
1

Generalized Difference Constraints

Piotr Wojciechowski
LDCSEE,

West Virginia University,
Morgantown, WV

{pwojciec@mix.wvu.edu}

December 15, 2014

1 Summary
In studying the generalized difference constraint closure we want a method of precomutation that makes any call to all two
variable optimization functions computeable quickly. To do this we need to find all the breakpoints when the system is
projected onto the xi, xj plane for each pair i, j. Once we have these breakpoints we can quickly find the maximum an
minimum values obtained by any optimization function using only the variables xi and xj . This proceeds as follows:

Algorithm 1 Pre-processing Algorithm for generalized difference constraint closure
GEN-DIF-CLOS (system G of generalized difference constraints)

1: for (Each pair i and j) do
2: Use Fourier-Motzkin Elimination to eliminate all variables in G except xi and xj .
3: Store the resultant non-redundant constraints in order of increasing slope.
4: end for

Thus, the running time of this algorithm depends on the number of breakpoints between each pair of variables. In the
general case we were unable to determine if there are only polynomialy many of these breakpoints or not. However, we
have determined several cases where the number of breakpoints is polynomial in the number of variables.

1. If the coefficients use a fixed number, p,of prime factors, then we have a limit of q(n)2·p possible xi, xj constraints
that can be generated from the system, where q(n) is some polynomial function of n.

2. When the coefficients are limited by some fixed constant, k, we have obtained a similar result.

There are still further ares to research about this problem.

1. We still do not know if either of this problem is Fixed Parameter Tractable with respect to either p or k.

2. We do not know the impact on accuracy caused by limiting the number of xi, xj breakpoints stored. This might lead
us to a faster approximation algorithm.

2 December 15, 2014
Let us consider limiting the maximum number of xi, xj breakpoints to 8. At each variable elimination we will prune the
number of constraints for each pair of variables. Thus at each elimination phase the xi, xj breakpoints will look something
like Figure 1.

xj

xi

Figure 1: Restricted breakpoints

Since all these points are along the exterior of the convex hull we have that all feasible values of (xi, xj) must lie within
the shape shown in Figure 2.

xj

xi

Figure 2: Limit on feasible solutions

This is because if a valid solution is outside those boundaries then, as shown by the red lines in Figure 3, the set of
solutions is no longer convex.

However, this does not give us a good approximation. The distance between the actual and computed optimum values
will be bounded by the size of the solution space.

3 December 8, 2014
As before we can consider the number of prime factors p in the coefficients of the constraints. We know that p ≤ k. Since
p can be number of primes less than k. By the Prime Number Theorem, as k grows p approaches k

ln k . From the constraints

2

xj

xi

Figure 3: Infeasible solution

ai · xi − bj · xj ≤ cij and aj · xj − bl · xl ≤ cjl we can derive the constraint ai · aj · xi − bj · bl · xl ≤ aj · cij + bj · cjl.
Consider the derived constraint a1 · x1 − bn · xn ≤ c1n and let y denote the number of constraints used to derive this

constraint. We know that both a1 and bn use at most p primes and are at most ky . When we consider the exponents in the
prime factorization of a1, we know that these exponents add up to at most y · log2 n. We also have that the more prime
factors are involved in this factorization the lower this sum will be.

Grade: C.

4 December 1, 2014
Thanksgiving Break

5 November 24, 2014
Now, instead of limiting the number of prime factors p, we will limit the coefficients themselves. Note that if we have a
maximum value, k, for our coefficient then we still limit the total number of prime factors. This limit also limits the number
of constraints between each pair of variables and the exponents that the prime factors can have in each coefficient. We know
that there are at most 2 · k2 constraints involving each pair of variables. We also know that for each coefficient the sum of
the exponents of the prime factors is at most log2 k. We need to see if these additional limits on the problem make it FPT
with respect to the parameter k.

Grade: B.

6 November 17, 2014
There does not seem to be a way to limit the number of possible exponents of each prime to be lower than O(n). Thus for
each fixed p there will be at least (2 · n)p possible x1, xn constraints generated. Thus under the running time will not be
FPT without further restrictions on the coefficients or the choice of a different parameter.

Grade: C.

3

7 November 10, 2014
To show that Generalized difference constraint closure is FPT we need to change the current running time of nO(p) to
f(p) · nO(1) for some computeable function f . First we will look each prime pi used individually and try to determine the
number of possible exponents more accurately that nO(1).

We cannot reduce the maximum number of constraints by only considering the possible combinations of exponents
among the prime factors. We only limit the number of primes that can occur as factors in the coefficients and not the
number of constraints. Thus within the coefficients themselves we can already have various combinations of prime factors.
This means that if, in a generated constraint, we know the exponent of one prime we cannot exclude any values for the
exponents of the other primes.

Grade: C.

8 November 3, 2014
We now have a parameter, p the number of prime factors, such that for each fixed p the generalized difference constraint
closure problem can be solved in time nO(1). Thus it may be possible to find an FPT algorithm for this problem. The main
issue that we currently have a running time of nO(p) instead of f(p) ·nO(1)). We currently assign the same range of possible
exponents, 0 to q(n), to each of the p primes used in the system, if we can get a more accurate exponent for each of the
primes then we might be able to get the running time in the desired form.

To aid in this I have read up on the various FPT techniques covered in the slides for the FPT school to see if they can be
applied to this problem.

Grade: B.

9 October 27, 2014
For each fixed number of primes used, p, we generate at most q(n)2·p constraints. Each generated constraint is equivalent
to a constraint of the form xi−

(∏ bkl

akl

)
· xj ≥ c′ij which has q(n)p possible numerators and q(n)p possible denominators.

Thus for each fixed number of primes the Fourier-Motzkin elimination procedure runs in time polynomial in both n and
m. Thus, for each fixed p, we have a polynomial algorithm for determining the closure of a set of generalized difference
constraints. This proceeds as follows:

Algorithm 2 Pre-processing Algorithm for generalized difference constraint closure
GEN-DIF-CLOS (system G of generalized difference constraints)

1: for (Each pair i and j) do
2: Use Fourier-Motzkin Elimination to eliminate all variables in G except xi and xj .
3: Store the resultant non-redundant constraints in order of increasing slope.
4: end for

Theorem 9.1 Each
∏

akl and
∏

bkl generated by the reduction process has size polynomial in n.

Proof: We know that each extreme point of the system must have size polynomial in n. We also have that each xi, xj

breakpoint generated corresponds to the xi and xj coordinates of at least one of these extreme points. Thus the size of the
generated break points must also be polynomial in n. Since the size of a breakpoint depends on the size of

∏ bkl

akl
and c′ij

for two generated constraints we must have that the size of all these values are also polynomial in n. 2
This means that for each prime factor of

∏
akl and

∏
bkl must have its exponent be polynomial in n. Since otherwise

either
∏

akl or
∏

bkl would be too large. Let q(n) be a polynomial in n that represents the largest exponent of any prime
factor. Since we have a fixed number p of primes there are at most q(n)2·p non-redundant constraints. This means that
there are at most q(n)2·p xi, xj breakpoints for each pair xi and xj . Thus, for each fixed number of primes p, both the

4

Fourier-Motzkin elimination procedure and the closure algorithm run in time polynomial in n. However this running time
is on the order of q(n)2·p for some unknown polynomial q(n).

Grade: A.

10 October 20, 2014
If a fixed number of primes are used in total among the decompositions of each aij then we do have a polynomial algorithm.
We have that all the derivable constraints are also of the form xi−a′ij ·xj ≥ cij . Each prime appearing in the decomposition
of a′ij must appear in the one of the original aijs since a′ij is the product of one or more of these values. Thus if the number
of primes in the decompositions is p then after the elimination procedure we generate at most (m · n)p possible a′ijs thus
limiting the number of constraints generated an similarly the number of breakpoints. One result of this is that if we have a
fixed maximum value for all aijs then the problem is polynomial in n.

This also works in the case of constraints of the form aij · xi − bij · xj ≥ cij where both a and b have some maximum
size independent of n. Note that all constraints generated by elimination will equivalent to constraints of the form xi −(∏ bkl

akl

)
· xj ≥ c′ij . Both the numerator and denominator of

∏ bkl

akl
are limited in the same way that a′ij was previously.

Thus resulting in at most polynomially many constraints generated.

Grade: B.

11 October 13, 2014
Let us try to find restricted forms of generalized difference constraints that result in a polynomial number of break points.
Let us first focus on the case where each constraint is of the form xi − aij · xj ≥ cij were a is polynomial in n. Note that
this is not the same as the size of a being polynomial in n as this still allows a to be singly exponential in n. One advantage
of this particular case is that it allows us to in polynomial time and space construct an equivalent set of horn constraints.
Each xj is replaced with maxi aij variables and each constraint of the form xi − aij · xj ≥ cij becomes a horn constraint
with (1 + aij) variables. Another advantage of this form is that it limits the number of primes in the decomposition of each
aij .

Grade: C.

12 October 6, 2014
Fell ill, No Progress.

13 September 29, 2014
To obtain the desired distribution of break points we need to ensure that min Mi

Mj
≥ an

a1
. This will ensure that, even if

two sets of breakpoints are generated using the same number of variable eliminations (and thus the coefficients of xn have
the same number of M variables) the sets of breakpoints associated with particular sets of variable eliminations will not
intersect. We also want that no tow variable eliminations produce the same set of breakpoints. Thus we can associate each
variable with a unique prime. Thus one possible value for Mi is pi · dan

a1
e this will have the desired effect on the breakpoint

distribution.
Thus for each subset S of the variables, and for each 1 ≤ k ≤ n we generate the following x1, xn constraint once all the

variables in S are eliminated.

x1 − ak ·
∏
i∈S

(
pi ·

an
a1

)
· xn ≥

∑
i∈S

ci ·
∏

j∈S,j≤i

(
pj ·

an
a1

)
5

Thus a total of 2n−2 · n x1, xn constraints are generated.
We are interested in the interaction of two adjacent sets of breakpoints and thus in the interaction between the constraints

corresponding to a1 and an in two adjacent groups. The order of these groups relates to the values of pi

pi−1
and an

a1
.

Grade: B.

14 September 22, 2014
We have that each time one of the verticies is eliminated new constraints are added between x1 and each remaining vertex.
At the end of the elimination procedure for each k and each subset M ′ of M we have that there exists a constraint between
x1 and xn of the form

x1 − ak ·

(∏
Mi∈M ′

Mi

)
· xn ≥ c

Thus at the end of the variable elimination process we have that there are at most 2n−2 groups of n constraints. Now for
each pair of adjacent groups we need to compare the intersection of the constraint with a1 as part of the coefficient in one
group and the constraint with an as part of the coefficient in the other group. We now need to choose values of a, M , and c
to maximize the number of non-redundant groups.

Grade: C. I don’t see the progress. The techniques that you mention are well-known. It is still unclear whether you can
get the Ω(mlogn) bound. If not, then you have a polynomial time elimination procedure. There also seems to be little work
along the lines of building up the closure algorithm.

15 September 15, 2014
We need a more specific method of causing this grouping of breakpoints. We know that to find the breakpoints we can order
the non-redundant constraints in order of slope. Thus if all constraints are of the form xi − ak · xj ≥ ck then we can order
the non-redundant xi, xj constraints in order of increasing ak.

One possible way to obtain the desired grouping of breakpoints is to ensure that with every variable elimination, the
newly generated x1, xn constraints all have larger ak than the already existing x1, xn constraints.

We can then construct a system as follows:

1. For every i 6∈ {1, n} we have n constraints each of the form x1 − ak · xi ≥ ck.

2. For every pair 1 < i < j, we have a single constraint of the form xi −Mi · xj ≥ cij for some large Mi >> max ck.

Thus after each variable elimination the newly introduced x1, xn constraints all have their ck values multiplied by some
large Mi. The later these constraints are introduced in the elimination procedure the more Mi values appear. Thus these
constraints are grouped as desired. We also have that in each group of constraints the breakpoints appear in the same order.
Thus to determine the final number of breakpoints we only need to ensure that a large enough number of these groups
remain instead of having to focus on single constraints.

Grade: C+. There is some progress, but now you need to come up with a solution.

16 September 8, 2014
We have a method for precomputation of the closure of a system of generalized difference constraints whose running time
depends on the number of breakpoints that variable elimination can produce between each pair of variables xi and xj . If
this number is polynomial in n and m (the number of starting variables and constraints) then we are done. We also know
that the number of xi, xj breakpoints depends on the number of non-redundant xi, xj constraints that can be derived from
the system. We know that an exponential number of xi, xj constraints can be derived however many of these constraints
may be redundant and thus not contribute to the number of breakpoints.

6

We will now focus on seeing if there is a set of clauses which can generate a non-polynomial number of non-redundant
xi, xj constraints.

We may consider a system where we already start with a number of constraints between each pair of variables. These
constraints are structured so that the breakpoints are grouped close together and so that eliminating a variable will in some
way combine the sets of breakpoints as demonstrated in bellow.

xj

xi

The main issue with trying to determine the number of breakpoints generated by a certain form of system is that all the
generated constraints need to be considered. Since the addition of even a single additional constraint can drastically reduce
the number of breakpoints in the system.

Grade: C. There does not seem to be much progress since out last meeting.

7

	Summary
	December 15, 2014
	December 8, 2014
	December 1, 2014
	November 24, 2014
	November 17, 2014
	November 10, 2014
	November 3, 2014
	October 27, 2014
	October 20, 2014
	October 13, 2014
	October 6, 2014
	September 29, 2014
	September 22, 2014
	September 15, 2014
	September 8, 2014

