. Earthquakes are then observed and the arrival times of the
resulting seismic perturbations at various observation stations are observed. Assuming that the earthquakes travel along
shortest paths, the problem faced by geologists is to reconstruct the transmission times between cells from the observa-
tion of shortest time waves and a priori knowledge of the geologic nature of the zone under study. This problem is an
example of an inverse shortest path problem. Inverse problems also arise in X-ray tomography where observations from a
CT-scan of a body part together with a priori knowledge of the body is used to estimate its dimension. [Tarantola87] gives
a comprehensive treatment of the theory of inverse problems and provides additional applications.

4 Related Work

There have been many papers in the field of inverse optimization. [Zhang96] studied several types of inverse linear pro-
gramming problems including inverse minimum cost flow and inverse assignment problems. The paper also suggested a
method for solving general inverse linear programming problems. This work was extended in [Zhang99]. Then [Yang99]
provided two methods for solving inverse linear programs. The first of these used the original LP to provided the initial
columns for use by the simplex method. The second is through the ellipsoid method.
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[Ahuja01] also studied inverse linear programs. They showed that under the l1 and l∞ norms, inverse linear programs
are regular linear programs. They also showed that when restricted to unit weights the inverse shortest path and minimum
cut problems are still shortest path and minimum cup problems respectively. Several variants of inverse linear programming
and methods for solving them were described in [Heuberger04].

A variation of inverse optimization was studied in [Faragó03]. Instead of being given a single original optimization
problem, they started with several problems each with a feasible solution and tried to find a single objective function that
would make each solution optimal for its original optimization problem. A similar problem was studied in [Roland13],
which studied the inverse optimization problem where the goal is to find an an objective function that makes a set of
feasible solutions optimal. A further variation was explored in [Dempe06] where the bounds on constraints we allowed to
vary along with the objective function.

There have also been several papers on the inverse optimization problems for specific sub-problems of linear program-
ming. [Larin05] studied inverse optimization with regards to periodic linear systems. Also, [Zhang10] studied inverse
optimization under the l1 and l2 norms of linearly constrained separable programming problems.

Inverse integer programming has also been studied. In [Huang05] the inverse programming problems of several NP-
complete problems were studied and shown to be solvable with pseudo-polynomial algorithms. These problems included
the knapsack problem and integer programming when restricted to a fixed number of constraints. [Schaefer09] provided
two approaches for solving the inverse integer programming problem.

5 Complexity Results

6 Conclusion

In this paper we showed that the inverse integer programming problem is ∆p
2 -hard. An interesting research direction would

be to study the inverse optimization versions of several variants of integer programming. These include systems of UTVPI
constraints, and systems of horn constraints.
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