Instructor’s Manual
by Thomas H. Cormen

to Accompany

Introduction to Algorithms

Third Edition

by Thomas H. Cormen
Charles E. Leiserson
Ronald L. Rivest
Clifford Stein

The MIT Press
Cambridge, Massachusetts London, England

Instructor's Manual to Accompariptroduction to AlgorithmsThird Edition
by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rieest,Clifford Stein

Published by the MIT Press. Copyrigf® 2009 by The Massachusetts Institute of Technology. Alltdgh
reserved.

No part of this publication may be reproduced or distributedny form or by any means, or stored in a database
or retrieval system, without the prior written consent oETMIT Press, including, but not limited to, network or
other electronic storage or transmission, or broadcastiftance learning.

Contents

Revision History R-1
Preface P-1

Chapter 2: Getting Started
Lecture Notes 2-1
Solutions 2-17

Chapter 3: Growth of Functions
Lecture Notes 3-1
Solutions 3-7

Chapter 4: Divide-and-Conquer
Lecture Notes 4-1
Solutions 4-17

Chapter 5: Probabilistic Analysis and Randomized Algorithms
Lecture Notes 5-1
Solutions 5-9

Chapter 6: Heapsort
Lecture Notes 6-1
Solutions 6-10

Chapter 7: Quicksort
Lecture Notes 7-1
Solutions 7-9

Chapter 8: Sorting in Linear Time
Lecture Notes 8-1
Solutions 8-10

Chapter 9: Medians and Order Statistics
Lecture Notes 9-1
Solutions 9-10

Chapter 11: Hash Tables
Lecture Notes 11-1
Solutions 11-16

Chapter 12: Binary Search Trees
Lecture Notes 12-1
Solutions 12-15

Chapter 13: Red-Black Trees
Lecture Notes 13-1
Solutions 13-13

Chapter 14: Augmenting Data Structures
Lecture Notes 14-1
Solutions 14-9

Contents

Chapter 15: Dynamic Programming
Lecture Notes 15-1
Solutions 15-21

Chapter 16: Greedy Algorithms
Lecture Notes 16-1
Solutions 16-9

Chapter 17: Amortized Analysis
Lecture Notes 17-1
Solutions 17-14

Chapter 21: Data Structures for Disjoint Sets
Lecture Notes 21-1
Solutions 21-6

Chapter 22: Elementary Graph Algorithms
Lecture Notes 22-1
Solutions 22-13

Chapter 23: Minimum Spanning Trees
Lecture Notes 23-1
Solutions 23-8

Chapter 24: Single-Source Shortest Paths
Lecture Notes 24-1
Solutions 24-13

Chapter 25: All-Pairs Shortest Paths
Lecture Notes 25-1
Solutions 25-9

Chapter 26: Maximum Flow
Lecture Notes 26-1
Solutions 26-12

Chapter 27: Multithreaded Algorithms
Solutions 27-1

Index -1

Revision History

Revisions are listed by date rather than being numbered.

3 January 2012. Added solutions to Chapter 27. Added amatiee solution
to Exercise 2.3-7, courtesy of Viktor Korsun and Crystal geeCorrected a
minor error in the Chapter 15 notes in the recurrencefor) for the recursive
CuT-RoD procedure. Updated the solution to Problem 24-3. Correated
error in the proof about the Edmonds-Karp algorithm perfagrO (VE) flow
augmentations. The bodies of all pseudocode proceduresdaneted slightly.

28 January 2011. Corrected an error in the solution to Pmotded(c), and
removed unnecessary code in the solution to Problem 2-A@ifjed a missing
parameter to recursive calls ofER-MAT-MuULT on page 4-7. Changed the
pseudocode for HAP-EXTRACT-MAX on page 6-8 and kX -HEAP-INSERT
on page 6-9 to assume that the parametisrpassed by reference.

7 May 2010. Changed the solutions to Exercises 22.2-3 ar@tfbecause
these exercises changed.

17 February 2010. Corrected a minor error in the solutionxer€&ise 4.3-7.
16 December 2009. Added an alternative solution to Exe&i3€63, courtesy
of Eyal Mashiach.

7 December 2009. Added solutions to Exercises 16.3-1, P626.1-3, 26.1-7,
26.2-1, 26.2-8, 26.2-9, 26.2-12, 26.2-13, and 26.4-1 aitdblem 26-3. Cor-
rected spelling in the solution to Exercise 16.2-4. Seveoatections to the
solution to Exercise 16.4-3, courtesy of Zhixiang Zhu. Migbanges to the
solutions to Exercises 24.3-3 and 24.4-7 and Problem 24-1.

7 August 2009. Initial release.

Preface

This document is an instructor's manual to accomplairpduction to Algorithms
Third Edition, by Thomas H. Cormen, Charles E. LeisersomdRbL. Rivest, and
Clifford Stein. Itis intended for use in a course on algarith You might also find
some of the material herein to be useful for a CS 2-style eordglata structures.

Unlike the instructor's manual for the first edition of th&tte-which was organized

around the undergraduate algorithms course taught by €hhdiserson at MIT

in Spring 1991—but like the instructor's manual for the satedition, we have

chosen to organize the manual for the third edition accgrdinchapters of the

text. That is, for most chapters we have provided a set afilediotes and a set of
exercise and problem solutions pertaining to the chapteis drganization allows

you to decide how to best use the material in the manual in gourcourse.

We have not included lecture notes and solutions for eveaptel, nor have we
included solutions for every exercise and problem withamdhapters that we have
selected. We felt that Chapter 1 is too nontechnical to oleclbere, and Chap-
ter 10 consists of background material that often fallsidatalgorithms and data-
structures courses. We have also omitted the chaptersrthabacovered in the
courses that we teach: Chapters 18-20 and 27-35, as wellpEndiges A-D;
future editions of this manual may include some of these telap There are two
reasons that we have not included solutions to all exer@gsdsproblems in the
selected chapters. First, writing up all these solutionsld/itake a long time, and
we felt it more important to release this manual in as timelgshion as possible.
Second, if we were to include all solutions, this manual widaé much longer than
the text itself.

We have numbered the pages in this manual using the fa@GaPP, whereCC

is a chapter number of the text aidP is the page number within that chapter's
lecture notes and solutions. TR® numbers restart from 1 at the beginning of each
chapter’s lecture notes. We chose this form of page nundpednthat if we add
or change solutions to exercises and problems, the onlyspalgese numbering is
affected are those for the solutions for that chapter. Magedf we add material
for currently uncovered chapters, the numbers of the eggtiages will remain
unchanged.

The lecture notes

The lecture notes are based on three sources:

P-2

Preface

* Some are from the first-edition manual; they correspond tarl€h Leiserson’s
lectures in MIT’s undergraduate algorithms course, 6.046.

* Some are from Tom Cormen’s lectures in Dartmouth Collegetemyraduate
algorithms course, CS 25.

* Some are written just for this manual.

You will find that the lecture notes are more informal than tiet, as is appro-
priate for a lecture situation. In some places, we have dieglthe material for
lecture presentation or even omitted certain consideratiGome sections of the
text—usually starred—are omitted from the lecture notlége bhave included lec-
ture notes for one starred section: 12.4, on randomly builary search trees,
which we cover in an optional CS 25 lecture.)

In several places in the lecture notes, we have includediéasito the instruc-
tor. The asides are typeset in a slanted font and are enclossgliare brack-

ets. [Here is an aside.some of the asides suggest leaving certain material on the

board, since you will be coming back to it later. If you arejpoting a presenta-
tion rather than writing on a blackboard or whiteboard, yaghtiwant to replicate
slides containing this material so that you can easily septihem later in the lec-
ture.

We have chosen not to indicate how long it takes to cover nahtas the time nec-
essary to cover a topic depends on the instructor, the stidée class schedule,
and other variables.

There are two differences in how we write pseudocode in ttieile notes and the
text:

* Lines are not numbered in the lecture notes. We find them vstoent to
number when writing pseudocode on the board.

* We avoid using thdength attribute of an array. Instead, we pass the array
length as a parameter to the procedure. This change makgsé¢elocode
more concise, as well as matching better with the descniptfavhat it does.

We have also minimized the use of shading in figures withitukecnotes, since
drawing a figure with shading on a blackboard or whiteboadifiecult.

The solutions

The solutions are based on the same sources as the lectase They are written
a bit more formally than the lecture notes, though a bit lessélly than the text.
We do not number lines of pseudocode, but we do uséetiggh attribute (on the
assumption that you will want your students to write pseodecas it appears in
the text).

As of the third edition, we have publicly posted a few sohgion the book’s web-
site. These solutions also appear in this manual, with thtation “This solution
is also posted publicly” after the exercise or problem num@dne set of publicly
posted solutions might increase over time, so we encourageoycheck whether
a particular solution is posted on the website before yougasan exercise or
problem to your students.

Preface P-3

The index lists all the exercises and problems for whichresiual provides solu-
tions, along with the number of the page on which each saoidiarts.

Asides appear in a handful of places throughout the solsttigkiso, we are less
reluctant to use shading in figures within solutions, siresée figures are more
likely to be reproduced than to be drawn on a board.

Source files

For several reasons, we are unable to publish or transmitediles for this man-
ual. We apologize for this inconvenience.

You can use the clrscode3e packagefGX 2, to typeset pseudocode in the same
way that we do. You can find this package at http://www.c$anth.edufthc/
clrscode/. That site also includes documentation. Make ®&uuse the clrscode3e
package, not the clrscode package; clrscode is for the desition of the book.

Reporting errors and suggestions

Undoubtedly, instructors will find errors in this manual.e&e report errors by
sending email to clrs-manual-bugs@mitpress.mit.edu.

If you have a suggestion for an improvement to this manualage feel free to
submit it via email to clrs-manual-suggestions@ mitpragsedu.

As usual, if you find an error in the text itself, please vettat it has not already
been posted on the errata web page before you submit it. Yowsa the MIT
Press web site for the text, http://mitpress.mit.edufdtigms/, to locate the errata
web page and to submit an error report.

We thank you in advance for your assistance in correctirayin both this manual
and the text.

How we produced this manual

Like the third edition ofintroduction to Algorithmsthis manual was produced in
IATEX 2¢. We used the Times font with mathematics typeset using thianMae
Pro 2 fonts. As in all three editions of the textbook, we cdetpithe index using
Windex, a C program that we wrote. We drew the illustratioss gt MacDraw
Prol with some of the mathematical expressions in illustratizig in with the
psfrag package for"IgX2s. We created the PDF files for this manual on a
MacBook Pro running OS 10.5.

Acknowledgments

This manual borrows heavily from the manuals for the first sditions. Julie
Sussman, P.P.A., wrote the first-edition manual. Julie dahs superb job on the

Isee our plea in the preface for the third edition to Applejraskhat they update MacDraw Pro for
Os X.

P-4

Preface

first-edition manual, finding numerous errors in the firgtied text in the process,
that we were thrilled to have her serve as technical copyetbt both the second
and third editions of the book. Charles Leiserson also pl#rge amounts of time
working with Julie on the first-edition manual.

The manual for the second edition was written by Tom CormdaraCLee, and
Erica Lin. Clara and Erica were undergraduate computenseienajors at Dart-
mouth at the time, and they did a superb job.

The other threelntroduction to Algorithmsauthors—Charles Leiserson, Ron
Rivest, and Cliff Stein—provided helpful comments and msjipns for solutions
to exercises and problems. Some of the solutions are madefiszof those written
over the years by teaching assistants for algorithms ce@atsdIT and Dartmouth.
At this point, we do not know which TAs wrote which solutiorgd so we simply
thank them collectively. Several of the solutions to newreises and problems
in the third edition were written by Sharath Gururaj of CohienUniversity; we
thank Sharath for his fine work.

We also thank the MIT Press and our editor, Ada Brunstein,nforal and fi-
nancial support. Tim Tregubov and Wayne Cripps providedmaer support at
Dartmouth.

THOMAS H. CORMEN
Hanover, New Hampshire
August 2009

Lecture Notes for Chapter 2:
Getting Started

Chapter 2 overview

Goals

» Start using frameworks for describing and analyzing athors.

* Examine two algorithms for sorting: insertion sort and neesgrt.

» See how to describe algorithms in pseudocode.

* Begin using asymptotic notation to express running-timayasis.

* Learn the technique of “divide and conquer” in the contextnefrge sort.

Insertion sort

The sorting problem

Input: A sequence of numbers(ay,a,,...,a,).

Output: A permutation (reorderingla’, a, ..., a,) of the input sequence such
thata} <a), <--- <a,,.

The sequences are typically stored in arrays.

We also refer to the numbers &sys Along with each key may be additional
information, known asatellite data [You might want to clarify that “satellite
data” does not necessarily come from a satellite.]

We will see several ways to solve the sorting problem. Eachwithbe expressed
as amlgorithm: a well-defined computational procedure that takes someyak
set of values, as input and produces some value, or set afs/ads output.

Expressing algorithms

We express algorithms in whatever way is the clearest and coosise.
English is sometimes the best way.
When issues of control need to be made perfectly clear, vea aitgpseudocode

Lecture Notes for Chapter 2: Getting Started

* Pseudocode is similar to C, C++, Pascal, and Java. If you kamgwof these
languages, you should be able to understand pseudocode.

* Pseudocode is designed fexpressing algorithms to humansoftware en-
gineering issues of data abstraction, modularity, andr drandling are often
ignored.

* We sometimes embed English statements into pseudocodeefditee unlike
for “real” programming languages, we cannot create a camffilat translates
pseudocode to machine code.

Insertion sort

A good algorithm for sorting a small number of elements.
It works the way you might sort a hand of playing cards:

« Start with an empty left hand and the cards face down on the.tab

* Then remove one card at a time from the table, and insertattimt correct
position in the left hand.

* Tofind the correct position for a card, compare it with eacthefcards already
in the hand, from right to left.

* At all times, the cards held in the left hand are sorted, aeddlcards were
originally the top cards of the pile on the table.

Pseudocode
We use a procedure&lsERTION-SORT.

* Takes as parameters an arwyl . . n] and the lengthe of the array.
* Asin Pascal, we use :” to denote a range within an array.

+ [We usually use 1-origin indexing, as we do here. There amiadlaces in
later chapters where we use 0-origin indexing instead. Uf e translating
pseudocode to C, C++, or Java, which use 0-origin indexiog, need to be
careful to get the indices right. One option is to adjustradkix calculations in
the C, C++, or Java code to compensate. An easier option Bpnwhing an
arrayA[l . .n], to allocate the array to be one entry longet}6-. . n]—and just
don’t use the entry at index]

* [In the lecture notes, we indicate array lengths by pararsetgher than by
using thdengthattribute that is used in the book. That saves us a line of-pseu
docode each time. The solutions continue to uséethgth attribute.]

* The arrayA4 is sortedin place the numbers are rearranged within the array,
with at most a constant number outside the array at any time.

Lecture Notes for Chapter 2: Getting Started 2-3

INSERTION-SORT(A, n) cost times
for j =2ton ¢, n
key = A[/j] ¢, n-—1
/I InsertA[j] into the sorted sequencfl1..j —1]. O n—1
i=j—1 cqe n—1
whilei > 0 andA[i] > key cs Yol
Ali +1] = A[i] 6 Dt —1)
i=i—1 c7 Z;.'zz(tj -1)
Ali + 1] = key cg n—1

[Leave this on the board, but show only the pseudocode for Wail put in the
“cost” and “times” columns later.]

Example

1J23456 12]3456 123J456
[5]2]4] 6] 1] § [2]5][4[6[1] 3 [2]4]5]6] 1] 3
\YJ \YJ

1234J56 1234516 1 2 3 4 5 6
[2]4]5] 6] 1f 3 [2]2[4]5]6]3 [2]2[3]4]5]6]
Uudi YUy

[Read this figure row by row. Each part shows what happens fartcular itera-
tion with the value ofj indicated.;j indexes the “current card” being inserted into
the hand. Elements to the left af j] that are greater tha#i| j] move one position

to the right, andd[j] moves into the evacuated position. The heavy vertical lines
separate the part of the array in which an iteration work$i—. j|—from the part

of the array that is unaffected by this iteratiolF + 1..n]. The last part of the
figure shows the final sorted array.]

Correctness

We often use doop invariant to help us understand why an algorithm gives the
correct answer. Here's the loop invariant fOISERTION-SORT:

Loop invariant: At the start of each iteration of the “outeftr loop—the
loop indexed byj —the subarray[1 .. j — 1] consists of the elements orig-
inally in A[1..;j — 1] but in sorted order.

To use a loop invariant to prove correctness, we must shaee ttmings about it:

Initialization: It is true prior to the first iteration of the loop.
Maintenance: Ifitis true before an iteration of the loop, it remains trigfdre the
next iteration.

Termination: When the loop terminates, the invariant—usually along wuhith
reason that the loop terminated—agives us a useful progeatyhielps show that
the algorithm is correct.

2-4

Lecture Notes for Chapter 2: Getting Started

Using loop invariants is like mathematical induction:

* To prove that a property holds, you prove a base case and activel step.
» Showing that the invariant holds before the first iteratohke the base case.

» Showing that the invariant holds from iteration to iteratis like the inductive
step.

* The termination part differs from the usual use of mathetahinduction, in
which the inductive step is used infinitely. We stop the “iaiion” when the
loop terminates.

* We can show the three parts in any order.

For insertion sort

Initialization: Just before the first iteratiory, = 2. The subarrayd[l..; — 1]
is the single elemend[1], which is the element originally i[1], and it is
trivially sorted.

Maintenance: To be precise, we would need to state and prove a loop intarian
for the “inner” while loop. Rather than getting bogged down in another loop
invariant, we instead note that the body of the inmkile loop works by moving
Alj — 1], A[j — 2], A[j — 3], and so on, by one position to the right until the
proper position foikey (which has the value that started outdf;]) is found.

At that point, the value okeyis placed into this position.

Termination: The outeffor loop ends wheri > n, which occurs when = n+1.
Therefore,j — 1 = n. Pluggingn in for j — 1 in the loop invariant, the
subarrayA[l . .n] consists of the elements originally i1 ..n] but in sorted
order. In other words, the entire array is sorted.

Pseudocode conventions

[Covering most, but not all, here. See book pages 20-22 lfapaventions.]

* Indentation indicates block structure. Saves space arthgvtime.

* Looping constructs are like in C, C++, Pascal, and Java. \slenas that the
loop variable in dor loop is still defined when the loop exits (unlike in Pascal).

* // indicates that the remainder of the line is a comment.
* Variables are local, unless otherwise specified.

* We often us®bjects which haveattributes For an attributettr of objectx, we
write x.attr. (This notation matches. attr in Java and is equivalent to >attr
in C++.) Attributes can cascade, so thakify is an object and this object has
attributeattr, thenx.y.attr indicates this object’s attribute. That is,y. attr is
implicitly parenthesized ate.y). attr.

* Objects are treated as references, like in Java. dhd y denote objects, then
the assignmeny = x makesx andy reference the same object. It does not
cause attributes of one object to be copied to another.

* Parameters are passed by value, as in Java and C (and thk ihefaloanism in
Pascal and C++). When an object is passed by value, it islgctuseference
(or pointer) that is passed; changes to the reference éselhot seen by the
caller, but changes to the object’s attributes are.

Lecture Notes for Chapter 2: Getting Started 2-5

* The boolean operators “and” and “or” ashort-circuiting: if after evaluating
the left-hand operand, we know the result of the expresdioen we don't
evaluate the right-hand operand. fifis FALSE in “x and y” then we don't
evaluatey. If x is TRUEIn “x or y” then we don’t evaluate.)

Analyzing algorithms

We want to predict the resources that the algorithm requigssally, running time.
In order to predict resource requirements, we need a coftiqmaamodel.

Random-access machine (RAM) model

* Instructions are executed one after another. No concuogsariations.
* It's too tedious to define each of the instructions and thespaiated time costs.
* Instead, we recognize that we’ll use instructions commdmiynd in real com-
puters:
* Arithmetic: add, subtract, multiply, divide, remaindendt, ceiling). Also,
shift left/shift right (good for multiplying/dividing by*).
* Data movement: load, store, copy.
* Control: conditional/unconditional branch, subroutiradl and return.

Each of these instructions takes a constant amount of time.

The RAM model uses integer and floating-point types.

* We don’t worry about precision, although it is crucial integm numerical ap-
plications.

* There is a limit on the word size: when working with inputs @es:, assume
that integers are represented dlg n bits for some constant > 1. (Ign is a
very frequently used shorthand for lpg.)

* ¢ > 1= we can hold the value af = we can index the individual elements.
* ¢ is a constants the word size cannot grow arbitrarily.

How do we analyze an algorithm'’s running time?

The time taken by an algorithm depends on the input.

* Sorting 1000 numbers takes longer than sorting 3 numbers.
* A given sorting algorithm may even take differing amountstiofe on two
inputs of the same size.

* For example, we’ll see that insertion sort takes less tins®tt: elements when
they are already sorted than when they are in reverse saded o

2-6

Lecture Notes for Chapter 2: Getting Started

Input size

Depends on the problem being studied.

* Usually, the number of items in the input. Like the siz@f the array being
sorted.

* But could be something else. If multiplying two integersulcbbe the total
number of bits in the two integers.

* Could be described by more than one number. For exampleh glgprithm
running times are usually expressed in terms of the numbeentites and the
number of edges in the input graph.

Running time
On a particular input, it is the number of primitive operatqsteps) executed.

* Want to define steps to be machine-independent.
* Figure that each line of pseudocode requires a constantrarobtime.

* One line may take a different amount of time than anothergbhah execution
of line i takes the same amount of time

* This is assuming that the line consists only of primitive rgpiens.
 Ifthe line is a subroutine call, then the actual call takasstant time, but the
execution of the subroutine being called might not.

* If the line specifies operations other than primitive onkentit might take
more than constant time. Example: “sort the pointscbgoordinate.”

Analysis of insertion sort

[Now add statement costs and number of times executda$@RTION-SORT
pseudocode.]

* Assume that théth line takes time:;, which is a constant. (Since the third line
is a comment, it takes no time.)

 Forj = 2,3,...,n, lett; be the number of times that thehile loop test is
executed for that value qf.

* Note that when #or orwhile loop exits in the usual way—due to the test in the
loop header—the test is executed one time more than the lodyp b
The running time of the algorithm is

Z (cost of statememt (number of times statement is execyted
all statements

Let T(n) = running time of NSERTION-SORT.

T(n) = cntcm—1D)+cam—1)+csy ti+cy (1)

Jj=2 Jj=2

+C7Z(lj — 1) +Cg(n— 1) .

j=2
The running time depends on the values;ofThese vary according to the input.

Lecture Notes for Chapter 2: Getting Started 2-7

Best case
The array is already sorted.

Always find thatA[i] < keyupon the first time thavhile loop test is run (when
i=j—1).
All t; arel.
Running time is
T(n) = cin+ca(n—1)+csn—1)+cs(n—1)+cg(n—1)
= (c14+cr+tcs+ces+cg)n—(ca+ca+cs5s+cs).
Can expres§'(n) asan + b for constants: andb (that depend on the statement
costse;) = T'(n) is alinear functionof n.

Worst case
The array is in reverse sorted order.

Always find thatA[i] > keyin while loop test.

Have to compar&eywith all elements to the left of thgth position= compare
with j — 1 elements.

Since the while loop exits becauseeached), there’s one additional test after
thej — 1 tests= ¢, = j.
D= jand) (== (=1
j=2 j=2 j=2 j=2
n
Z j is known as ararithmetic seriesand equation (A.1) shows that it equals
j=1
n(n+1)
T

Since) ~j = (Z]) —1,it equals@ —1.

j=2 j=1

[The parentheses around the summation are not strictlyseage They are
there for clarity, but it might be a good idea to remind thedstuts that the
meaning of the expression would be the same even withoutatemntheses.]

n n—1
—1
Lettingk = j — 1, weseethad (j —1) =) k= }1(”72)
j=2 k=1
Running time is
1
T(n) = cin+c(n—1)+cs(n—1)4cs (@—1)

+ ¢s (@) + ¢7 (@) +cs(n—1)

C C C C C C
= (354-?64-37)}124-(C1+C2+C4+—5——6——7+C8)n

—(02+C4+C5+08).

Can expres§'(n) asan?® + bn + ¢ for constantst, b, ¢ (that again depend on
statement costsy T'(n) is aquadratic functiorof ».

2-8

Lecture Notes for Chapter 2: Getting Started

Worst-case and average-case analysis

We usually concentrate on finding tirst-case running time the longest run-
ning time foranyinput of sizen.

Reasons

* The worst-case running time gives a guaranteed upper boardeorunning
time for any input.

* For some algorithms, the worst case occurs often. For examyblen search-
ing, the worst case often occurs when the item being seafohéinot present,
and searches for absent items may be frequent.

* Why not analyze the average case? Because it's often abbatiass the worst
case.

Example: Suppose that we randomly choas@umbers as the input to inser-
tion sort.

On average, the key iA[j] is less than half the elements #jl .. — 1] and

it's greater than the other half.

= On average, thevhile loop has to look halfway through the sorted subarray
A[l..j — 1] to decide where to drokey.

= lj ~]/2

Although the average-case running time is approximatdfotfithe worst-case
running time, it's still a quadratic function af.

Order of growth

Another abstraction to ease analysis and focus on the iamtddatures.
Look only at the leading term of the formula for running time.

* Drop lower-order terms.

* Ignore the constant coefficient in the leading term.

Example: For insertion sort, we already abstracted away the actatdreent costs
to conclude that the worst-case running timeng + bn + c.

Drop lower-order terms> an?.
Ignore constant coefficient n2.

But we cannot say that the worst-case running tifite) equalsn?.

It grows liken?. But it doesn'tequaln?.

We say that the running time (n2) to capture the notion that tleeder of growth
is n2.

We usually consider one algorithm to be more efficient thasttaer if its worst-
case running time has a smaller order of growth.

Lecture Notes for Chapter 2: Getting Started 2-9

Designing algorithms

There are many ways to design algorithms.

For example, insertion sortiscrementat having sorted4[1.. j — 1], placeA[]
correctly, so thatd[1.. j] is sorted.

Divide and conquer

Another common approach.

Divide the problem into a number of subproblems that are smalléaniss of the
same problem.

Conguer the subproblems by solving them recursively.
Base caself the subproblems are small enough, just solve them by lioute.

[It would be a good idea to make sure that your students ardartable with
recursion. If they are not, then they will have a hard timearathnding divide
and conquer.]

Combine the subproblem solutions to give a solution to the origimabfem.

Merge sort

A sorting algorithm based on divide and conquer. Its woastecrunning time has
a lower order of growth than insertion sort.

Because we are dealing with subproblems, we state eachakldpr as sorting a
subarrayA[p..r]. Initially, p = 1 andr = n, but these values change as we
recurse through subproblems.

TosortA[p..r]:

Divide by splitting into two subarrayd[p ..¢] andA[g + 1..r], whereq is the
halfway point ofA[p .. r].

Conquer by recursively sorting the two subarray$p .. ¢l andA[g + 1..r].

Combine by merging the two sorted subarrag$p . .¢] andA[g + 1..r] to pro-
duce a single sorted subarrdyp . .r]. To accomplish this step, we’ll define a
procedure MRGE(A, p,q,r).

The recursion bottoms out when the subarray had jakment, so that it's trivially
sorted.

MERGESORT(A4, p,r)

if p<r /I check for base case
qg = |(p+r)/2] /I divide
MERGESORT(A4, p,q) /I conquer
MERGESORT(A,q + 1,r) /I conquer

MERGE(A, p,q.r) /I combine

2-10

Lecture Notes for Chapter 2: Getting Started

Initial cal. MERGESORT(A, 1,n)

[It is astounding how often students forget how easy it isampute the halfway
point of p andr as their averagép + r)/2. We of course have to take the floor
to ensure that we get an integer indexBut it is common to see students perform
calculations likep + (r — p)/2, or even more elaborate expressions, forgetting the
easy way to compute an average.]

Example

Bottom-up view forn = 8: [Heavy lines demarcate subarrays used in subprob-
lems.]

sorted array

1 2 3 4 5 6 7 8
|112/2[3[4]5] 67
/ \ merge

[2[4/5/7]1/2[3

ANWAY
[2[s]4[7]1/ 3] 2 9
1A 1Y e

1 2 3 8
initial array

[Examples whem is a power of2 are most straightforward, but students might
also want an example whenis not a power o0f.]

Bottom-up view forn = 11:

sorted array

1 2 3 4 5 6 7 8 9 10 1
[2[2[2]3] 4] 4 5] ¢8[7]7
/\ merge

|22[4[4]6 7] 2 35]6]7]

|/|\ 'E /I\ -
A WA
|

1 2 7 89 10 11
initial array

[Here, at the next-to-last level of recursion, some of tHgpsablems have only
element. The recursion bottoms out on these single-elegugmiroblems.]

Lecture Notes for Chapter 2: Getting Started 2-11

Merging

What remains is the MRGE procedure.

Input: Array A and indicesp, ¢, r such that

*p < q<r.
* SubarrayA[p..q] is sorted and subarrag|g + 1..r] is sorted. By the
restrictions orp, ¢, r, neither subarray is empty.

Output: The two subarrays are merged into a single sorted subartajpin. r].

We implement it so that it take®(n) time, wheren = r — p + 1 = the humber of
elements being merged.

What isn? Until now, n has stood for the size of the original problem. But now
we’re using it as the size of a subproblem. We will use thisinégue when we
analyze recursive algorithms. Although we may denote tigiral problem size
by n, in generak will be the size of a given subproblem.

Idea behind linear-time merging
Think of two piles of cards.

Each pile is sorted and placed face-up on a table with thelsshahrds on top.
We will merge these into a single sorted pile, face-down entdle.

A basic step:

* Choose the smaller of the two top cards.

* Remove it from its pile, thereby exposing a new top card.

* Place the chosen card face-down onto the output pile.

Repeatedly perform basic steps until one input pile is empty

Once one input pile empties, just take the remaining inplet @hd place it
face-down onto the output pile.

Each basic step should take constant time, since we chedkgusvo top cards.

There are< n basic steps, since each basic step removes one card from the
input piles, and we started withcards in the input piles.

Therefore, this procedure should takén) time.

We don't actually need to check whether a pile is empty bedach basic step.

Put on the bottom of each input pile a specahtinelcard.
It contains a special value that we use to simplify the code.
We useco, since that's guaranteed to “lose” to any other value.

The only way thato cannotlose is when both piles have exposed as their
top cards.

But when that happens, all the nonsentinel cards have gligseh placed into
the output pile.

We know in advance that there are exaetly p + 1 nonsentinel cards> stop
once we have performed— p + 1 basic steps. Never a need to check for
sentinels, since they’ll always lose.

Rather than even counting basic steps, just fill up the owtpay from indexp

up through and including index

2-12 Lecture Notes for Chapter 2: Getting Started

Pseudocode
MERGE(A, p,q,r)
n=q—p+1

Ny =r—gq
let L[1..n, + 1] andR[1..n, + 1] be new arrays
fori = 1ton,

Liil] =Alp+i—1]
for j = 1ton,

R[j] = Alg + j]
Liny + 1] = o0
R[n, + 1] = o0
i =1

j=1
fork = ptor
if L[i] < R[/]
Alk] = L[i]
i=i+1
elseA[k] = R[J]
j=J+1

[The book uses a loop invariant to establish tN#RGE works correctly. In a
lecture situation, it is probably better to use an exampkhtow that the procedure
works correctly.]

Example
A call of MERGE(9, 12, 16)

Lecture Notes for Chapter 2: Getting Started 2-13

8 9 10 11 12 13 14 15 1617 8 9 10 11 12 13 14 15 1617
A L2487 A A1 441128 %.
K k

1 2 3 45 1 2 3 45 1 2 3 45 1 2 3 45
L[2]4]s[7[=] R[12] 3 §] L[2]a]5]7]=] R[x]2]3]6]~]
J J

8 9 10 11 12 13 14 15 1617 8 9 10 11 12 13 14 15 1617
A1 2] 5] 7 A .]1]2]2
K

1 1

2 3 45 1 2 3 45 1 2 3 45 2 3
JEEIEER Rﬂ?ﬂﬂﬂ LlAlals[7=] RIALZ)

]

8 9 10 11 12 13 14 15 1617 8 9 10 11 12 13 14 15 1617
A ...\1|2|2|3|/1/ A ...\1|2|2|3|4
K k
1 5 1

CLLS[e] Rpalele] L[EDATS[e] R[XIE[ATe]
i J 1 J

8 9 10 11 12 13 14 15 1617 8 9 10 11 12 13 14 15 1617
A...\1|2|2|3|4|5 A...\1|2|2|3|4|56

8 9 10 11 12 13 14 15 1617
A ...\1|2|2|3|4| 5 6|7\...
K

1 2 3 45 1 2
V.

LA AT RIELZEL]]

i j

[Read this figure row by row. The first part shows the arraysatstart of the

“for k = p tor”loop, whereA[p ..q] is copied intoL[1..n,] andA[g+1..r]is
copied intoR[1 . . n,]. Succeeding parts show the situation at the start of stiveess
iterations. Entries i with slashes have had their values copied to either R

and have not had a value copied back in yet. Entrids andR with slashes have
been copied back intd. The last part shows that the subarrays are merged back
into A[p ..r], which is now sorted, and that only the sentinets)(@are exposed in

the arrayd. andR.]

2-14

Lecture Notes for Chapter 2: Getting Started

Running time

The first twofor loops take®(n; + n,) = O(n) time. The lasfor loop makes:
iterations, each taking constant time, #@(n) time.
Total time: ®(n).

Analyzing divide-and-conquer algorithms

Use arecurrence equatior{more commonly, acurrence to describe the running
time of a divide-and-conquer algorithm.

Let T'(n) = running time on a problem of size

* If the problem size is small enough (say< ¢ for some constant), we have a
base case. The brute-force solution takes constant &ng).

* Otherwise, suppose that we divide int@ubproblems, eactyb the size of the
original. (In merge sory = b =2.)

* Letthe time to divide a size-problem beD (n).

* Have a subproblems to solve, each of siz¢gh = each subproblem takes
T (n/b) time to solve= we spend: T (n/b) time solving subproblems.

* Letthe time to combine solutions li&r).
* We get the recurrence

T(n) = e) ifn<c,
~ | aT(n/b) + D(n) + C(n) otherwise.

Analyzing merge sort

For simplicity, assume that is a power of2 = each divide step yields two sub-
problems, both of size exacthy/2.

The base case occurs when= 1.
Whenn > 2, time for merge sort steps:

Divide: Just compute as the average gf andr = D(n) = 6(1).
Conquer: Recursively solv@ subproblems, each of sizg2 = 27 (n/2).
Combine: MERGEON ann-element subarray takés(n) time = C(n) = O(n).

SinceD(n) = ©(1) andC(n) = ®(n), summed together they give a function that
is linear inn: ®(n) = recurrence for merge sort running time is

O(1) ifn=1,

Tn) =)
2T(n/2) +0Om) ifn>1.

Solving the merge-sort recurrence

By the master theorem in Chapter 4, we can show that this e has the
solutionT (n) = O(nlgn). [Reminder:g n stands fotog, n.]

Compared to insertion sor€(n?) worst-case time), merge sort is faster. Trading
a factor ofn for a factor of Ign is a good deal.

Lecture Notes for Chapter 2: Getting Started 2-15

On small inputs, insertion sort may be faster. But for largeugh inputs, merge
sort will always be faster, because its running time growsenstowly than inser-
tion sort’s.

We can understand how to solve the merge-sort recurrenbeuwtithe master the-
orem.

* Let ¢ be a constant that describes the running time for the basearasalso
is the time per array element for the divide and conquer stgp&course, we
cannot necessatrily use the same constant for both. It's aghwoing into this
detail at this point.]

* We rewrite the recurrence as

c ifn=1,

T = 0P 2y +en ifn>1.

* Draw arecursion tree which shows successive expansions of the recurrence.

* For the original problem, we have a costcaf, plus the two subproblems, each
costingT (n/2):

chn
T2) T(n/2)

* For each of the size/2 subproblems, we have a cost@f/2, plus two sub-
problems, each costinf(n /4):

cn
cn/2 cn/2
T(n/4) T(n/4) T(n/4) T(n/4)

* Continue expanding until the problem sizes get dowh:to

2-16

Lecture Notes for Chapter 2: Getting Started

Total:cnlgn+cn

Each level has cost:.

The top level has costn.
The next level down had subproblems, each contributing cost/2.
The next level hag subproblems, each contributing cost/4.

Each time we go down one level, the number of subproblemsldsiot the
cost per subproblem halves cost per level stays the same.

There are lg + 1 levels (height is Igz).

Use induction.
Basecaser =1=1level,andIgl +1=0+1=1.

Inductive hypothesis is that a tree for a problem siz& bfas Ig2' +1 = i +1
levels.

Because we assume that the problem size is a powzrtbé next problem
size up afteR’ is 2/ 1,

A tree for a problem size df *! has one more level than the sizetree=

i + 2 levels.

Since I2'*! + 1 =i + 2, we're done with the inductive argument.

Total cost is sum of costs at each level. Have lg 1 levels, each costingn
= total costiscnIgn + cn.

Ignore low-order term ofn and constant coefficient= ®(n Ign).

Solutions for Chapter 2:
Getting Started

Solution to Exercise 2.2-2
This solution is also posted publicly

SELECTION-SORT(A)

n = A.length
for j =1ton—1
smallest= j

fori = j+1ton
if A[i] < A[smalles}
smallest= i
exchanged[j] with A[smallest

The algorithm maintains the loop invariant that at the sthgach iteration of the
outerfor loop, the subarrayl[1.. j — 1] consists of thej — 1 smallest elements
in the arrayA[l..n], and this subarray is in sorted order. After the first 1
elements, the subarray|l..n — 1] contains the smallest — 1 elements, sorted,
and therefore element[n] must be the largest element.

The running time of the algorithm i®(n2) for all cases.

Solution to Exercise 2.2-4
This solution is also posted publicly

Modify the algorithm so it tests whether the input satisfiese special-case con-
dition and, if it does, output a pre-computed answer. Thétgse running time is
generally not a good measure of an algorithm.

Solution to Exercise 2.3-3

The base case is when= 2, and we have lgn =2Ig2 =2-1= 2.

2-18

Solutions for Chapter 2: Getting Started

For the inductive step, our inductive hypothesis is thét/2) = (n/2)lg(n/2).
Then

T(n) = 2T(n/2)+n
= 2(n/2)lg(n/2) +n
= n(gn—1)+n
= nlgn—n+n
= nlgn,
which completes the inductive proof for exact powerg of

Solution to Exercise 2.3-4

Since it takes®(n) time in the worst case to insert[n] into the sorted array

A[l..n — 1], we get the recurrence
T(n) = O(1) ffn:l,
Tm—1)4+0m) ifn>1.

Although the exercise does not ask you to solve this recoereits solution is
T(n) = O(n?).

Solution to Exercise 2.3-5
This solution is also posted publicly

Procedure BNARY-SEARCH takes a sorted arrayl, a valuev, and a range
[low. . high|] of the array, in which we search for the valueThe procedure com-
paresy to the array entry at the midpoint of the range and decidelnnate half
the range from further consideration. We give both iteeatind recursive versions,
each of which returns either an indéxuch that4[i] = v, or NIL if no entry of
Allow. . high] contains the value. The initial call to either version should have
the parameterd, v, 1, n.

ITERATIVE-BINARY-SEARCH(A, v, low, high)

while low < high
mid = | (low + high)/2]
if v==A[mid]
return mid
elseifv > A[mid]
low = mid+ 1
elsehigh = mid—1
return NIL

Solutions for Chapter 2: Getting Started 2-19

RECURSIVEBINARY-SEARCH(A4, v, low, high)

if low > high
return NIL
mid = | (low + high)/2]
if v ==A[mid]
return mid
elseifv > A[mid]
return RECURSIVEBINARY-SEARCH(A, v, mid + 1, high)
else return RECURSIVEBINARY-SEARCH(A, v, low, mid — 1)

Both procedures terminate the search unsuccessfully wigerange is empty (i.e.,
low > high) and terminate it successfully if the valwehas been found. Based
on the comparison of to the middle element in the searched range, the search
continues with the range halved. The recurrence for theseedures is therefore
T(n) = T(n/2) + ©(1), whose solution i (n) = O(Ign).

Solution to Exercise 2.3-6

The while loop of lines 5-7 of procedureNBERTION-SORT scans backward
through the sorted arrax[1..j — 1] to find the appropriate place fot[j]. The
hitch is that the loop not only searches for the proper placef;], but that it also
moves each of the array elements that are bigger Aighone position to the right
(line 6). These movements can take as much® @g) time, which occurs when all
the j — 1 elements preceding|[;] are larger tham[;j]. We can use binary search
to improve the running time of the search@glg ;), but binary search will have no
effect on the running time of moving the elements. Therefoieary search alone
cannot improve the worst-case running time @EERTION-SORT to ®(n Ig n).

Solution to Exercise 2.3-7

The following algorithm solves the problem:

1. Sort the elements ifi.

Form the sef’ = {z : z = x — y for somey € S}.
Sort the elements i§'.

Merge the two sorted sefsandS’.

There exist two elements i$i whose sum is exactly if and only if the same
value appears in consecutive positions in the merged autput

a b~ wn

To justify the claim in step 4, first observe that if any valygears twice in the
merged output, it must appear in consecutive positions.s,Tiwe can restate the
condition in step 5 as there exist two elements iwhose sum is exactly if and
only if the same value appears twice in the merged output.

2-20

Solutions for Chapter 2: Getting Started

Suppose that some value appears twice. Thew appeared once if and once
in §’. Becausav appeared irf’, there exists some € S such thatv = x — y, or
x =w + y. Sincew € S, the elements andy are inS and sum tor.

Conversely, suppose that there are valwes € S such thatw + y = x. Then,
sincex — y = w, the valuew appears ir§’. Thus,w is in bothS andS’, and so it

will appear twice in the merged output.

Steps 1 and 3 requi®(n Ig n) steps. Steps 2, 4, 5, and 6 requi?é) steps. Thus
the overall running time i€ (n Ig n).

A reader submitted a simpler solution that also run®im Ign) time. First, sort

the elements i, taking®(n Ig n) time. Then, for each elementin S, perform a
binary search it for x — y. Each binary search takeéx(Ig n) time, and there are
are most: of them, and so the time for all the binary searche®is Ign). The
overall running time i (n Ign).

Another reader pointed out that sinfeis a set, if the value: /2 appears inS, it

appears ir just once, and s® /2 cannot be a solution.

Solution to Problem 2-1

[It may be better to assign this problem after covering asptitpnotation in Sec-
tion 3.1; otherwise part (c) may be too difficult.]

a. Insertion sort take® (k?) time perk-element list in the worst case. Therefore,
sortingn/k lists of k elements each takeé®(k?n/k) = O(nk) worst-case
time.

b. Just extending the 2-list merge to merge all the lists at omoald take
O -(n/k)) = ©(n?/k) time (» from copying each element once into the
result list,n/k from examiningn/k lists at each step to select next item for
result list).

To achieve®(n Ig(n/ k))-time merging, we merge the lists pairwise, then merge
the resulting lists pairwise, and so on, until there’s just ist. The pairwise
merging require®(n) work at each level, since we are still working earel-
ements, even if they are partitioned among sublists. Thebeurof levels,
starting withn / k lists (with £ elements each) and finishing witHist (with n
elements), idlg(n/k)]. Therefore, the total running time for the merging is

Omlg(n/k)).

c. The modified algorithm has the same asymptotic running tisiestandard
merge sort wher®(nk + nlg(n/k)) = ©(lgn). The largest asymptotic
value ofk as a function of: that satisfies this condition is= ©(Ign).

To see why, first observe thatcannot be more tha®(Ig») (i.e., it can't have

a higher-order term than lg), for otherwise the left-hand expression wouldn't
be®(n Ign) (because it would have a higher-order term thdgn). So all we
need to do is verify that = ©(Ignr) works, which we can do by plugging
k=Ilgninto®nk +nlgn/k)) = ®@mk +nlgn —nlgk) to get

Solutions for Chapter 2: Getting Started 2-21

Omlgn +nlgn —nlglgn) = ®2nlgn —nlglgn) ,

which, by taking just the high-order term and ignoring thastant coefficient,
equals®(n lgn).

d. In practice,k should be the largest list length on which insertion sorasdr
than merge sort.

Solution to Problem 2-2

a. We need to show that the elementsAifform a permutation of the elements
of A.

b. Loopinvariant: Atthe start of each iteration of tHer loop of lines 2—4,
A[j] = min{A[k] : j <k < n} and the subarray[; ..n] is a permuta-
tion of the values that were id[; .. n] at the time that the loop started.

Initialization: Initially, j = n, and the subarray|[; ..n] consists of single
elementA[r]. The loop invariant trivially holds.

Maintenance: Consider an iteration for a given value ¢f By the loop in-
variant, A[j] is the smallest value inl[j ..n]. Lines 3—4 exchangd[;]
and A[j — 1] if A[j] is less thand[; — 1], and soA[; — 1] will be the
smallest value iM[j — 1..n] afterward. Since the only change to the sub-
array A[j — 1..n] is this possible exchange, and the subardgy .. n] is
a permutation of the values that weredt; ..n] at the time that the loop
started, we see that[j; — 1..#n] is a permutation of the values that were in
A[j — 1..n] at the time that the loop started. Decrementjnfpr the next
iteration maintains the invariant.

Termination: The loop terminates whep reaches. By the statement of the
loop invariant,A[i] = min{A[k] :i <k <n}andA[i ..n]is a permutation
of the values that were id[i . . n] at the time that the loop started.

c. Loopinvariant: Atthe start of each iteration of tHer loop of lines 14,
the subarray[1..i — 1] consists of theé — 1 smallest values originally in
A[l..n], in sorted order, and|i ..n] consists of the —i + 1 remaining
values originally inA[1 . . n].

Initialization: Before the first iteration of the loop, = 1. The subarray
A[l..i — 1] is empty, and so the loop invariant vacuously holds.

Maintenance: Consider an iteration for a given valueiofBy the loop invari-
ant,A[1..i — 1] consists of thé smallest values id[1. . r], in sorted order.
Part (b) showed that after executing tloe loop of lines 2—4,A4[i] is the
smallest value ird[i .. n], and soA[l ..i] is now thei smallest values orig-
inally in A[1..n], in sorted order. Moreover, since tfw loop of lines 2—4
permutesA[i .. n], the subarray[i + 1..n] consists of thes — i remaining
values originally inA[1 .. n].

Termination: Thefor loop of lines 1-4 terminates whén= n, sothat — 1 =
n — 1. By the statement of the loop invariamt]1..i — 1] is the subarray

2-22 Solutions for Chapter 2: Getting Started

A[l..n—1], and it consists of the—1 smallest values originally id[1 . . n],
in sorted order. The remaining element must be the largdst vaA[l . . n],
and it is inA[n]. Therefore, the entire array[1 .. n] is sorted.

Note: Tn the second edition, thier loop of lines 1-4 had an upper bound
of A.length The last iteration of the outdor loop would then result in no
iterations of the innefor loop of lines 1-4, but the termination argument would
simplify: A[l..i — 1] would be the entire array[1 .. n], which, by the loop
invariant, is sorted.

d. The running time depends on the number of iterations offtineloop of
lines 2—4. For a given value of this loop makes — i iterations, and takes

on the valued, 2, ...,n — 1. The total number of iterations, therefore, is
n—1 n—1 n—1
dm—iy = Y n=>i
i=1 i=1 i=1
nn—1)

= nn—1)— >

_ nn—1)

B 2

_ n?> n

Thus, the running time of bubblesort é&(n?) in all cases. The worst-case
running time is the same as that of insertion sort.

Solution to Problem 2-4
This solution is also posted publicly

a. Theinversions arél, 5), (2, 5), (3, 4), (3,5), (4,5). (Remember that inversions
are specified by indices rather than by the values in the .array

b. The array with elements fron{l,2,...,n} with the most inversions is
(n,n—1,n—2,...,2,1). Foralll <i < j < n, there is an inversio(, j).
The number of such inversions(f§) = n(n —1)/2.

C. Suppose that the array starts out with an inversiofk, j). Thenk < j and
Alk] > A[j]. At the time that the outefor loop of lines 1-8 setkey = A[/],
the value that started id[k] is still somewhere to the left ofl[j]. That is,
it's in A[i], wherel < i < j, and so the inversion has becotfiej). Some
iteration of thewhile loop of lines 5—7 movesi[i] one position to the right.
Line 8 will eventually dropkeyto the left of this element, thus eliminating
the inversion. Because line 5 moves only elements that a&&teyr tharkey,
it moves only elements that correspond to inversions. lerotords, each
iteration of thewhile loop of lines 5-7 corresponds to the elimination of one
inversion.

d. We follow the hint and modify merge sort to count the numbeneérsions in
O lgn) time.

Solutions for Chapter 2: Getting Started 2-23

To start, let us define merge-inversionas a situation within the execution of
merge sort in which the MRGE procedure, after copyind|[p..q] to L and
Alg + 1..r]t0 R, has valuesc in L andy in R such thatx > y. Consider
an inversion(i, j), and letx = A[i] andy = A[j], so that < j andx > y.
We claim that if we were to run merge sort, there would be dyxacte merge-
inversion involvingx andy. To see why, observe that the only way in which
array elements change their positions is within theR@E procedure. More-
over, since MERGE keeps elements withih in the same relative order to each
other, and correspondingly faR, the only way in which two elements can
change their ordering relative to each other is for the greate to appear ih
and the lesser one to appearRn Thus, there is at least one merge-inversion
involving x andy. To see that there is exactly one such merge-inversion, ob-
serve that after any call of BRGE that involves bothe and y, they are in the
same sorted subarray and will therefore both appedr an both appear iR

in any given call thereafter. Thus, we have proven the claim.

We have shown that every inversion implies one merge-irwerdn fact, the
correspondence between inversions and merge-inversamseito-one. Sup-
pose we have a merge-inversion involving valwesnd y, wherex originally
wasA[i] andy was originallyA[j]. Since we have a merge-inversion;> y.
And sincex isin L andy is in R, x must be within a subarray preceding the
subarray containing. Thereforex started out in a position precedingy’s
original position/, and sa(i, j) is an inversion.

Having shown a one-to-one correspondence between inasrsind merge-
inversions, it suffices for us to count merge-inversions.

Consider a merge-inversion involvingin R. Let z be the smallest value ih
that is greater tham. At some point during the merging processand y will

be the “exposed” values ih andR, i.e., we will havez = L[i] andy = R[]

in line 13 of MERGE At that time, there will be merge-inversions involvimg
andL[i], L[i +1],L[i +2],..., L[n,], and these, —i + 1 merge-inversions
will be the only ones involvingy. Therefore, we need to detect the first time
thatz andy become exposed during theBRGE procedure and add the value
of n; —i + 1 at that time to our total count of merge-inversions.

The following pseudocode, modeled on merge sort, works asawe just de-
scribed. It also sorts the arraly.

COUNT-INVERSIONS(A, p, 1)

inversions= 0
if p<r
q=[(p+r)/2]
inversions= inversions+ COUNT-INVERSIONS(4, p, q)
inversions= inversions+ COUNT-INVERSIONS(A,q + 1,r)
inversions= inversions+ MERGEINVERSIONS(4, p,q, 1)
return inversions

2-24

Solutions for Chapter 2: Getting Started

MERGEINVERSIONS(A4, p,q,r)

n=q—p-+1

Ny =r—q

let L[1..n, + 1] andR[1..n, + 1] be new arrays
fori = 1ton,

L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg +J]
Lin;+1] = o0
R[ny, + 1] = o0
i =1
j=1
inversions= 0
fork = ptor
if R[j] < LJi]
inversions= inversions+n, —i + 1
Alk] = R[/]
j=Jj+1
elseAlk] = LJi]
i =i+1
return inversions

The initial call is COUNT-INVERSIONS(A, 1, n).

In MERGEINVERSIONS wheneverR|[j] is exposed and a value greater than
R[j] becomes exposed in the array, we increaseversionsby the number
of remaining elements i.. Then becaus®[;j + 1] becomes expose®|;]
can never be exposed again. We don't have to worry about mirergesions
involving the sentinebo in R, since no value i will be greater thamo.

Since we have added only a constant amount of additional teodach pro-
cedure call and to each iteration of the l&st loop of the merging procedure,
the total running time of the above pseudocode is the samer asdrge sort:
O lgn).

Lecture Notes for Chapter 3:
Growth of Functions

Chapter 3 overview

* A way to describe behavior of functioisthe limit We're studyingasymptotic
efficiency.
* Describegrowthof functions.

* Focus on what’'s important by abstracting away low-ordemgeand constant
factors.

* How we indicate running times of algorithms.
* A way to compare “sizes” of functions:

0

%

VoA IVIA

Q
G
0

o)

R R R &R

Asymptotic notation

O-notation

O(g(n)) = {f(n) : there exist positive constantsandn, such that
0< f(n) <cgm)foralln >ny}.

cg(n)

f(n)

n

No

g(n) is anasymptotic upper boundor f(n).
If f(n) € O(g(n)), we write f(n) = O(g(n)) (will precisely explain this soon).

Lecture Notes for Chapter 3: Growth of Functions

Example
2n? = O(n?), withc = 1 andn, = 2.
Examples of functions i@ (n?):

n2

n?+n

n? 4 1000n
100012 + 10001
Also,

n

n /1000

n 1.99999

n*/lglglgn

Q-notation

Q(g(n)) = {f(n) : there exist positive constantsandn, such that
0<cgn) < f(n)foralln >ny}.

f(n)

cg(n)

g
g(n) is anasymptotic lower boundor f(n).

Example
J/n = Q(lgn), withc = 1 andn, = 16.
Examples of functions i®(n?):

2

n
n?+n
n?>—n

1000712 + 10007
100012 — 1000n
Also,

I’l3

I’l2'00001
n?lglglgn

22"

Lecture Notes for Chapter 3: Growth of Functions 3-3

©®-notation

B(g(n)) = {f(n) : there exist positive constants, c¢,, andn, such that
0<cign) < f(n) <co,g(n)foralln > ny}.

c,9(n)
n)

c,9(n)

No

g(n) is anasymptotically tight boundor f(n).

Example
n?/2 —2n = O(n?), withc;, = 1/4, ¢, = 1/2, andn, = 8.

Theorem
f(n) = ©(g(m)) ifand only if f = O(g(n)) and f = Q(g(n)) .

Leading constants and low-order terms don’t matter.

Asymptotic notation in equations

When on right-hand side
O(n?) stands for some anonymous function in the@ét?).

2n%? + 3n + 1 = 2n? + O(n) means2n? + 3n + 1 = 2n% + f(n) for some
f(n) € ®(n). In particular, f(n) = 3n + 1.

By the way, we interpret # of anonymous functions=a# of times the asymptotic
notation appears:

Z o@) OK: 1 anonymous function
i=1

O(l) + OQ2) +---+ O(n) not OK:n hidden constants
= Nno clean interpretation

When on left-hand side

No matter how the anonymous functions are chosen on thédeit- side, there
is a way to choose the anonymous functions on the right-hatelts make the
equation valid.

Interpret2n? + @(n) = O(n?) as meanindor all functions f(n) € ®(n), there
exists a functiorg(n) € ©(n?) such thaln? + f(n) = g(n).

Lecture Notes for Chapter 3: Growth of Functions

Can chain together:
2n* +3n+1 = 2n*4+0®0)
= O®W?.

Interpretation:

* First equation: There existf(n) € ©(n) suchthaln?+3n+1 = 2n%+ f(n).

» Second equation: For agfi(n) € ©(n) (such as thef (n) used to make the first
equation hold), there existgn) € ©(n?) such than? + g(n) = h(n).

o-notation

o(g(n)) = {f(n) : forall constantg > 0, there exists a constant
no > 0suchthad < f(n) < cg(n)foralln > ny} .

Another view, probably easier to use: i (n)) = 0.
n—o0 g(n

n1999 = o(n?)

n?/lgn = o(n?)

n* # o(n?) (just like2 # 2)

n?/1000 # o(n?)

w-notation

w(g(n)) = {f(n): for all constants: > 0, there exists a constant
ng > 0suchthad < cg(n) < f(n)foralln > ny} .

Another view, again, probably easier to use: Iiér?(i; = 00
gwun

n—o00
n2:0001 —) (2)
n?lgn = w(n?)

n* # w(n?)

Comparisons of functions

Relational properties:

Transitivity:
f(n) = ©(g(n)) andg(n) = O(h(n)) = f(n) = O(h(n)).
Same forO, 2, 0, andw.
Reflexivity:
fn) =06(f(n)).
Same forO andQ.
Symmetry:
f(n) = 0O(gn))ifand only if g(n) = O(f(n)).
Transpose symmetry:
f(n) = O(g(n)) ifand only if g(n) = Q(f(n)).
f(n) =o(gn))ifand only if g(n) = w(f(n)).

Lecture Notes for Chapter 3: Growth of Functions 3-5

Comparisons:

* f(n)isasymptotically smallethang(n) if f(n) = o(g(n)).

* f(n) isasymptotically largethang(n) if f(n) = w(g(n)).

No trichotomy. Although intuitively, we can like® to <, @ to >, etc., unlike

real numbers, where < b, a = b, ora > b, we might not be able to compare
functions.

Example:n!'*s" andn, sincel + sinn oscillates between 0 and 2.

Standard notations and common functions

[You probably do not want to use lecture time going over ad tefinitions and
properties given in Section 3.2, but it might be worth spegda few minutes of
lecture time on some of the following.]

Monotonicity

* f(n)ismonotonically increasingf m <n = f(m) < f(n).
* f(n) ismonotonically decreasingf m > n = f(m) > f(n).
* f(n)isstrictly increasingif m <n = f(m) < f(n).
* f(n)isstrictly decreasingf m > n = f(m) > f(n).

Exponentials

Useful identities:

al = 1/a,
(am)n — amn
aman — am+n .

Can relate rates of growth of polynomials and exponentialsall real constants
a andb such thatz > 1,

I’lb
im — =0,
n—oo "
which implies that? = o(a”).
A suprisingly useful inequality: for all real,
e*>14+x.

As x gets closer td, e* gets closer td + x.

3-6

Lecture Notes for Chapter 3: Growth of Functions

Logarithms
Notations:
lgn = log,n (binary logarithm) ,
Inn = log,n (natural logarithm) ,
lgn = (Ign)* (exponentiation) ,
lglgn = lg(lgn) (composition) .

Logarithm functions apply only to the next term in the forauso that lgr + &
meanglgn) + k, andnotlg(n + k).

In the expression lggu:
* If we hold b constant, then the expression is strictly increasing imereases.
* If we hold a constant, then the expression is strictly decreasirigiasreases.

Useful identities for all read > 0,5 > 0, ¢ > 0, andn, and where logarithm bases
are notl:

a = blogha ,
log.(ab) = log.a +log, b,
log,a” = nlog,a,
log, a
lo = <
9y @ log, b’
log,(1/a) = —log,a,
1
I = —
09y 4 log, b
alogb c Clogb a.

Changing the base of a logarithm from one constant to anathigrchanges the
value by a constant factor, so we usually don't worry abogatdhm bases in
asymptotic notation. Convention is to use Ig within asyriptootation, unless the
base actually matters.

Just as polynomials grow more slowly than exponentialsaritigms grow more
b

slowly than polynomials. In lim— — 0, substitute Ig: for n and2 for a:

n—oo g

Igbn i Ig° n

n—oo (24)l97 a0 pd

=0,
implying that If n = o(n%).

Factorials

n!=1-2-3-n. Special cased! = 1.
Can useStirling’s approximation,

n! = v2un (g) (1 +0 (%)) ,

to derive that Ign!) = ©(nlgn).

Solutions for Chapter 3:
Growth of Functions

Solution to Exercise 3.1-1

First, let's clarify what the function max'(n), g(n)) is. Let's define the function
h(n) = max(f(n), g(n)). Then

BYORFOEFOF
gn) if f(n) < g(n).

Since f(n) and g(n) are asymptotically nonnegative, there exigissuch that
f(n) = 0andg(n) > O0foralln > ny. Thus forn > no, f(n) + gn) >
f(m) = 0and f(n) + g(n) > gn) > 0. Since for any particulan, h(n)
is either f(n) or g(n), we havef(n) + g(n) > h(n) > 0, which shows that
h(n) = max(f(n),g(n)) < ca(f(n) + g(n)) for all n > ny (with ¢, = 1in the
definition of ®).

Similarly, since for any particulaz, i (n) is the larger off(rn) andg(n), we have
foralln > ny, 0 < f(n) < h(n) and0 < g(n) < h(n). Adding these two inequal-
ities yieldsO < f(n) + g(n) < 2h(n), or equivalently0 < (f(n) + g(n))/2 <
h(n), which shows thak(n) = max(f(n), g(n)) > c1(f(n)+g(n))foralln > n,
(with ¢; = 1/2 in the definition of®).

h(n)

Solution to Exercise 3.1-2
This solution is also posted publicly

To show thai(n + a)? = ®(n”), we want to find constants, c,, no, > 0 such that
0<cin? < (n+a) <conbforalln > n,.

Note that
n+a < n+|al
< 2n when|a| <n,
and
n+a > n—|al
> ln whenla| < in.
2 2

Thus, whem > 2 |a|,

3-8

Solutions for Chapter 3: Growth of Functions

1
0§§n§n+a§2n.

Sinceb > 0, the inequality still holds when all parts are raised to thegr b:

1 b
0< (5”) <m+a)b <@n?,

1\?
05(5) n < (n+a)® <2n®.

Thus,c; = (1/2)%, ¢, = 2%, andn, = 2|a| satisfy the definition.

Solution to Exercise 3.1-3
This solution is also posted publicly

Let the running time b& (n). T(n) > O(n?) means thaf(n) > f(n) for some
function f(n) in the setO(n?). This statement holds for any running tiriign),
since the functiorg(n) = 0 for all n is in O(n?), and running times are always
nonnegative. Thus, the statement tells us nothing aboutitireng time.

Solution to Exercise 3.1-4
This solution is also posted publicly

2n+l = O(27), but22" #£ O(2).

To show thaR"*! = 0(2"), we must find constants n, > 0 such that
0<2"tl <c¢.2"foralln > n,.

Since2"t! = 2.2" for all n, we can satisfy the definition with= 2 andn, = 1.
To show thaR?” # O(2"), assume there exist constant®, > 0 such that
0<2"<c¢-2"foralln > nyg.

Then2?” = 2".2" < ¢.2" = 2" < ¢. But no constant is greater than 2, and
so the assumption leads to a contradiction.

Solution to Exercise 3.1-8

Q(g(n,m)) = {f(n,m) : there exist positive constantsn,, andm,
suchthad <cg(n,m) < f(n,m)
foralln > ngorm > mg} .

O(g(n,m)) = {f(n,m) : there exist positive constants, c,, n,y, andm,
suchthal < c1g(n,m) < f(n,m) < c2g(n,m)
foralln > ngorm > mgy} .

Solutions for Chapter 3: Growth of Functions 3-9

Solution to Exercise 3.2-4
This solution is also posted publicly

[lgn]!is not polynomially bounded, butglgn!is.
Proving that a functiory'(n) is polynomially bounded is equivalent to proving that
lg(f(n)) = O(lgn) for the following reasons.

» If f is polynomially bounded, then there exist constants, n, such that for
alln > ngy, f(n) < cn*. Hence, I f(n)) < kclgn, which, sincec andk are
constants, means that(lfi(n)) = O(lgn).

* Similarly, if Ig(f(n)) = O(lgn), then f is polynomially bounded.
In the following proofs, we will make use of the following twacts:

1. lg(n!) = ®©(nlgn) (by equation (3.19)).

2. [Ilgn] = ©(lgn), because

* [lgnl=lgn
* [lgn] <Ilgn+1<2lgnforalln >2

lg(Tlgn]h) = ©(lgn]lgflgnl)
O(gnliglgn)
= w(gn).

Therefore, Ig[lgn|!) # O(lgn), and so[lgn]! is not polynomially bounded.

lg(Tlglgn]) = ©(lglgnilgflglgn])

O(glgnlglglgn)

o((lglgn)?)

o(Ig*(Ign))

o(lgn) .

The last step above follows from the property that any pglgt@éhmic function

grows more slowly than any positive polynomial functiom. i.that for constants
a,b > 0, we have I§n = o(n?). Substitute Ig: for n, 2 for b, and1 for a, giving

lg*>(Ign) = o(lgn).
Therefore, Ig[lglgr]!) = O(lgn), and so[lglg»n]! is polynomially bounded.

Solution to Exercise 3.2-5

Ig*(Ign) is asymptotically larger becaus€ {tggn) = Ig*n — 1.

3-10 Solutions for Chapter 3: Growth of Functions

Solution to Exercise 3.2-6

Both¢? and¢ + 1 equal(3 + +/5)/2, and bothp? and¢ + 1 equal(3 — v/5)/2.

Solution to Exercise 3.2-7

We have two base cases= 0 andi = 1. Fori = 0, we have

A |
NG
= 0
= ko,

and fori = 1, we have

¢l — ¢! (1+/3) = (1= /3)

NG 25
24/5

245
1

Fr.

For the inductive case, the inductive hypothesis is fhat = (¢’ — YL
andF;_, = (¢' 2 — ¢'~2)/+/5. We have

FF = F_ +F_, (equation (3.22))
— ¢I_IJ§¢I_1 + ¢1_2J§¢1_2 (inductive hypothesis)
_ 9@+ D¢+ D)
NG
= ¢1_2¢2_@¢1_2¢2 (Exercise 3.2-6)
_ ¢i _ $i
N

Solution to Problem 3-3

a. Here is the ordering, where functions on the same line aredrsdéme equiva-
lence class, and those higher on the page&aot those below them:

Solutions for Chapter 3: Growth of Functions 3-11
22n+1
2%
(n+1)!
n! see justification 7
e" see justification 1
n-2"
2n
(3/2)"
(Ign)®" = n'9'9" seeidentity 1
(Ilgn)! see justifications 2, 8
3
n
n? =49 see identity 2
nlgn and Ign!) see justification 6
n = 29" see identity 3
(v/2)9"(= J/n) see identity 6, justification 3
2v2lgn see identity 5, justification 4
lg*> n
Inn
Vign
Inlnn see justification 5
2Ig* n
lg* n and Ig°(Ign) see identity 7
lg(lg™)n

n'/'9"(=2)andl see identity 4

Much of the ranking is based on the following properties:

* Exponential functions grow faster than polynomial funeipwhich grow
faster than polylogarithmic functions.

* The base of a logarithm doesn’t matter asymptotically, betliase of an
exponential and the degree of a polynomial do matter.

We have the followingdentities

. (Ign)'9" = n'9'9" pecause'°% ¢ = ¢'°% 4,

. 497 = p2 because'°% ¢ = ¢'°%a,

L2197 =g,

2 = n'/'9" py raising identity 3 to the powdr/ Ig .

. 2v207 — /27197 by raising identity 4 to the powey/21gn.
(v2)"" = /n becausd/2)*" = 20/2len = 2ovi = /i,
lg*(gn) = (Ig* n) — 1.

The followingjustificationsexplain some of the rankings:
1.e" =2"(e/2)" = w(n2"), since(e/2)" = w(n).

2. (Ilgn)! = w(n?) by taking logs: Iglgn)! = O(lgnlglgn) by Stirling’s
approximation, Ign3) = 3Ign. Iglgn = w(3).

No oA wWwN R

3-12

Solutions for Chapter 3: Growth of Functions

3. (V2)9m = w(zvz'g") by taking logs: Ig+/2)'9" = (1/2)Ign, Ig2v2e" =

v2lgn. (1/2)lgn = w(+/21gn).

4,2Y?1" = ((Ig* n) by taking logs: I2v?9" = \/21gn, Iglg>n = 2Iglgn.
v2lgn = w(21glgn).

5. Inlnn = w(29° ") by taking logs: 129" " = Ig* n. IgInlnn = w(lg* n).

6. lg(n!) = ®(nlgn) (equation (3.19)).

7.n! = O(n"*t'2¢™) by dropping constants and low-order terms in equa-
tion (3.18).

8. (Ign)! = O((Ign)'9n+1/2¢=19m) py substituting Ig: for » in the previous
justification. (Ign)! = O((Ign)'9"*+/2p~'9¢) because'*% ¢ = ¢'°% 4,

b. The following f(n) is nonnegative, and for all functiorgs(rn) in part (a), f'(n)

is neitherO(g; (n)) nor Q(g; (n)).

Fn) = 22" if n is even,
~)o if n is odd.

Lecture Notes for Chapter 4.
Divide-and-Conquer

Chapter 4 overview

Recall the divide-and-conquer paradigm, which we used fengem sort:

Divide the problem into a number of subproblems that are small&ross of the
same problem.

Conguer the subproblems by solving them recursively.
Base caself the subproblems are small enough, just solve them by lioute.

Combinethe subproblem solutions to give a solution to the origimabpem.

We look at two more algorithms based on divide-and-conquer.

Analyzing divide-and-conquer algorithms

Use a recurrence to characterize the running time of a dawdkconquer algo-
rithm. Solving the recurrence gives us the asymptotic mmtime.

A recurrenceis a function is defined in terms of

* one or more base cases, and
* itself, with smaller arguments.

Examples

1 ifn=1,
Tm—1)+1 ifn>1.
Solution: T'(n) = n.

e T(n)=

. T() = 1 !fn=1,
2T(n/2)+n ifn>1.
Solution:T'(n) = nlgn + n.
0 ifn=2,

e T =

T(J/n)+1 ifn>2.
Solution: T (n) = Iglgn.

4-2

Lecture Notes for Chapter 4: Divide-and-Conquer

T(n) = 1 fn=1,
I T3 +T@/3) 40 a1,

Solution: T (n) = O(nlgn).

[The notes for this chapter are fairly brief because we teachrrences in much
greater detail in a separate discrete math course.]

Many technical issues:

Floors and ceilings

[Floors and ceilings can easily be removed and don't affeetsblution to the
recurrence. They are better left to a discrete math course.]

Exact vs. asymptotic functions
Boundary conditions

In algorithm analysis, we usually express both the recagemd its solution using
asymptotic notation.

Example:T(n) = 2T (n/2) + ©(n), with solutionT (n) = ®(nlgn).
The boundary conditions are usually expressedZ@) = O(1) for suffi-
ciently smalln.”

When we desire an exact, rather than an asymptotic, sojutiemeed to deal
with boundary conditions.

In practice, we just use asymptotics most of the time, andgmere boundary
conditions.

[In my course, there are only two acceptable ways of solvewpirences: the
substitution method and the master method. Unless thesieautree is carefully
accounted for, | do not accept it as a proof of a solution, gholucertainly accept
a recursion tree as a way to generate a guess for substitugtimod. You may
choose to allow recursion trees as proofs in your coursehinoimcase some of the
substitution proofs in the solutions for this chapter beeaetursion trees.

I also never use the iteration method, which had appearekiitinst edition of
Introduction to Algorithms I find that it is too easy to make an error in paren-
thesization, and that recursion trees give a better intuitiea than iterating the
recurrence of how the recurrence progresses.]

Maximum-subarray problem

Input: An array A[1..n] of numbers. [Assume that some of the numbers are

negative, because this problem is trivial when all numbegsiannegative.]|

Output: Indicesi andj such thatd[i .. j] has the greatest sum of any nonempty,

contiguous subarray of, along with the sum of the values #\i .. j].

Lecture Notes for Chapter 4: Divide-and-Conquer 4-3

Scenario

* You have the prices that a stock traded at over a periadooinsecutive days.
* When should you have bought the stock? When should you h&véhsostock?

* Even though it's in retrospect, you can yell at your stockbrdor not recom-
mending these buy and sell dates.

To convert to a maximum-subarray problem, let
A[i] = (price after day) — (price after dayi — 1)) .

[Assuming that we start with a price after day 0, i.e., jusbbeday 1.] Then the
nonempty, contiguous subarray with the greatest sum bist¢ke days that you
should have held the stock.

If the maximum subarray igl[i .. j], then should have bought just before day
(i.e., just after dayi — 1)) and sold just after day.

Why do we need to find the maximum subarray? Why not just “buy $&ll high”?

* Lowest price might occuafter the highest price.

* But wouldn't the optimal strategy involve buying at the Iat@riceor selling
at the highest price?

* Not necessarily:

11
0l 7\

o N 00 ©

Maximum profit is $3 per share, from buying after day 2 andrsgkfter day 3.
Yet lowest price occurs after day 4 and highest occurs aéterld

Can solve by brute force: check dl]) = ©(n?) subarrays. Can organize the
computation so that each subarrdyi .. j] takes O(1) time, given that you've
computedA[i .. j — 1], so that the brute-force solution tak@gn?) time.

Solving by divide-and-conquer

Use divide-and-conquer to solve ((r Ig n) time.

[Maximum subarray might not be unique, though its value sy speak ofa
maximum subarray, rather théime maximum subarray.]

Subproblem: Find a maximum subarray of[low. . high].
In original call,low = 1, high = n.

4-4

Lecture Notes for Chapter 4: Divide-and-Conquer

Divide the subarray into two subarrays of as equal size as possibied the
midpoint mid of the subarrays, and consider the subarrdjiew .. mid] and
A[mid + 1. . high].

Conquer by finding a maximum subarrays dflow. . mid] and A[mid+ 1. . high].

Combine by finding a maximum subarray that crosses the midpoint, anajuhe
best solution out of the three (the subarray crossing thgaomd and the two
solutions found in the conquer step).

This strategy works because any subarray must either li@lgndn one side of the
midpoint or cross the midpoint.

Finding the maximum subarray that crosses the midpoint

Not a smaller instance of the original problem: has the addedatsn that the
subarray must cross the midpoint.

Again, could use brute force. If size dflow. . high] is n, would haven /2 choices
for left endpoint and:/2 choices right endpoint, so would ha®n?) combina-
tions altogether.

Can solve in linear time.

* Any subarray crossing the midpoidfmid] is made of two subarray4[i .. mid]
andA[mid+ 1.. j], wherelow < i < midandmid < j < high.

* Find maximum subarrays of the ford{i .. mid] andA[mid + 1.. j] and then
combine them.

Procedure to take array and indiceslow, mid, high and return a tuple giving
indices of maximum subarray that crosses the midpoint,galdth the sum in this
maximum subarray:

FIND-MAX-CROSSING SUBARRAY (A4, low, mid, high)

/I Find a maximum subarray of the forayi .. mid].
left-sum= —oo
sum= 0
for i = mid downto low
sum= sum+ A[i]
if sum> left-sum
left-sum= sum
maxleft = i
/I Find a maximum subarray of the foraimid + 1 .. j].
right-sum= —oco
sum= 0
for j = mid+ 1 to high
sum= sum+ A[/]
if sum> right-sum
right-sum= sum
maxright = j
/I Return the indices and the sum of the two subarrays.
return (maxleft, maxright, left-sum+ right-sum

Lecture Notes for Chapter 4: Divide-and-Conquer 4-5

Time: The two loops together consider each index in the rdoge. . ., high ex-
actly once, and each iteration takesl) time = procedure take®(n) time.

Divide-and-conquer procedure for the maximum-subarraygiiem
FIND-MAXIMUM -SUBARRAY (4, low, high)
if high==low
return (low, high, A[low]) /I base case: only one element
elsemid = | (low + high)/2|
(left-low, left-high, left-sum =
FIND-MAXIMUM -SUBARRAY (A4, low, mid)
(right-low, right-high, right-sum =
FIND-MAXIMUM -SUBARRAY (A4, mid + 1, high)
(crosslow, crosshigh, crosssum =
FIND-MAX-CROSSING SUBARRAY (4, low, mid, high)
if left-sum> right-sumandleft-sum> crosssum
return (left-low, left-high, left-sum
elseifright-sum> left-sumandright-sum> crosssum
return (right-low, right-high, right-sum)
else return (crosslow, crosshigh, crosssum)

Initial call: FIND-MAXIMUM -SUBARRAY (4, 1,n)

* Divide by computingmid.
* Conguer by the two recursive calls toNB-MAXIMUM -SUBARRAY .

* Combine by calling lND-MAX-CROSSING SUBARRAY and then determining
which of the three results gives the maximum sum.

* Base case is when the subarray has only 1 element.

Analysis

Simplifying assumption: Original problem size is a power @ so that all sub-
problem sizes are integefWe made the same simplifying assumption when we
analyzed merge sort.]

Let 7'(n) denote the running time ofiIkD-MAXIMUM -SUBARRAY 0n a subarray
of n elements.

Base case:Occurs wherhigh equalslow, so thatn = 1. The procedure just
returns= T'(n) = O(1).
Recursive caseOccurs whem > 1.

* Dividing takes®(1) time.
» Conquering solves two subproblems, each on a subarrgy?2cflements. Takes
T (n/2) time for each subproblem> 27 (n/2) time for conquering.

* Combining consists of calling INKD-MAX-CROSSING SUBARRAY, which
takes®(n) time, and a constant number of constant-time test®(n) + ©(1)
time for combining.

4-6 Lecture Notes for Chapter 4: Divide-and-Conquer

Recurrence for recursive case becomes
T(n) = O)+2T{n/2)+ O(n)+ 6(1)
= 2T(n/2) + On) (absorb®(1) terms into®(n)) .
The recurrence for all cases:
e() ifn=1,

T =0 512y + 00) ifn>1.

Same recurrence as for merge sort. Can use the master metbioolt that it has
solutionT'(n) = O(nlgn).

Thus, with divide-and-conquer, we have developé&d(alg n)-time solution.
Better than theéd (n?)-time brute-force solution.

[Can actually solve this problem fa(n) time. See Exercise 4.1-5.]

Strassen’s algorithm for matrix multiplication

Input: Twon x n (square) matrices{ = (a;;) andB = (b;;).
Output: n x n matrixC = (c;;), whereC = A - B, i.e.,

n
Cij = Zaikbkj
k=1
fori,j =1,2,...,n.

Need to compute? entries ofC. Each entry is the sum af values.

Obvious method
[Using a shorter procedure name than in the book.]

SQUARE-MAT-MULT (A, B, n)
let C be a new: x n matrix
fori =1ton
for j =1ton
Cij = 0
fork =1ton
Cij = Cij + ik - by

return C

Analysis: Three nested loops, each iteratefimes, and innermost loop body takes
constant time= ©(n?).

Lecture Notes for Chapter 4: Divide-and-Conquer 4-7

Is ® (n3) the best we can do? Can we multiply matricesdiwn?) time?
Seems like any algorithm to multiply matrices must t&ke:?) time:

* Must compute:? entries.
* Each entry is the sum af terms.

But with Strassen’s method, we can multiply matrices (@a*) time.

 Strassen’s algorithm runs (n'97) time.
e 280<lg7<238l.
* Hence, runs ir0(n*3!) time.

Simple divide-and-conquer method

As with the other divide-and-conquer algorithms, assuraértlis a power of2.
Partition each ofd, B, C into fourn /2 x n/2 matrices:

All A12 Bll Bl2 Cll Cl2
A= , B= , C= .
(Az A) (Bsi B) (Cy Cx)
RewriteC = A- B as
Cll CIZ) — All A12) . Bll BIZ)
C21 C22 A21 A22 BZI BZZ ’

giving the four equations

Chu = An-Bu+ A By,
Co = An-Bi+ A Bx,
Coy = Az - B+ Axn- By,
Cpn = Ay -Bix+ Az By .

Each of these equations multiplies twg@2 x n/2 matrices and then adds their
n/2 x n/2 products.

Use these equations to get a divide-and-conquer algorifbising a shorter pro-
cedure name than in the book.]

REC-MAT-MULT (4, B, n)

let C be a new: x n matrix

if n==1
ci1 = an -bu

elsepartition A, B, andC inton/2 x n/2 submatrices
C1; = REC-MAT-MULT (A11, B11,n/2) + REC-MAT-MULT (A5, B,y,n/2)
C1, = REC-MAT-MULT (A11, B12,n/2) + REC-MAT-MULT (A5, Bs,,n/2)
Cy1 = REC-MAT-MULT (431, B11,1/2) + REC-MAT-MULT (A5, By, n/2)
Cy, = REC-MAT-MULT (431, Bi2,n/2) + REC-MAT-MULT (A5, Bs,,n/2)

return C

[The book briefly discusses the question of how to avoid aapweintries when par-
titioning matrices. Can partition matrices without cogyientries by instead using
index calculations. Identify a submatrix by ranges of rowd &elumn matrices

4-8

Lecture Notes for Chapter 4: Divide-and-Conquer

from the original matrix. End up representing a submatriedently from how
we represent the original matrix. The advantage of avoidimgying is that par-
titioning would take only constant time, instead@(n?) time. The result of the
asymptotic analysis won't change, but using index cal@uatto avoid copying
gives better constant factors.]

Analysis

Let T'(n) be the time to multiply twa: /2 x n/2 matrices.

Base case:n = 1. Perform one scalar multiplicatio®(1).

Recursive casen > 1.

+ Dividing takes®(1) time, using index calculationgOtherwise,® (n?) time.]

» Conguering makes8 recursive calls, each multiplying/2 x n/2 matrices=
8T (n/2).

« Combining takesd(n?) time to addn /2 x n/2 matrices four times/Doesn't

even matter asymptotically whether we use index calculatmr copy: would
be®(n?) either way.]

Recurrence is
) e ifn=1,

T = 81 (/2 + ©m2) ifn>1.

Can use master method to show that it has solufion) = ©(n?).
Asymptotically, no better than the obvious method.

Constant factors and recurrencestWhen setting up recurrences, can absorb con-
stant factors into asymptotic notation, but cannot absardngtant number of sub-
probems. Although we absorb thedditions ofz /2 x n/2 matrices into thé (n?)
time, we cannot lose th&in front of theT (rn/2) term. If we absorb the constant
number of subproblems, then the recursion tree would nobbehy” and would
instead just be a linear chain.

Strassen’s method

Idea: Make the recursion tree less bushy. Perform @mgcursive multiplications
of n/2 x n/2 matrices, rather thaB. Will cost several additions of/2 x n/2
matrices, but just a constant number mesecan still absorb the constant factor
for matrix additions into th&(n/2) term.

The algorithm:

1. Asin the recursive method, partition each of the matricesfourn/2 x n/2
submatrices. Time®(1).

2. Createl0 matricesS;, S,,...,S10. Eachisn/2 x n/2 and is the sum or dif-
ference of two matrices created in previous step. Tifé:?) to create alll0
matrices.

3. Recursively comput@ matrix productspPy, P,, ..., P;, eachn/2 x n/2.

4. Computer/2 x n/2 submatrices o€ by adding and subtracting various com-
binations of theP;. Time: ®(n?).

Lecture Notes for Chapter 4: Divide-and-Conquer 4-9

Analysis
Recurrence will be
o(1) fn=1,

T =3 31 m/2) + 002 ifn>1.

By the master method, solution7qn) = ©(n'97).

Details
Step 2: Create the 10 matrices

S = Bi—Bxn,
S = An+ A,
Sz = An + Axn,
S4 = By — B,
Ss = An+Axn,
S¢ = B+ B,
S7 = Ap-—An,
Ss = By + By,
So = An-—Axn,
Sio = Bu+ Bz

Add or subtraci /2 x n/2 matricesl(times= time is®(n/2).
Step 3: Create the 7 matrices

Py = An-S1 = An-Bio—An-Bxn,
P, = S;-Byp = Ay-Ban+ A Bx,
Py = S83-Byy = Ay B+ A B,
Py = Ay»n-S4 = Axp-By—Axn- B,
Ps = Ss-8S¢ = An-Bu+ A Bn+ Axn- B+ Ay By,
Ps = §7-8 = Aip-Boy+Aip- By — Az By — Ay - Byy
P; = S9-S0 = An-Bu+ A Bia— Ay By — Ay - Bra .

The only multiplications needed are in the middle columghtihand column just
shows the products in terms of the original submatriced ahd B.

Step 4: Add and subtract the; to construct submatrices 6f:

Cii = Ps+ Py— P+ Ps,
Co = P+ Py,
Cyy = Ps+ Py,
Cyp = Ps+ P —P;—P;.

To see how these computations work, expand each right-hmed seplacing
each P; with the submatrices off and B that form it, and cancel termsfWe
expand out all four right-hand sides here. You might wantdgudt one or two of
them, to convince students that it works.]

4-10 Lecture Notes for Chapter 4: Divide-and-Conquer

A1 Bii+A11 B+ Az By + A By
— Ay By + A2z By
— Ay1- By — A2 By
— Ayy-Byy— Az Boy + Az Bay + A1z By

Aq1- By + A1z By

Ay1-Bio— A1+ By
+ Ay1+ By + A1z Ba

All'BIZ +A12'B22

Az By + Ay - By
— Ay Bi1 + Az By

A21'B11 +A22'B21

Ay-Bii+ A1 B+ Ax- By + Ay B

— A1+ By — Ay1-Bio+ Az - By + Az - By

A22'B22 +A21'BIZ

Theoretical and practical notes

Strassen’s algorithm was the first to b€g#z>) time, but it’s not the asymptotically
fastest known. A method by Coppersmith and Winograd rur@(#?-37¢) time.

Practical issues against Strassen’s algorithm:

« Higher constant factor than the obvio8%n?3)-time method.

* Not good for sparse matrices.

* Not numerically stable: larger errors accumulate than énabvious method.

* Submatrices consume space, especially if copying.

Numerical stability problem is not as bad as previously giduAnd can use index
calculations to reduce space requirement.

Various researchers have tried to find the crossover poimgrevStrassen’s algo-
rthm runs faster than the obvio@¥n?*)-time method. Analyses (that ignore caches
and hardware pipelines) have produced crossover pointsweadn = 8, and ex-
periments have found crossover points as low as 400.

Substitution method

1. Guess the solution.
2. Use induction to find the constants and show that the solutiorks.

Lecture Notes for Chapter 4: Divide-and-Conquer 4-11

Example
1 ifn=1,

T = oty 40 ifn>1.

1. Guess:T(n) = nlgn + n. [Here, we have a recurrence with an exact func-
tion, rather than asymptotic notation, and the solutiorise axact rather than
asymptotic. We'll have to check boundary conditions andbdige case.]

2. Induction:
Basissn =1=nlgn+n=1=Tw)
Inductive step: Inductive hypothesis is th&t(k) = klgk + k for all k < n.
We’'ll use this inductive hypothesis f@F(n/2).
T) = 2T (5)+n
2
n n n . . .

= 2 (5 lg 3 + 5) +n (byinductive hypothesis)

= nlg % +n+n

= n(gn—-1g2)+n+n

= nlgn—n+n+n

nlgn+n. [

Generally, we use asymptotic notation:

* We would writeT (n) = 2T (n/2) + O(n).

* We assumd'(n) = O(1) for sufficiently smalln.

* We express the solution by asymptotic notati@iiz) = ®(n Ign).

* We don’t worry about boundary cases, nor do we show base rasessubsti-
tution proof.
* T(n) is always constant for any constant

* Since we are ultimately interested in an asymptotic saluitoa recurrence,
it will always be possible to choose base cases that work.

* When we want an asymptotic solution to a recurrence, we daor'ty about
the base cases in our proofs.

* When we want an exact solution, then we have to deal with basesc
For the substitution method:

* Name the constant in the additive term.

* Show the upper@®) and lower) bounds separately. Might need to use dif-
ferent constants for each.

Example

T(n) = 2T(n/2) + ©(n). If we want to show an upper bound @f(n) =
2T (n/2) + O(n), we writeT(n) < 2T (n/2) + cn for some positive constant

4-12 Lecture Notes for Chapter 4: Divide-and-Conquer

1. Upper bound:

Guess:T(n) < dnlgn for some positive constant. We are giverr in the
recurrence, and we get to choases any positive constant. It's OK fat to
depend ore.

Substitution:

T'(n)

< 2T(n/2)+cn
n n

= dnlg%—i—cn

= dnlgn—dn+cn

< dnlgn if —dn+cn < 0,
d > ¢

Therefore,T'(n) = O(nlgn).

2. Lower bound:Write T'(n) > 2T (n/2) + cn for some positive constant
Guess:T(n) > dnlgn for some positive constant.
Substitution:

T'(n)

> 2T(n/2) +cn

- 2(d%lg%)+cn

= dnlg%—i—cn

= dnlgn—dn+cn

> dnlgn if —dn+cn > 0,
d < ¢

Therefore,T'(n) = Q(nlgn).

Therefore,I'(n) = ®(nlgn). [For this particular recurrence, we can use= ¢ for
both the upper-bound and lower-bound proofs. That won'agbe the case.]m

Make sure you show the saragactform when doing a substitution proof.

Consider the recurrence
T(n) =8T(n/2) + O(n?) .

For an upper bound:
T(n) <8T(n/2) + cn*.

Guess:T(n) < dn3.

T(n) <

v

8d(n/2)* + cn?
8d(n?/8) + cn?
dn® + cn?

dn? doesn’t work!

Remedy:Subtract offa lower-order term.

Lecture Notes for Chapter 4: Divide-and-Conquer 4-13

Guess:T(n) < dn® — d'n?.
T(n) < 8(d(n/2)°—d (n/2)*) + cn?
8d(n°/8) — 8d'(n*/4) + cn?
dn® —2d'n* + cn?
= dn®—d'n®>—d'n*>+cn?
< dn®—d'n? if —d'n? + cn?
d'
Be careful when using asymptotic notation.
The false proof for the recurren@@n) = 4T (n/4) + n, thatT (n) = O(n):
T(n) < 4(c(n/4)+n
< cn+n
= 0(n) wrong!
Because we haven't proven tlegact formof our inductive hypothesis (which is
that7T (n) < cn), this proof is false.

IV IA

Recursion trees

Use to generate a guess. Then verify by substitution method.

Example

T(n)y=Tn/3)+T2n/3)+ O(n).

For upper bound, rewrite &(n) < T (n/3) + T(2n/3) + cn; for lower bound, as
T(n)>T(n/3)+T(2n/3) + cn.

By summing across each level, the recursion tree shows steateach level of
recursion (minus the costs of recursive calls, which apjyesubtrees):

CN e - cn
c(n/3) C(2Nn/3) eersersenens - cn
c(n/9) c(2n/9) c(2n/9) c(4n/9) e I cn
leftmost branch peters rightmost branch peters
out after log n levels out after log,, n levels

* There are logn full levels, and after Iog/2 n levels, the problem size is down
tol.

* Each level contributes cn.
* Lower bound guess: dnlog,n = Q(nlgn) for some positive constaat.

4-14 Lecture Notes for Chapter 4: Divide-and-Conquer

Upper bound guesss dnlog,,, n = O(nlgn) for some positive constait.
Thenproveby substitution.

1. Upper bound:

Guess:T(n) < dnlgn.
Substitution:
T (n) T(n/3)+TQ2n/3) +cn
d(n/3)1lg(n/3) +d(2n/3)Ilg(2n/3) + cn
(d(n/3)lgn —d(n/3)1g3)
+ (d(2n/3)lgn —d(2n/3)19(3/2)) + cn
dnlgn —d((n/3)1g3 + (2n/3)1g(3/2)) + cn
dnlgn —d((n/3)1g3 + 2n/3)lg3 — (2n/3)1g2) + cn
dnlgn —dn(lg3—2/3) +cn
dnlgn if —dn(lg3—-2/3) 4+ cn
d

IATA

IA

< 0,
C
> —
— 1g3-2/3
Therefore,T'(n) = O(nlgn).
Note: Make sure that the symbolic constants used in the recur(engec) and
the guess (e.gd) are different.
Lower bound:
Guess:T(n) > dnlgn.
Substitution: Same as for the upper bound, but replaciadyy >. End up
needing

C

Therefore,T'(n) = Q(nlgn).

SinceT(n) = O(nlgn) and T(n) = Q(nlgn), we conclude thatl'(n) =
O lgn). [

Master method

Used for many divide-and-conquer recurrences of the form
T(n) =aT(n/b) + f(n),
wherea > 1,b > 1,and f(n) > 0.

Based on thenaster theoren{Theorem 4.1).
Comparen®% 4 vs. f(n):

Case 1: f(n) = O(n'% %) for some constant > 0.

(f(n) is polynomially smaller than'°% ¢)
Solution: T'(n) = O(n'°% %),
(Intuitively: cost is dominated by leaves.)

Lecture Notes for Chapter 4: Divide-and-Conquer 4-15

Case 2: f(n) = O(n"°%2Ig* n), wherek > 0.
[This formulation of Case 2 is more general than in Theorelnahd it is given
in Exercise 4.6-2.]
(f(n) is within a polylog factor of2'°% ¢, but not smaller.)
Solution: T'(n) = (1'% < 1gF*1 n).
(Intuitively: cost isn'°% < Ig* n at each level, and there a@lgn) levels.)
Simple casek = 0= f(n) = O(m'°%?) = T'(n) = O(n'°%*Ign).

Case 3: f(n) = Q(n'°% 2*<) for some constant > 0 and f(n) satisfies the regu-
larity conditionaf (n/b) < cf(n) for some constant < 1 and all sufficiently
largen.

(f(n) is polynomially greater than'®% <)
Solution: T'(n) = O(f(n)).
(Intuitively: cost is dominated by root.)

What's with the Case 3 regularity condition?

* Generally not a problem.

« It always holds whenevef (n) = n* and f(n) = Q(n'% **€) for constant
€ > 0. [Proving this makes a nice homework exercise. See beldBo]you
don’t need to check it whef (r) is a polynomial.

[Here’s a proof that the regularity condition holds whgn) = n* and f(n) =
Q(n'°% a+<) for constant > 0.

Since f(n) = Q(n'°%4*<) and f(n) = n*, we have thak > log,a. Using a
base ob and treating both sides as exponents, we lbéve b'°%* = a, and so
a/b* < 1. Sincea, b, andk are constants, if we let= a/b*, thenc is a constant
strictly less tharl. We have that f (n/b) = a(n/b)* = (a/b*)n* = cf(n), and
So the regularity condition is satisfied.]

Examples
« T(n)=5T(n/2)+ O{n?
n'°%5 vs. n?
Since log 5 — € = 2 for some constant > 0, use Case & T(n) = O(n'9°)

s T(n) =27T(n/3) + O(n3lgn)
n'°%27 = p3vs.n3lgn
Use Case 2 with = 1 = T'(n) = O(n>lg*n)

« T(n)=5T(n/2)+6{m?
n'°9%25 ys, pn3
Now Ig5 + ¢ = 3 for some constant > 0
Check regularity condition (don't really need to singén) is a polynomial):
af(n/b) =5mn/2)> =5n3/8 <cn*forc=5/8 <1
Use Case 3> T'(n) = O(n?)

« T(n) =27T(n/3) + O(n3/Ign)
n'°%27 = p3vs.n?/Ign = n?lg™' n # O(n?Ig* n) for anyk > 0.
Cannot use the master method.

4-16 Lecture Notes for Chapter 4: Divide-and-Conquer

[We don'’t prove the master theorem in our algorithms colWge sometimes prove
a simplified version for recurrences of the foftth) = aT (n/b)+n°¢. Section 4.6
of the text has the full proof of the master theorem.]

Solutions for Chapter 4
Divide-and-Conquer

Solution to Exercise 4.1-1

If the index of the greatest element #fis i, it returns(i, i, A[i]).

Solution to Exercise 4.1-2

MAX-SUBARRAY-BRUTE-FORCE(A)

n = A.length
maxsofar = —oo
forl =1ton
sum= 0
forh =1ton
sum= sum+ A[h]
if sum> maxsofar
maxsofar = sum
low =/
high = h
return (low, high)

Solution to Exercise 4.1-4

If the algorithm returns a negative sum, toss out the answdruse an empty
subarray instead.

4-18 Solutions for Chapter 4: Divide-and-Conquer

Solution to Exercise 4.1-5

MAX-SUBARRAY-LINEAR(A)

n = A.length
maxsum= —oo
endingheresum = —oo
for j = 1ton
endingherehigh = j
if endingheresum> 0
endingheresum = endingheresum+ A[/]
elseendingherelow = j
endingheresum = A[/]
if endingheresum> maxsum
maxsum = endingheresum
low = endingherelow
high = endingherehigh
return (low, high, maxsum

The variables are intended as follows:

* low andhighdemarcate a maximum subarray found so far.
* maxsumgives the sum of the values in a maximum subarray found so far.

* endingherelow andendingherehigh demarcate a maximum subarray ending
at indexj. Since the high end of any subarray ending at indexust be;,
every iteration of thdor loop automatically setendingherehigh = ;.

+ endingheresumgives the sum of the values in a maximum subarray ending at
index j .

The first test within thefor loop determines whether a maximum subarray
ending at index;j contains justA[j]. As we enter an iteration of the loop,
endingheresumhas the sum of the values in a maximum subarray endirg-dt

If endingheresum+ A[j] > A[j], then we extend the maximum subarray end-
ing at index; — 1 to include index;j. (The test in thef statement just subtracts
out A[j] from both sides.) Otherwise, we start a new subarray at ingdeo both

its low and high ends have the valgeand its sum is4[j]. Once we know the
maximum subarray ending at indgx we test to see whether it has a greater sum
than the maximum subarray found so far, ending at any paoditiss than or equal
to j. If it does, then we updatew, high, andmaxsumappropriately.

Since each iteration of thir loop takes constant time, and the loop makes
iterations, the running time of MX-SUBARRAY-LINEAR is ®(n).

Solutions for Chapter 4: Divide-and-Conquer

4-19

Solution to Exercise 4.2-2

STRASSEN(A, B)

n = A.rows
let C be a new: x n matrix

if n ==

¢ = an by
elsepartition A and B in equations (4.9)
let Cyy, C1a, Ca1, andCy, ben /2 x n/2 matrices
createn/2 x n/2 matricesSy, S,, ..., S and Py, P, ..., P;

Sl = B12 - B22

S, = A+ Az

S3 = Ap+ Axn

S4 = BZI - Bll

Ss = A+ Axn

S¢ = Bi1 + B

S7 = A12 - A22

Ss = By + Bx

S9 = All - AZI

Si0o = Bi1 + Bz

P, = STRASSEN(A,;, S))
P, = STRASSEN(S,, B»,)
P; = STRASSEN(S3, Bi1)
P, = STRASSEN(A5,, S4)
Ps = STRASSEN(Ss, S¢)
Ps = STRASSEN(S7, Sg)
P, = STRASSEN(So, S19)
C11 == P5+P4—P2+P6
C12 == P1 + P2

Coy =P+ Py

C22 = P5+P1—P3—P7

combineC;y, Ci2, Cp1, andCs,, into C
return C

Solution to Exercise 4.2-4
This solution is also posted publicly

If you can multiply3 x 3 matrices usinge multiplications, then you can multiply
n x n matrices by recursively multiplying /3 x n/3 matrices, in timel'(n) =
kT(n/3) + O(n?).

Using the master method to solve this recurrence, consiuerdtio of 7'°9%%

andn?:

* Iflog, k = 2, case 2 applies anfi(n) = ©(rn?Ign). In this casek = 9 and
T(n) = o(n'97).

4-20 Solutions for Chapter 4: Divide-and-Conquer

« Iflog,k < 2, case 3 applies anfi(n) = ©(n?). In this casek < 9 and
T(n) = o(n'97).

« Iflogsk > 2, case 1 applies an@i(n) = ©O(n'°%*). In this casek > 9.
T(n) = o(n'97) when log k < Ig7, i.e., whenk < 3997 ~ 21.85. The largest
such integek is 21.

Thus,k = 21 and the running time i®(n'°%*) = @(1n'°%2') = 0n>*°) (since
log, 21 ~ 2.77).

Solution to Exercise 4.3-1

We guess thaf'(n) < cn? for some constant > 0. We have
T(m) = Tn—1)+n
cin—1)>%*+n
= cn*—2cn+c+n
= cn*+c(1—2n)+n.
This last quantity is less than or equakte® if ¢(1 —2n) +n < 0 or, equivalently,
¢ >n/(2n — 1). This last condition holds for al > 1 andc¢ > 1.

For the boundary condition, we sgt1) = 1, and sol'(1) = 1 < ¢ - 12. Thus, we
can choosa, = 1 andc = 1.

IA

Solution to Exercise 4.3-7

If we were to try a straight substitution proof, assuming thén) < cn'°%4, we
would get stuck:

T(m) = 4(c(n/3)°5%) +n

nlog34
= 4
c(1)+n

cn®%* 4+ n

which is greater thann'%*. Instead, we subtract off a lower-order term and as-
sume thaf’(n) < cn'*%* — dn. Now we have

T(n) < 4(c(n/3)°%*—dn)+n
logs 4
= 4(0114 —dn)+n

= cn"%* —ddn +n,

which is less than or equal ta'°%* — dn if d > 1/3.

Solutions for Chapter 4: Divide-and-Conquer 4-21

Solution to Exercise 4.4-6
This solution is also posted publicly

The shortest path from the root to a leaf in the recursionisee— (1/3)n —
(1/3)’n — --- — 1. Since(1/3)*n = 1 whenk = log, n, the height of the part
of the tree in which every node has two children is;leg Since the values at each
of these levels of the tree add upde, the solution to the recurrence is at least
cnlogyn = Q(nlgn).

Solution to Exercise 4.4-9
This solution is also posted publicly

T(n)=T(an)+T{(1—a)n)+cn

We saw the solution to the recurrentén) = T(n/3) + T (2n/3) 4+ cn in the text.
This recurrence can be similarly solved.

Without loss of generality, let > 1 —«,sothal) < 1—a < 1/2andl/2 <« < 1.

(1 —a)n st €1
109, /(1_a) 7 / \ / \ log, /o
ca(l - a)n ca(l - a)n c(l — ot)2 il CH
y

Total: O(nlgn)

The recursion tree is full for log,, _,, n levels, each contributingn, so we guess
Q(nlog,,;_on) = Q(nlgn). It has log,, n levels, each contributing: cn, so
we gues(nlog, ,, n) = O(nlgn).

Now we show thafl'(n) = ®(nlgn) by substitution. To prove the upper bound,
we need to show that(n) < dnlgn for a suitable constant > 0.
T(n) = T(an)+T({(1—a)n)+cn
danlg(an) + d(1 —a)nlg((1 —a)n) + cn
= danlga +danlgn +d(1 —a)nlg(l1 —a) +d(l —a)nlgn + cn
= dnlgn+dn(alga+ (1 —a)lg(l —a)) + cn
< dnlgn,
if dn(elga + (1 —a)lg(l —a)) + cn < 0. This condition is equivalent to

dlalga + (1 —a)lg(l —a)) < —c.

A

4-22

Solutions for Chapter 4: Divide-and-Conquer

Sincel/2 <a <land0 < 1—a < 1/2,we havethatlg <0andIgl—a«) < 0.
Thus,alga + (1 — o) lg(1 —) < 0, so that when we multiply both sides of the
inequality by this factor, we need to reverse the inequality
—C
>
Toalgae+ (1 —a)lg(l —a)
or

C
>
T —alga+-(1-a)lgl —a)
The fraction on the right-hand side is a positive constamd, $o it suffices to pick
any value ofd that is greater than or equal to this fraction.

To prove the lower bound, we need to show tiidz) > dnlgn for a suitable
constanid > 0. We can use the same proof as for the upper bound, subggitetin
for <, and we get the requirement that

Cc
—algoa —(1—a)lg(l —a)
Therefore,T'(n) = ©(nlgn).

0<d <

Solution to Exercise 4.5-2

We need to find the largest integesuch that loga < Ig 7. The answer ig = 48.

Solution to Problem 4-1

Note: In parts (a), (b), and (d) below, we are applying casktlBeomaster theorem,
which requires the regularity condition that'(n/b) < cf(n) for some constant
¢ < 1. In each of these partg.(n) has the forrn*. The regularity condition is
satisfied becausef (n/b) = an*/b* = (a/b*)n* = (a/b*) f(n), and in each of
the cases below,/b* is a constant strictly less thdn

a. T(n) =2T(n/2) +n* = O(n?). This is a divide-and-conquer recurrence with
a=2">b=2 f(n)=n?andn'®? = p'°%22 = 5. Sincen’ = Q(n'°%22+2)
anda/b* = 2/2° = 1/4 < 1, case 3 of the master theorem applies, and
T(n) = O(n3).

b. T(n) = T(9n/10) + n = O(n). This is a divide-and-conquer recurrence with
a =1,b = 10/9, f(n) = n, andn'®®? = p'%091 = 3% = 1. Since
n = Q(n'°%09 1+ anda/b* = 1/(10/9)! = 9/10 < 1, case 3 of the master
theorem applies, anfi(n) = O(n).

c. T(n) = 16T (n/4) + n?> = O(n%lgn). This is another divide-and-conquer

recurrence withu = 16, b = 4, f(n) = n?, andn'°% ¢ = p'°% 16 = 42, Since
n? = ©(n'°%1°), case 2 of the master theorem applies, &) = O (n?Ign).

Solutions for Chapter 4: Divide-and-Conquer 4-23

d. T(n) =7T(n/3) +n* = ©(n?). This is a divide-and-conquer recurrence with
a=7,b=3, f(n) =n? andn'®»* = n'°%7, Sincel < log, 7 < 2, we have
thatn? = Q(n'°%7+€) for some constant > 0. We also haver/b* = 7/3% =
7/9 < 1, so that case 3 of the master theorem applies,7and = ®(n?).

e. T(n) = 7T(n/2) + n? = O(n"97). This is a divide-and-conquer recurrence
witha = 7,b = 2, f(n) = n?, andn'®®»* = %27, Since2 < Ig7 < 3, we
have that? = O(n'°%7-<) for some constant > 0. Thus, case 1 of the master
theorem applies, anfi(n) = ©(n'97).

f. T(n) = 2T (n/4) + /n = O(y/nlgn). This is another divide-and-conquer
recurrence withu = 2, b = 4, f(n) = /n, andn'*®¢ = p°%2 = /n,
Since /n = ©(n'°%2), case 2 of the master theorem applies, @rfd) =
O(/nlgn).

g Tn)=Tnh—1)+n
Using the recursion tree shown below, we get a gue§qof = O(n?).

n n
n-1 n-1
n-2 n-2
n ;
2 2
L 1
O[n?)

First, we prove thd (n) = Q(n?) part by induction. The inductive hypothesis
is T'(n) > cn? for some constant > 0.

T(n) = Th—-1)+n
> cn—1)>*+n

= cn*=2cn+c+n

> cn?

if —2¢n 4+ n + ¢ > 0or, equivalentlyyz(1 —2¢) + ¢ > 0. This condition holds
whenn > 0and0 < ¢ < 1/2.

For the upper boundl'(n) = O(n?), we use the inductive hypothesis that
T(n) < cn? for some constant > 0. By a similar derivation, we get that
T(n) < cn?if —2cn +n + ¢ < 0 or, equivalentlyn(1 — 2¢) + ¢ < 0. This
condition holds for = 1 andn > 1.

Thus,T(n) = Q(n?) andT'(n) = O(n?), so we conclude that(n) = O(n?).

4-24 Solutions for Chapter 4: Divide-and-Conquer

h. T(n) = T(/n) +1
The easy way to do this is with a change of variables, as on gé&gef
the text. Letm = Ign andS(m) = T(2™). T(2") = T(2"?) + 1, so
S(m) = S(m/2) + 1. Using the master theorem®»¢ = p'°%2! = p® = |
and f(n) = 1. Sincel = ©(1), case 2 applies ansi(m) = ©(Igm). There-
fore, T(n) = ©(glgn).

Solution to Problem 4-3

[This problem is solved only for parts a, c, e, f, g, h, and i.]

a. Tm)=3Tn/2) +nlgn
We havef(n) = nlgn andn'®%¢ = n'93 ~ n'>%5_ Sincenlgn = O(n'93¢)
forany0 < ¢ < 0.58, by case 1 of the master theorem, we hdye) =
A(n'93).

c. T(n)=4T(n/2) +n%*/n
We have f(n) = n%/n = n®? andn'%¢ = p%24 = p2. Sincen®? =
Q(n**€) for ¢ = 1/2, we look at the regularity condition in case 3 of the
master theorem. We havef (n/b) = 4(n/2)*\/n/2 = n%?/y/2 < cn®? for
1/4/2 < ¢ < 1. Case 3 applies, and we ha¥ign) = ®(n?./n).

e. T(n) =2T(n/2)+n/lgn
We can get a guess by means of a recursion tree:

n n
/ |g_n -- - |g_n
n/2 n/2 : n
I9(n/2) ign/2) " gn—1
Ign / \ / \
n/4 n/4 n/4 n/4 —— n
Iq(n/é}) Iq(n/é}) Iq(n/é}) Iq(n/é}) ©olgn-2
lgn—1 n)
; on =i = O(nlglgn)

We get the sum on each level by observing that at depite have2’ nodes,
each with a numerator of/2' and a denominator of ({g/2') = Ign — i, so
that the cost at depthis
n/2 n
lgn—i lgn—i’

i

Solutions for Chapter 4: Divide-and-Conquer 4-25

The sum for all levels is
lgn—1 lgn

n n
.Z lgn—i ! Z i
i=0 i=1
lgn
= ny 1/i
i=1
= n-0(glgn) (byequation (A.7), the harmonic series)
®OmIglgn) .
We can use this analysis as a guess That) = @ (nlglgn). If we were to do
a straight substitution proof, it would be rather involvéastead, we will show
by substitution thatl'(n) < n(1 4+ H\g,j) andT(n) > n - Hpg,p, Where Hy
is thekth harmonic numberHd, = 1/1 +1/2+1/3 +--- 4+ 1/k. We also
defineH, = 0. SinceH; = O(lgk), we have thaid4,; = O(lg|lgn]) =

©(glgn) and Hyg,1 = O(lg[lgn]) = O(lglgn). Thus, we will have that
T(n) =0O(Mnlglgn).

The base case for the proof is for= 1, and we usd'(1) = 1. Here, Ign = 0,
sothatlg: = |lgn] = [lgn]. SinceH, = 0, we haveT' (1) = 1 < 1(1 4+ H,)
and7(1) =1>0=1- H,.
For the upper bound df (n) < n(1 4+ H|g,), we have
Tn) = 2T(n/2)+n/lgn
2((n/2)(1 + Hyg@w/2)))) +n/1gn
n(1 4+ Hygn—1)) +n/lgn
n(l + Hygnj—1 + 1/1gn)
n(l + HLIgnJ—l + 1/ |_|gl’lJ)
= }’l(l + HLIgnJ) ,
where the last line follows from the identit§/, = H;,_, + 1/k.
The upper bound of (n) > n - Hyg, is similar:
Tn) = 2T(n/2)+n/lgn
2((n/2) - Hpgs2) +n/lgn
“Hpgp—11+n/lgn
*(Hpign1-1 + 1/1gn)
- (Hpgn—1 + 1/ Tlgnl)
“ Hpigny -
Thus, T(n) = ©(nlglgn).

f. Tn)=Tmn/2)+Tn/4)+Tn/8) +n
Using the recursion tree shown below, we get a gue§qnf = O(n).

IA IA

v

S

v
T X =

4-26 Solutions for Chapter 4: Divide-and-Conquer

l’l(4+§+1) — %n

logg n

8 L,2,3 2 4 1
n(4+8+16+32+64)
=n 16+16+124+4+1

- 64

— 49 _ 72

=nes =g

logn 7 i
> (g) n = 0(n)

i=1
We use the substitution method to prove tiid) = O(n). Our inductive
hypothesis is thal'(n) < ¢n for some constant > 0. We have

Tn) = Tn/2)+Tm/4) +T(n/8) +n
cn/2+cn/4+cn/8+n
= Tcn/8+n
= (14+7c/8n
< c¢n if c>8.
Therefore,T'(n) = O(n).
Showing thatl'(n) = Q(n) is easy:
T(n) =T(n/2)+ T(n/4) + T(n/8) +n=>n.
SinceT'(n) = O(n) andT (n) = 2(n), we have thaf" (n) = ©(n).
g Tm)=Th—-1)+1/n
This recurrence corresponds to the harmonic series, s@'that= H,,, where

H, =1/14+1/24+1/3+---4+1/n. For the base case, we haliél) = 1 = H,.
For the inductive step, we assume tid: — 1) = H,_;, and we have

A

Tn) = Tmn—-1)+1/n
= Hn_1+1/n
= H,.

SinceH, = ©(lgn) by equation (A.7), we have thdt(n) = ©(Ign).
h. Tm)=Tm—-1)+Ign

We guess thal'(n) = ©(nlgn). To prove the upper bound, we will show that
T(n) = O(nlgn). Our inductive hypothesis is thdt(n) < cnlgn for some
constant. We have

Solutions for Chapter 4: Divide-and-Conquer 4-27

T(n) T(n—1)+Ign
cn=1lgn—1)+1Ign
enlgn —1)—clgln —1) +Ign
cnlgln —1)—clg(n/2) +lgn
(since Ilgn — 1) > Ig(n/2) for n > 2)
= cnlgln—1)—clgn+c+1Ign
< c¢nlgn—clgn+c+lgn
< cnlgn,

if —clgn + ¢ +Ign < 0. Equivalently,

lIA

A

—clgn+c+1Ilgn < 0
¢ < (c—=1)lgn
lgn > c¢/(c—1).

This works forc = 2 and alln > 4.

To prove the lower bound, we will show th&{n) = Q(nIgn). Our inductive
hypothesis is thal'(n) > cnlgn + dn for constantg andd. We have

T(n) = Tm—1)+Ign
cn=DlIgln—-1)4+dn—-1)+1gn
cnlgln—1)—clgmn—1)+dn—d +lgn
cnlg(n/2) —clgn —1)+dn—d +1gn
(since Ign — 1) > Ig(n/2) forn > 2)
cnlgn —cn—clg(n—1)+dn—d +1gn
cenlgn,
if —cn—clg(n—1)+dn—d +1gn > 0. Since
—cn—clgln—1)+dn—d +1gn >
—cn—clgln—1)+dn—d +1gn—1),
it suffices to find conditions in whichcn—clg(n—1)+dn—d +Ilg(n—1) > 0.
Equivalently,

—cn—clgln—1)+dn—d +1g(n—1)
(d—c)n
This works forc = 1,d = 2, and alln > 2.
SinceT(n) = O(mlgn) andT(n) = Q(nlgn), we conclude thaf"(n) =
O(nlgn).
i. Tm)=Tmh—-2)+2lgn

We guess thafl(n) = ©(rnlgn). We show the upper bound df(n) =
O(nlgn) by means of the inductive hypothedign) < cnlgn for some con-
stantc > 0. We have

Tn) = Tm—2)+2Ign
c(n—=2)Ig(n —2)+2lgn
c(n—2)Ign +2lgn

= (ecn—2c+2)Ign

v

%

v

0
(c—Dlgn—1)+d .

=
=

=
=

4-28

Solutions for Chapter 4: Divide-and-Conquer

= cnlgn+ (2—-2c)lgn
< cnlgn ife>1.
Therefore,T'(n) = O(nlgn).

For the lower bound of (n) = Q(nlgn), we'll show thatT' (n) > cnlgn+dn,
for constants:, d > 0 to be chosen. We assume that 4, which implies that

1. 1g(n —2) > 19(n/2),
2.n/2>Ign,and
3.n/2>2.

(We'll use these inequalities as we go along.) We have
T(n) > cn—2)lgln—2)+dn—-2)+2lgn
= cnlg(n —2) —2clg(n —2) +dn —2d + 2Ign
> cnlg(n —2) —2clgn +dn—2d +2lgn
(since—Ign < —Ig(n — 2))
enlgin —2) —2(c — 1)lgn + dn —2d
enlg(n/2) —2(c —1)lgn + dn —2d (by inequality (1) above)
cnlgn —cn—2(c—1)lgn +dn —2d
cenlgn,

if —cn —2(c — 1)lgn + dn — 2d > 0 or, equivalently,dn > cn + 2(c —
1)lgn + 2d. Pick any constant > 1/2, and then pick any constadt such
that

d>22c—1).

v

v

(The requirement that > 1/2 means that/ is positive.) Then
d/2>2c—1=c+(c—1),

and adding/ /2 to both sides, we have
d>c+((c—-1)+d/2.

Multiplying by n yields

dn>cn+(c—Dn+dn/2,

and then both multiplying and dividing the middle termbygives
dn>cn+2(c—O)n/2+dn/2.

Using inequalities (2) and (3) above, we get
dn>cn+2(c—1)Ign+2d,

which is what we needed to show. Thiign) = Q(nlgn). SinceT(n) =
O(nlgn)andT (n) = Q2(nlgn), we conclude thal'(n) = ©(n Ign).

Lecture Notes for Chapter 5:
Probabilistic Analysis and Randomized
Algorithms

[This chapter introduces probabilistic analysis and ramded algorithms. It as-
sumes that the student is familiar with the basic probatifiaterial in Appendix C.

The primary goals of these notes are to

* explain the difference between probabilistic analysis emttlomized algo-
rithms,

* present the technique of indicator random variables, and

* give another example of the analysis of a randomized alguor{permuting an
array in place).

These notes omit the technique of permuting an array bygprind they omit the
starred Section 5.4.]

The hiring problem

Scenario
* You are using an employment agency to hire a new office assista
* The agency sends you one candidate each day.

* You interview the candidate and must immediately decidetkdreor not to
hire that person. But if you hire, you must also fire your cuotreffice assis-
tant—even if it's someone you have recently hired.

» Costto interview ig; per candidate (interview fee paid to agency).

* Cost to hire isc; per candidate (includes cost to fire current office assistant
hiring fee paid to agency).

* Assume that, > ¢;.

* You are committed to having hired, at all times, the best ihatd seen so
far. Meaning that whenever you interview a candidate wheetteb than your
current office assistant, you must fire the current officestessi and hire the
candidate. Since you must have someone hired at all timesyjlbalways
hire the first candidate that you interview.

Goal
Determine what the price of this strategy will be.

5-2

Lecture Notes for Chapter 5: Probabilistic Analysis d&ahdomized Algorithms

Pseudocode to model this scenario

Assumes that the candidates are humbeértmn and that after interviewing each
candidate, we can determine if it's better than the curréiteoassistant. Uses a
dummy candidaté that is worse than all others, so that the first candidateniays
hired.

HIRE-ASSISTANT(n)

best= 0 /I candidate O is a least-qualified dummy candidate
fori =1ton
interview candidate
if candidate is better than candidatsest
best= i
hire candidate

Cost
If n candidates, and we hire of them, the cost i®)(nc¢; + mcy,).

* Have to pay:c; to interview, no matter how many we hire.
* So we focus on analyzing the hiring cast;,.

* mcy, varies with each run—it depends on the order in which we viger the
candidates.

* This is a model of a common paradigm: we need to find the maxiraum
minimum in a sequence by examining each element and maimgaéncurrent
“winner.” The variablem denotes how many times we change our notion of
which element is currently winning.

Worst-case analysis

In the worst case, we hire allcandidates.

This happens if each one is better than all who came beforethkr words, if the
candidates appear in increasing order of quality.

If we hire alln, then the cost i®) (nc; + ncy) = O(ncy) (sincecy, > ¢;).

Probabilistic analysis

In general, we have no control over the order in which canidglappear.
We could assume that they come in a random order:

* Assign a rank to each candidatank(i) is a unique integer in the randeo .

* The ordered lis{rank(1), rank(2), ..., rank(n)) is a permutation of the candi-
date numbers$l,2,...,n).

* The list of ranks is equally likely to be any one of thepermutations.

* Equivalently, the ranks form aniform random permutation each of the pos-
siblen! permutations appears with equal probability.

Lecture Notes for Chapter 5: Probabilistic Analysis and Bamized Algorithms 5-3

Essential idea of probabilistic analysis
We must use knowledge of, or make assumptions about, thrédigin of inputs.

* The expectation is over this distribution.

* This technique requires that we can make a reasonable té@zation of the
input distribution.

Randomized algorithms

We might not know the distribution of inputs, or we might net&ble to model it
computationally.

Instead, we use randomization within the algorithm in otde@mpose a distribu-
tion on the inputs.

For the hiring problem
Change the scenario:

* The employment agency sends us a list ohatndidates in advance.

* On each day, we randomly choose a candidate from the listeoview (but
considering only those we have not yet interviewed).

* Instead of relying on the candidates being presented to asamdom order,
we take control of the process and enforce a random order.

What makes an algorithm randomized

An algorithm israndomizedif its behavior is determined in part by values pro-
duced by aandom-number generator

* RANDOM(a, b) returns an integer, wherea < r < b and each of thé —a + 1
possible values of is equally likely.

* In practice, RNDOM is implemented by @seudorandom-number generator

which is a deterministic method returning numbers thatkfoandom and pass
statistical tests.

Indicator random variables

A simple yet powerful technique for computing the expectatu® of a random
variable.

Helpful in situations in which there may be dependence.
Given a sample space and an evéntve define théndicator random variable

1 if A occurs,
0 if A does not occur

1 {4} =

Lemma
For an event, let X4 = | {A}. Then E[X4] = Pr{4}.

5-4

Lecture Notes for Chapter 5: Probabilistic Analysis d&ahdomized Algorithms

Proof Letting A be the complement of, we have
E[X4 = E[I{4}]
= 1-Pr{d4}+0-Pr{A} (definition of expected value)
Pr{4} . m (lemma)

Simple example

Determine the expected number of heads when we flip a fairaoértime.
* Sample space igH, T'}.

* Pr{H} =Pr{T}=1/2.

* Define indicator random variabléy = | { H}. Xy counts the number of heads
in one flip.

* Since PKH} = 1/2, lemma says that (y] = 1/2.

Slightly more complicated example
Determine the expected number of heads ooin flips.

* Let X be arandom variable for the number of heads ftips.

« Could compute EX] = > ;_,k - Pr{X = k}. In fact, this is what the book
does in equation (C.37).

* Instead, we'll use indicator random variables.

* Fori =1,2,...,n,defineX; = | {theith flip results in event }.
* ThenX =Y"_, X

* Lemmasaysthat ;] = Pr{H} =1/2fori =1,2,...,n.

*+ Expected number of heads ifE] = E[}_7_, X,].

« Problem: We want EY_7_, X;]. We have only the individual expectations
E[X.],E[X2],...,E[X.].

» Solution: Linearity of expectation says that the expectation of tha sguals
the sum of the expectations. Thus,

= Y E[X]
= il/Z

= n/2.

* Linearity of expectation applies even when there is depecelamong the ran-
dom variables.[Not an issue in this example, but it can be a great help. The
hat-check problem of Exercise 5.2-4 is a problem with lotdegendence. See
the solution on page 5-11 of this manual.]

Lecture Notes for Chapter 5: Probabilistic Analysis and Bamized Algorithms 5-5

Analysis of the hiring problem

Assume that the candidates arrive in a random order.

Let X be a random variable that equals the number of times we hiesveoffice
assistant.

Define indicator random variables,, X, ..., X,, where
X; = | {candidate is hired} .

Useful properties:

c X=Xi+Xo+ -+ X,

* Lemma= E[X;] = Pr{candidate is hired.

We need to compute Rcandidate is hired.

* Candidate is hired if and only if candidaté is better than each of candidates
1,2,...,i — 1.

* Assumption that the candidates arrive in random otglezandidateq, 2, ...,
arrive in random ordet any one of these firgtcandidates is equally likely to
be the best one so far.

* Thus, PKcandidate is the best so far=1/i.
* Which implies HX;] = 1/i.

Now compute EX]:

E[X] = E{anxl}
= ZE[Xf]

n

= > /i

i=1

= Inn+ O(1) (equation (A.7): the sum is a harmonic series) .

Thus, the expected hiring costi(c; Inn), which is much better than the worst-
case cost oD(ncy).

Randomized algorithms
Instead of assuming a distribution of the inputs, we impodistaibution.

The hiring problem

For the hiring problem, the algorithm is deterministic:

* For any given input, the number of times we hire a hew officéstss® will
always be the same.

5-6

Lecture Notes for Chapter 5: Probabilistic Analysis d&ahdomized Algorithms

* The number of times we hire a new office assistant dependsoorilye input.
* Infact, it depends only on the ordering of the candidatasksahat it is given.

* Some rank orderings will always produce a high hiring cosariple: (1,2, 3,
4,5, 6), where each candidate is hired.

» Some will always produce a low hiring cost. Example: any arggin which
the best candidate is the first one interviewed. Then onhp#st candidate is
hired.

* Some may be in between.

Instead of always interviewing the candidates in the ordesgnted, what if we
first randomly permuted this order?

* The randomization is now in the algorithm, not in the inptdbution.

* Given a particular input, we can no longer say what its hidogt will be. Each
time we run the algorithm, we can get a different hiring cost.

* In other words, each time we run the algorithm, the executigmends on the
random choices made.

* No patrticular input always elicits worst-case behavior.

* Bad behavior occurs only if we get “unlucky” numbers from ttadom-
number generator.

Pseudocode for randomized hiring problem
RANDOMIZED-HIRE-ASSISTANT(n)

randomly permute the list of candidates
HIRE-ASSISTANT(#)

Lemma
The expected hiring cost of ARAIDOMIZED-HIRE-ASSISTANTIS O(cy, Inn).

Proof After permuting the input array, we have a situation ideaitto the proba-
bilistic analysis of deterministic RE-ASSISTANT. [

Randomly permuting an array

[The book considers two methods of randomly permuting #tement array. The
first method assigns a random priority in the range>tto each position and then
reorders the array elements into increasing priority ord&e omit this method
from these notes. The second method is better: it works inep(anlike the
priority-based method), it runs in linear time without réqg sorting, and it needs
fewer random bitsn random numbers in the range 1lrdaather than the range 1
ton3). We present and analyze the second method in these notes.]

Goal

Produce a uniform random permutation (each of athgermutations is equally
likely to be produced).

Lecture Notes for Chapter 5: Probabilistic Analysis and Bamized Algorithms 5-7

Non-goal: Show that for each elememnt][i], the probability that4[i] moves to
position j is 1/n. (See Exercise 5.3-4, whose solution is on page 5-14 of this
manual.)

The following procedure permutes the arrdyl .. n] in place (i.e., no auxiliary
array is required).

RANDOMIZE-IN-PLACE (A, n)

fori = 1ton
swapA[i] with A[RANDOM(i, n)]

Idea

* Initerationi, chooseA[i] randomly fromA[i . . n].
* Will never alterA[i] after iteration.

Time
O(1) per iteration= O(n) total.

Correctness

Given a set ofz elements, &-permutationis a sequence containirig of the n
elements. There avel/(n — k)! possiblek-permutations.

Lemma
RANDOMIZE-IN-PLACE computes a uniform random permutation.

Proof Use a loop invariant:

Loop invariant: Just prior to theith iteration of thefor loop, for each
possible(i — 1)-permutation, subarrayi[1..i — 1] contains this(i — 1)-
permutation with probabilityn — i + 1)!/n!.

Initialization: Just before first iteration, = 1. Loop invariant says that for each
possible 0-permutation, subarrayl[1..0] contains thisO-permutation with
probability n!/n! = 1. A[l1..0] is an empty subarray, andCapermutation
has no elements. Sd]1 .. 0] contains any)-permutation with probabilityl.

Maintenance: Assume that just prior to th&ah iteration, each possiblg — 1)-
permutation appears [l ..i — 1] with probability (n —i + 1)!/n!. Will show
that after the'th iteration, each possiblepermutation appears i[1 . .i] with
probability (n —i)!/n!. Incrementing for the next iteration then maintains the
invariant.

Consider a particular-permutationt = (x;, x5, ..., x;). It consists of an
(i — 1)-permutationt’ = (xy, x,,...,x;_1), followed byx;.

Let £, be the event that the algorithm actually patinto A[1..i — 1]. By the
loop invariant, PEE,} = (n —i + 1)!/n!.

Let £, be the event that theh iteration putsy; into A[i].

5-8 Lecture Notes for Chapter 5: Probabilistic Analysis d&ahdomized Algorithms

We get the -permutatiorvr in A[1..{] if and only if both £, and E, occur=
the probability that the algorithm producesn A[1..i] is Pr{E, N Eq}.

Equation (Cl4)z> Pr{E2 N El} - Pr{E2 | El} PI’{El}

The algorithm chooses; randomly from the: —i + 1 possibilities inA[i .. n]
= Pr{E, | E1} =1/(n —i 4+ 1). Thus,

Pr{E;NE\} = PriEy | Ei}PriE}
B | (n—i+ 1)
T on—it+1
(n—1)!
- n!

Termination: At termination,i = n + 1, so we conclude that[l..n] is a given
n-permutation with probabilitfn — n)!/n! = 1/n!. m (lemma)

Solutions for Chapter 5:
Probabilistic Analysis and Randomized
Algorithms

Solution to Exercise 5.1-3

To get an unbiased random bit, given only calls toa&D-RANDOM, call
BiIASED-RANDOM twice. Repeatedly do so until the two calls return different
values, and when this occurs, return the first of the two bits:

UNBIASED-RANDOM

while TRUE
x = BIASED-RANDOM
y = BIASED-RANDOM
if x #£y
return x

To see that BIASED-RANDOM returnsO and 1 each with probabilityl /2, ob-
serve that the probability that a given iteration retuins

Prix=0andy =1} =(1-p)p,
and the probability that a given iteration returns
Pr{x =1andy =0} = p(1—p).

(We rely on the bits returned byIBSED-RANDOM being independent.) Thus, the
probability that a given iteration returiisequals the probability that it returrls
Since there is no other way forNBIASED-RANDOM to return a value, it returnd
and1 each with probabilityl /2.

Assuming that each iteration take®(1) time, the expected running time of
UNBIASED-RANDOM is linear in the expected number of iterations. We can view
each iteration as a Bernoulli trial, where “success” mehasthe iteration returns
avalue. The probability of success equals the probabiiytis returned plus the
probability thatl is returned, o2p(1 — p). The number of trials until a success
occurs is given by the geometric distribution, and by equaC.32), the expected
number of trials for this scenario is/(2p(1 — p)). Thus, the expected running
time of UNBIASED-RANDOM is ®(1/(2p(1 — p)).

5-10 Solutions for Chapter 5: Probabilistic Analysis andigamized Algorithms

Solution to Exercise 5.2-1
This solution is also posted publicly

Since HRE-ASSISTANT always hires candidatk it hires exactly once if and only
if no candidates other than candiddtere hired. This event occurs when candi-
datel is the best candidate of tlwe which occurs with probabilityt /7.

HIRE-ASSISTANT hiresn times if each candidate is better than all those who were
interviewed (and hired) before. This event occurs pregigdien the list of ranks
given to the algorithm i¢l1, 2, ..., n), which occurs with probabilityt /n!.

Solution to Exercise 5.2-2

We make three observations:

1. Candidatd is always hired.
2. The best candidate, i.e., the one whose rank iis always hired.
3. Ifthe best candidate is candiddtethen that is the only candidate hired.

Therefore, in order for HRE-ASSISTANT to hire exactly twice, candidate must
have rank < n—1 and all candidates whose ranks arel,i +2,...,n—1 must
be interviewed after the candidate whose rank.i§Wheni = n — 1, this second
condition vacuously holds.)

Let E; be the event in which candidaténas rank; clearly, P E;} = 1/n for any
given value ofi.

Letting j denote the position in the interview order of the best caatdidetF be
the event in which candidat@s3, ..., j — 1 have ranks strictly less than the rank
of candidatel. Given that eventf; has occurred, evenff occurs when the best
candidate is the first one interviewed out of the- i candidates whose ranks are
i+1,i+2,....,n. Thus, PAF | E;} = 1/(n —1).

Our final event is4, which occurs when HRE-ASSISTANT hires exactly twice.
Noting that the event®&',, E,, ..., E, are disjoint, we have

A - FO(EIUEZUUE,,_I)
(FNE)U(FNE)U-—-U(FNE,).
and

n—1
Pr{A} = Pr{FNE;} .
i=1
By equation (C.14),
Pr{F NE;} = Pr{F|E;}Pr{E;}
1 1

. b
n—i n

Solutions for Chapter 5: Probabilistic Analysis and Randzoed Algorithms 5-11

and so
n—1
1 1
Pr{d} = -
n—1it n
i=1
131
- ; n—1
i=1
1 1 N 1 N Jr1
T n\n—-1 n-=2 1
1
= ;'Hn—l,

whereH,,_; is thenth harmonic number.

Solution to Exercise 5.2-4
This solution is also posted publicly

Another way to think of the hat-check problem is that we wantiétermine the
expected number of fixed points in a random permutation.fiXéd point of a
permutationr is a valuei for which (i) = i.) We could enumerate afl! per-
mutations, count the total number of fixed points, and disogie:! to determine
the average number of fixed points per permutation. This dvbel a painstak-
ing process, and the answer would turn out tol b&Ve can use indicator random
variables, however, to arrive at the same answer much meily.ea

Define a random variabl¥ that equals the number of customers that get back their
own hat, so that we want to computg ¥|.

Fori =1,2,...,n, define the indicator random variable
X; = | {customer gets back his own hat.

ThenX :Xl +X2++Xn

Since the ordering of hats is random, each customer has alplibp of 1/n of
getting back his or her own hat. In other words{®y = 1} = 1/n, which, by
Lemma 5.1, implies that EX;] = 1/n.

Thus,

E[X]

i=1

= Z E[X;] (linearity of expectation)
i=1

= Z 1/n
i=1

= 1,
and so we expect that exacflycustomer gets back his own hat.

5-12 Solutions for Chapter 5: Probabilistic Analysis andigamized Algorithms

Note that this is a situation in which the indicator randomalales arenot inde-
pendent. For example, if = 2 andX; = 1, thenX, must also equal. Con-
versely, ifn = 2 and X, = 0, thenX, must also equd. Despite the dependence,
Pr{X; = 1} = 1/n for all i, and linearity of expectation holds. Thus, we can use
the technique of indicator random variables even in thegores of dependence.

Solution to Exercise 5.2-5
This solution is also posted publicly

Let X;; be an indicator random variable for the event where the ggi}, A[/]
fori < j is inverted, i.e.,A[i] > A[j]. More precisely, we defin&(;;, =
[{A[i] > A[j]} for 1 < i < j < n. We have P{X,; =1} = 1/2, because
given two distinct random numbers, the probability thatfirs is bigger than the
second isl/2. By Lemma 5.1, BX;;] = 1/2.

Let X be the the random variable denoting the total number of iedgairs in the
array, so that

n—1 n
X = Z Z Xij .
i=1j=i+1

We want the expected number of inverted pairs, so we takexihectation of both
sides of the above equation to obtain

€[5 5]

i=1j=i+1

We use linearity of expectation to get

- e[§ 5)

i=1j=i+1
n—1 n
= > > E[xy]
i=1j=i+1
n—1 n
= > 12
i=1j=i+1
_ n\l
- \2)2
_onn—=1) 1
N 2 2
_ n(n—=1)
2 .

Thus the expected number of inverted pairs(is — 1) /4.

Solutions for Chapter 5: Probabilistic Analysis and Randzoed Algorithms 5-13

Solution to Exercise 5.3-1

Here’s the rewritten procedure:

RANDOMIZE-IN-PLACE (A)

n = A.length
swapA[1] with A[RANDOM(1, n)]
fori =2ton

swapA[i] with A[RANDOM(i, n)]

The loop invariant becomes

Loop invariant: Just prior to the iteration of thier loop for each value of
i =2,...,n,foreach possibl& —1)-permutation, the subarradf1..i —1]
contains thigi — 1)-permutation with probabilitfn —i + 1)!/n!.

The maintenance and termination parts remain the same. nittaization part
is for the subarray4[l .. 1], which contains anyl-permutation with probability
(n—1!/n!'=1/n.

Solution to Exercise 5.3-2
This solution is also posted publicly

Although FERMUTE-WITHOUT-IDENTITY will not produce the identity permuta-
tion, there are other permutations that it fails to produ€er example, consider
its operation whem = 3, when it should be able to produce the— 1 = 5 non-
identity permutations. Théor loop iterates foi = 1 andi = 2. Wheni = 1,
the call to RNDOM returns one of two possible values (eitl2eor 3), and when
i = 2,the call to RRNDOM returns just one valug). Thus, ERMUTE-WITHOUT-

IDENTITY can produce onl® - 1 = 2 possible permutations, rather than thinat
are required.

Solution to Exercise 5.3-3

The FERMUTE-WITH-ALL procedure does not produce a uniform random per-
mutation. Consider the permutations it produces whes 3. The procedure
makes3 calls to RANDOM, each of which returns one 8fvalues, and so calling
PERMUTE-WITH-ALL has27 possible outcomes. Since there are= 6 permuta-
tions, if PERMUTE-WITH-ALL did produce a uniform random permutation, then
each permutation would occuy 6 of the time. That would mean that each permu-
tation would have to occur an integer numbetimes, wheren/27 = 1/6. No
integerm satisfies this condition.

In fact, if we were to work out the possible permutationglof2, 3) and how often
they occur with BRMUTE-WITH-ALL, we would get the following probabilities:

5-14

Solutions for Chapter 5: Probabilistic Analysis andigamized Algorithms

permutation probability

(1,2,3) 4727
(1,3,2) 5/27
(2,1,3) 5/27
(2,3, 1) 5/27
(3,1,2) 4/27
(3,2,1) 4/27

Although these probabilities sum tgnone are equal tb/6.

Solution to Exercise 5.3-4
This solution is also posted publicly

PERMUTE-BY-CycLIC choosesoffsetas a random integer in the rande <
offset < n, and then it performs a cyclic rotation of the array. That is,
B[((i + offset— 1) modn) + 1] = A[i]fori = 1,2,...,n. (The subtraction
and addition ofl in the index calculation is due to theorigin indexing. If we
had used-origin indexing instead, the index calculation would haimplied to
B[(i + offse) modn] = Afi]fori =0,1,...,n—1.)

Thus, onceoffsetis determined, so is the entire permutation. Since eacleaiu
offsetoccurs with probabilityl /n, each elemend[i] has a probability of ending
up in positionB|j] with probability 1/n.

This procedure does not produce a uniform random permautatiowever, since
it can produce only: different permutations. Thus, permutations occur with
probability 1/n, and the remaining! — n permutations occur with probabilify.

Solution to Exercise 5.3-7

Since each recursive call reducasby 1 and makes only one call toARIDOM,
it's easy to see that there are a totakotalls to RANDOM. Moreover, since each
recursive call adds exactly one element to the set, it's tasge that the resulting
setS contains exactlyn elements.

Because the elements of setare chosen independently of each other, it suffices
to show that each of the values appears i§ with probability m/n. We use an
inductive proof. The inductive hypothesis is that a call mNROM-SUBSET(m, n)
returns a sefS of m elements, each appearing with probability n. The base
cases are fom = 0 andm = 1. Whenm = 0, the returned set is empty, and so
it contains each element with probability Whenm = 1, the returned set has one

element, and it is equally likely to be any numbefin2,3,...,n}.
For the inductive step, we assume that the calNBOM-SUBSET(m — 1,n — 1)
returns a se$’ of m — 1 elements in which each valuefm, 2,3, ...,n — 1} occurs

with probability m — 1) /(n — 1). After the linei = RANDOM(1,n), i is equally
likely to be any value i1,2,3,...,n}. We consider separately the probabilities

Solutions for Chapter 5: Probabilistic Analysis and Randzoed Algorithms 5-15

that S containsj < n and thatS containsn. Let R; be the event that the call
RANDOM(1, n) returnsj, so that P{R;} = 1/n.

Forj < n,the eventthaj € S is the union of two disjoint events:

+ je§’ and

* j & S andR; (these events are independent),

Thus,

Pr{j € S}
= Pr{j € S'}+Pr{j ¢ S"andR;} (the events are disjoint)

n—1 n—1 n

B m—l+ n—1 m-—-1 1
 on—1 n—1 n—1 n

m—1 n n—m 1

—1 1\ 1
. +(1—m)-— (by the inductive hypothesis)

n—1 n n—-1n
m—1n+ (n—m)
(n—1n
mn—n—+n—m
(n—1n

mm—1)

(n—1n
m

n
The event that € S is also the union of two disjoint events:

* R,,and
* R;andj € S’ forsomej < n (these events are independent).
Thus,
Pr{n € S}
= Pr{R,} + Pr{R; andj € S’ for some;j < n} (the events are disjoint)
1 n—-1 m-1

= -+ (by the inductive hypothesis)
n n n—1
I n=1 n—-1 m-1
T n on—1 n n—1
_n—1l+nmnm—-—n—m+1
N nn—1)
_ nm—m
on(n—1)
_ m(n—1)
onm—1)
m

n

5-16 Solutions for Chapter 5: Probabilistic Analysis andigamized Algorithms

Solution to Exercise 5.4-6

First we determine the expected number of empty bins. Weelafimndom vari-
able X to be the number of empty bins, so that we want to comp(if&]ENext, for

i = 1,2,...,n, we define the indicator random varialdfe = | {bini is empty}.
Thus,
X=)v,
i=1
and so
E[X] = E [Z Y,-:|
i=1
= Z E[Y;] (by linearity of expectation)

i=1

= > Pr{biniisempty (by Lemma5.1) .
i=1
Let us focus on a specific bin, say hin We view a toss as a success if it misses
bin i and as a failure if it lands in bih. We haven independent Bernoulli trials,
each with probability of succeds— 1/x. In order for bini to be empty, we need
n successes in trials. Using a binomial distribution, therefore, we hakatt

Pr{bini is empty = (:) (1 — %)n (%)

(-3)
= n({l—- .
n
By equation (3.14), as approachesc, the quantity(1 — 1/x#)" approached /e,
and so HX] approacheg/e.
Now we determine the expected number of bins with exactly lwae We re-

define X to be number of bins with exactly one ball, and we redefih¢o be
I {bin i gets exactly one bgll As before, we find that

n
E[X] =) Pr{bini gets exactly one ball.
i=1
Again focusing on bir, we need exactly—1 successes imindependent Bernoulli
trials, and so

Solutions for Chapter 5: Probabilistic Analysis and Randzoed Algorithms 5-17

n—1 1
Pr{bini gets exactly one bgll = (") (1 — l) (1)
n—1 n n

and so

n 1 n—1
E[X] = Z(l—;)

1 n—1
= n(l——) .
n

Because

n(l_l)”_lzu
n -1

asn approacheso, we find that X] approaches

nje n?

1—1/n e(n—1)"

Solution to Problem 5-1

a. Todetermine the expected value represented by the codteen &NCREMENT
operations, we define some random variables:

 Forj =1,2,...,n, let X; denote the increase in the value represented by
the counter due to thgth INCREMENT operation.

* Let V, be the value represented by the counter afttkCREMENT opera-
tions.

ThenV, = X; + X, + --- + X,,. We want to compute B/,]. By linearity of
expectation,

We shall show that EX;] = 1 for j = 1,2,...,n, which will prove that
E[V,] = n.

We actually show that EX;] = 1 in two ways, the second more rigorous than
the first:

1. Suppose that at the start of thh INCREMENT operation, the counter holds
the valuer, which represents;. If the counter increases due to thisdRE-
MENT operation, then the value it represents increases;by — n;. The
counter increases with probability (n; ., — n;), and so

5-18 Solutions for Chapter 5: Probabilistic Analysis andigamized Algorithms

E[X;] = (0-Pr{counter does notincreage
+ ((n;+1 — n;) - Pr{counter increases

= (0-(1——1)) + ((nm—n,-)-i1)
Niy1 — N Niy1 — N

= 1,
and so HX;] = 1 regardless of the value held by the counter.

2. LetC; be the random variable denoting the value held in the cowtttre
start of thejth INCREMENT operation. Since we can ignore values@f
greater thar?? — 1, we use a formula for conditional expectation:

E[X;] = E[E[X; |G

= Y E[X;|C =i]-Pr{C; =i} .

To compute BX; | C; = i], we note that
s Pr{X; =0|C; =i} =1-1/(njy1—n;),
* Pr{X; =niy1—n; | C; =i} =1/(njy1 —n;),and
* Pr{X; =k | C; =i} = 0forall otherk.
Thus,
E[X,|C=i] = > k-Pr{X;=k|C; =i}
k

= (0' (1 - ;)) + ((ni+1 —n;)- ;)
i1 —n; Niy1 — N

= 1.
Therefore, noting that

21

Y PHC =i} =1,

i=0

we have
2b 1

E[X,] = Y 1-Pr{C; =i}
i=0

= 1.

Why is the second way more rigorous than the first? Both wagdition on the
value held in the counter, but only the second way incorpsrtite conditioning
into the expression for E;].

b. DefiningV, and X; as in part (a), we want to compute \&,], wheren; =
100i. The X; are pairwise independent, and so by equation (C.29)W/ar=
Var[X,] + Var[X,] + -+ + Var[X,].

Sincen; = 100i, we see that; ., —n; = 100(i + 1) —100i = 100. Therefore,
with probability 99/100, the increase in the value represented by the counter
due to thejth INCREMENT operation is0, and with probability1/100, the

Solutions for Chapter 5: Probabilistic Analysis and Randzoed Algorithms 5-19

value represented increaseslof). Thus, by equation (C.27),
Var[X;] = E[X7]-E[X]]

99 1
= 2. 1002 —)} =12
() * (o 7))

= 100-1
99.

Summing up the variances of tig gives Var{V,] = 99n.

Lecture Notes for Chapter 6:
Heapsort

Chapter 6 overview

Heapsort

* O(nlgn) worst case—like merge sort.
* Sorts in place—like insertion sort.
* Combines the best of both algorithms.

To understand heapsort, we'll cover heaps and heap opesatiad then we'll take
a look at priority queues.

Heaps

Heap data structure

* HeapA (notgarbage-collected storage) is a nearly complete binaey tre

» Height of node = # of edges on a longest simple path from the node down t
a leaf.

» Height of heap= height of root= ©(Ign).
* A heap can be stored as an arrhy

* Root of tree isA[1].

* Parent ofA[i] = A[|i/2]].

» Left child of A[i] = A[2i].

* Right child of A[i] = A[2i + 1].

« Computing is fast with binary representation implementati

[In book, havdengthandheapsizeattributes. Here, we bypass these attributes and
use parameter values instead.]

6-2

Lecture Notes for Chapter 6: Heapsort

Example

Of a max-heap/Arcs above and below the array on the right go between parent
and children. There is no significance to whether an arc igml@bove or below
the array.]

10

4 1

463410 o 7

EIE

Heap property

* For max-heaps (largest element at rootgx-heap property:for all nodesi,
excluding the rootA[PARENT(i)] > A[i].

+ For min-heaps (smallest element at rootjn-heap property:for all nodesi,
excluding the root4[PARENT(i)] < A[i].

By induction and transitivity ok, the max-heap property guarantees that the max-

imum element of a max-heap is at the root. Similar argumantiia-heaps.

The heapsort algorithm we’ll show uses max-heaps.

Note: In general, heaps can bary tree instead of binary.

Maintaining the heap property

MAX-HEAPIFY is important for manipulating max-heaps. It is used to naamt
the max-heap property.

* Before MAX-HEAPIFY, A[i] may be smaller than its children.
* Assume left and right subtrees iofre max-heaps.
* After MAX-HEAPIFY, subtree rooted dtis a max-heap.

MAX-HEAPIFY(A,i,n)

| = LEFT(i)

r = RIGHT(i)

if I <nandA[l] > Ali]
largest =/

elselargest = i

if r <nandA[r] > A[largesi
largest = r

if largest## i

exchanged|[i] with A[largest
MaXx-HEAPIFY (A, largest n)

Lecture Notes for Chapter 6: Heapsort 6-3

[Parameten replaces attributd .heapsize]
The way MAX-HEAPIFY works:

« Compared[i], A[LEFT(i)], and A[RIGHT(i)].

* If necessary, swapl[i] with the larger of the two children to preserve heap
property.

* Continue this process of comparing and swapping down the, hewil subtree
rooted ati is max-heap. If we hit a leaf, then the subtree rooted at thieise
trivially a max-heap.

Run Max-HEAPIFY on the following heap example.

* Node 2 violates the max-heap property.

* Compare node 2 with its children, and then swap it with thgdaof the two
children.

» Continue down the tree, swapping until the value is propgidged at the root
of a subtree that is a max-heap. In this case, the max-hedpas. a

Time
O(lgn).

Analysis

[Instead of book’s formal analysis with recurrence, jusheaip withO(lg n) intu-
itively.] Heap is almost-complete binary tree, hence must proOgksn) levels,
with constant work at each level (comparing 3 items and mayapping 2).

6-4 Lecture Notes for Chapter 6: Heapsort

Building a heap

The following procedure, given an unordered array, willdquce a max-heap.

BUILD-MAX-HEAP(A4,n)

for i = |n/2]| downto 1
MAX-HEAPIFY(A,i,n)

[Parameten replaces both attributes.lengthandA.heapsize]

Example

Building a max-heap from the following unsorted array r&sit the first heap
example.

» | starts off as 5.
* MAX-HEAPIFY is applied to subtrees rooted at nodes (in order): 16, 2,4, 1,

2 3 4 5 6 7 8 9 10

A\zll|1|3|2|16| 9[1d 14 § 7

Correctness

Loop invariant: At start of every iteration ofor loop, each node + 1,
i +2,...,nisroot of a max-heap.

Initialization: By Exercise 6.1-7, we know that each nda¢’2| + 1, |n/2] + 2,
...,n is aleaf, which is the root of a trivial max-heap. Sirice: |n/2]| before
the first iteration of thdor loop, the invariant is initially true.

Maintenance: Children of node are indexed higher than so by the loop invari-
ant, they are both roots of max-heaps. Correctly assumatg+hl,i+2,...,n
are all roots of max-heaps, AX-HEAPIFY makes node a max-heap root.
Decrementing reestablishes the loop invariant at each iteration.

Termination: Wheni = 0, the loop terminates. By the loop invariant, each node,
notably node 1, is the root of a max-heap.

Lecture Notes for Chapter 6: Heapsort 6-5

Analysis

* Simple bound: O(n) calls to MAX-HEAPIFY, each of which take®(Ign)
time= O(nlgn). (Note: A good approach to analysis in general is to start by
proving easy bound, then try to tighten it.)

» Tighter analysis: Observation: Time to run Mx-HEAPIFY is linear in the
height of the node it's run on, and most nodes have small teighiave
< [n/2"*"] nodes of height (see Exercise 6.3-3), and height of heafgs: |
(Exercise 6.1-2).

The time required by Mx-HEAPIFY when called on a node of heighit
is O(h), so the total cost of BILD-MAX-HEAP is

llgn]

llgn] h
3 U“J O(h) = 0 (n D 2—;,) .

h=0

Evaluate the last summation by substituting= 1/2 in the formula (A.8)
(35, kx*), which yields

i h 1/2
T (1=1/2)2
—2 (1-1/2)
= 2.
Thus, the running time of BILD-MAX-HEAP is O(n).

Building a min-heap from an unordered array can be done HingaMIN-
HEAPIFY instead of MaAX-HEAPIFY, also taking linear time.

The heapsort algorithm

Given an input array, the heapsort algorithm acts as fotlows

* Builds a max-heap from the array.

+ Starting with the root (the maximum element), the algoritblaces the maxi-
mum element into the correct place in the array by swappiwglitthe element
in the last position in the array.

» “Discard” this last node (knowing that it is in its correcapk) by decreasing the
heap size, and calling Mx-HEAPIFY on the new (possibly incorrectly-placed)
root.

* Repeat this “discarding” process until only one node (thalkst element)
remains, and therefore is in the correct place in the array.

HEAPSORT(A4,n)

BUILD-MAX-HEAP(4,n)

for i = n downto 2
exchanged[1] with A[i]
MAX-HEAPIFY(A,1,i — 1)

[Parameten replacesA.length and parameter valie— 1 in MAXx-HEAPIFY call
replaces decrementing df heapsize]

6-6 Lecture Notes for Chapter 6: Heapsort

Example

Sort an example heap on the boaidodes with heavy outline are no longer in the
heap.]

(b)

<

@
© (d)
©)
@ ®
@ O A
(e)

Analysis

* BuUILD-MAX-HEAP: O(n)
» for loop: n — 1 times

* exchange element£2(1)

* MAX-HEAPIFY: O(Ign)
Total time: O(nlgn).

Though heapsort is a great algorithm, a well-implementddkgort usually beats
it in practice.

Heap implementation of priority queue

Heaps efficiently implement priority queues. These notds deial with max-
priority queues implemented with max-heaps. Min-priorifyreues are imple-
mented with min-heaps similarly.

A heap gives a good compromise between fast insertion but ekraction and
vice versa. Both operations tak¥lg ») time.

Priority queue

* Maintains a dynamic sef of elements.
* Each set element hakay—an associated value.

Lecture Notes for Chapter 6: Heapsort 6-7

* Max-priority queue supports dynamic-set operations:

* INSERT(S, x): inserts element into setS.
* MAXIMUM (S): returns element of with largest key.
* EXTRACT-MAX(S): removes and returns element$ivith largest key.
* INCREASEKEY(S, x, k). increases value of elemens key tok. Assume
k > x’s current key value.
* Example max-priority queue application: schedule jobsharexd computer.
* Min-priority queue supports similar operations:

INSERT(S, x): inserts element into setS.
MINIMUM (S): returns element af with smallest key.
* EXTRACT-MIN(S): removes and returns element®ivith smallest key.

* DECREASEKEY(S, x, k): decreases value of elemerit key tok. Assume
k < x’s current key value.

* Example min-priority queue application: event-driven siator.

Note: Actual implementations often havaandlein each heap element that allows
access to an object in the application, and objects in thécagipn often have a
handle (likely an array index) to access the heap element.

Will examine how to implement max-priority queue operasion

Finding the maximum element
Getting the maximum element is easy: it's the root.

HEAP-MAXIMUM (A)
return A[1]

Time
O().

Extracting max element

Given the array:

* Make sure heap is not empty.

* Make a copy of the maximum element (the root).

* Make the last node in the tree the new root.

* Re-heapify the heap, with one fewer node.

* Return the copy of the maximum element.

Note: Because we need to decrement the heap:diz¢he following pseudocode,
assume that it is passed by reference, not by value.

[This issue does not come up in the pseudocode in the bookubedt uses the
attribute A . heapsizeinstead of passing in the heap size as a parameter.]

Lecture Notes for Chapter 6: Heapsort

HEAP-EXTRACT-MAX (A, n)

ifn<l1
error “heap underflow”
max = A[l]
A[l] = A[n]
n=n-—1
MAX-HEAPIFY (A4, 1,n) /I remakes heap
return max

Analysis
Constant-time assignments plus time foaAKtHEAPIFY.

Time
O(lgn).

Example
Run HEAP-EXTRACT-MAX on first heap example.

* Take 16 out of node 1.

* Move 1 from node 10 to node 1.

* Erase node 10.

* MAX-HEAPIFY from the root to preserve max-heap property.

* Note that successive extractions will remove items in i¥aorted order.

Increasing key value

Given setS, elementx, and new key valué:

* Make surek > x's current key.
* Updatex’s key value tok.

* Traverse the tree upward comparingo its parent and swapping keys if neces-
sary, untilx’s key is smaller than its parent’s key.

HEAP-INCREASEKEY (4,1, key)
if key< A[i]
error “new key is smaller than current key”
Ali] = key
while i > 1 andA[PARENT(i)] < A[i]
exchanged[i] with A[PARENT(i)]
i = PARENT(i)

Analysis
Upward path from nodé has lengthO(Ig ») in anr-element heap.

Lecture Notes for Chapter 6: Heapsort 6-9

Time
O(lgn).

Example

Increase key of node 9 in first heap example to have value 18hdexje keys of
nodes 4 and 9, then of nodes 2 and 4.

Inserting into the heap

Given a keyk to insert into the heap:

* Increment the heap size.

* Insert a new node in the last position in the heap, with-key.

* Increase the-oo key tok using the HEAP-INCREASEKEY procedure defined
above.

Note: Again, the parameteris passed by reference, not by value.

MAX-HEAP-INSERT(A, key, n)

n=n+1
Aln] = —o0
HEAP-INCREASEKEY (4, n, key)

Analysis
Constant time assignmenistime for HEAP-INCREASEKEY.

Time
O(lgn).

Min-priority queue operations are implemented similarighamin-heaps.

Solutions for Chapter 6:
Heapsort

Solution to Exercise 6.1-1
This solution is also posted publicly

Since a heap is an almost-complete binary tree (completiélavels except pos-
sibly the lowest), it has at mogf*! — 1 elements (if it is complete) and at least

2" — 141 = 2" elements (if the lowest level has just 1 element and the d¢kets
are complete).

Solution to Exercise 6.1-2
This solution is also posted publicly

Given ann-element heap of heighit, we know from Exercise 6.1-1 that

2h§n§2h+1_1<2h+1‘

Thus,h <Ign < h + 1. Sinceh is an integerh = |lgn] (by definition of| |).

Solution to Exercise 6.1-3

Assume the claim is false—i.e., that there is a subtree wiaagas not the largest
element in the subtree. Then the maximum element is somevelsz in the sub-
tree, possibly even at more than one location. kebe the index at which the
maximum appears (the lowest such index if the maximum apgpeare than once).
Since the maximum is not at the root of the subtree, nadeas a parent. Since
the parent of a node has a lower index than the nodepan@s chosen to be the
smallest index of the maximum valug[PARENT(m)] < A[m]. But by the max-

heap property, we must havgPARENT(m)] > A[m]. So our assumption is false,
and the claim is true.

Solutions for Chapter 6: Heapsort 6-11

Solution to Exercise 6.2-6
This solution is also posted publicly

If you put a value at the root that is less than every value enléft and right
subtrees, then kix-HEAPIFY will be called recursively until a leaf is reached. To
make the recursive calls traverse the longest path to adeafse values that make
MAXx-HEAPIFY always recurse on the left child. It follows the left branchem
the left child is greater than or equal to the right child, sitipg O at the root
and 1 at all the other nodes, for example, will accomplish. tiiéth such values,
Max-HEAPIFY will be called/ times (whereh is the heap height, which is the
number of edges in the longest path from the root to a leafjtssanning time
will be ®(h) (since each call doe®(1) work), which is®(lgn). Since we have
a case in which Mx-HEAPIFY’s running time is®(lgn), its worst-case running
time isQ(lgn).

Solution to Exercise 6.3-3

Let H be the height of the heap.
Two subtleties to beware of:

* Be careful not to confuse the height of a node (longest distdrom a leaf)
with its depth (distance from the root).

« Ifthe heap is not a complete binary tree (bottom level is nlb}, fthen the nodes
at a given level (depth) don't all have the same height. Famgde, although all
nodes at deptlt/ have height 0, nodes at depth— 1 can have either height 0
or height 1.

For a complete binary tree, it's easy to show that there[a"*'| nodes of
heightk. But the proof for an incomplete tree is tricky and is not dedi from the
proof for a complete tree.

Proof By induction onk.

Basis: Show that it's true foi: = 0 (i.e., that # of leaves: [n/2"*!]| = [n/2]).
In fact, we’ll show that the # of leaves [n/2].

The tree leaves (nodes at height 0) are at depttend H — 1. They consist of

« all nodes at deptl#/, and
* the nodes at deptlH — 1 that are not parents of depti-nodes.

Let x be the number of nodes at depth—that is, the number of nodes in the
bottom (possibly incomplete) level.

Note thatn — x is odd, because the — x nodes above the bottom level form a
complete binary tree, and a complete binary tree has an oadbeuof nodes (1
less than a power of 2). Thusiifis odd,x is even, and if: is even,x is odd.

6-12

Solutions for Chapter 6: Heapsort

To prove the base case, we must consider separately thencegech n is even
(x is odd) and the case in whichis odd (is even). Here are two ways to do
this: The first requires more cleverness, and the secondresgmore algebraic
manipulation.

1. First method of proving the base case:

* If n is odd, thenx is even, so all nodes have siblings—i.e., all internal

nodes have 2 children. Thus (see Exercise B.5-3), # of iat&nodes =
of leaves- 1.

So,n = # of nodes= # of leavest # of internal nodes= 2 -# of leaves- 1.

Thus, # of leaves= (n+1)/2 = [n/2]. (The latter equality holds because
is odd.)

If n is even, therx is odd, and some leaf doesn’t have a sibling. If we gave
it a sibling, we would have: 4+ 1 nodes, where: 4 1 is odd, so the case
we analyzed above would apply. Observe that we would alsease the
number of leaves by 1, since we added a node to a parent teatiglhad

a child. By the odd-node case above, # of leaves = [(n + 1)/2] =
[n/2] + 1. (The latter equality holds becauses even.)

In either case, # of leaves [n/2].

2. Second method of proving the base case:
Note that at any depthi < H there are2? nodes, because all such tree levels
are complete.

* If x is even, there are/2 nodes at deptli/ — 1 that are parents of depiH

nodes, henc2”~! — x /2 nodes at deptlit/ — 1 that are not parents of depth-
H nodes. Thus,

total # of height-0 nodes=x + 297! —x/2
2871 4 x/2
Q7 +x)/2
= [+x-1)/2] (because is even)
[n/2] .
(n = 2% + x — 1 because the complete tree down to defith- 1 has2? — 1
nodes and depti hasx nodes.)

If x is odd, by an argument similar to the even case, we see that
of height-O nodes = x + 2771 —(x +1)/2
= 20 L (x—1)/2

= QfF +x-1))2
= n/2
= [n/2] (becauser odd=> n even).

Inductive step: Show that if it's true for height — 1, it's true for 4.
Letn;, be the number of nodes at heighin ther-node tre€r .

Solutions for Chapter 6: Heapsort 6-13

Consider the tre@”’ formed by removing the leaves &f It hasn’ = n—n, nodes.
We know from the base case that = [n/2],son’ = n—ny =n— [n/2] =
[n/2].

Note that the nodes at heightin T would be at height: — 1 if the leaves of the
tree were removed—that is, they are at height 1 in 7'. Lettingn),_, denote the
number of nodes at height— 1 in 77, we have

np=n,_, .
By induction, we can bound, _:

np=nj,_; < |_n’/2h'| — |'Ln/2j /2h'| < |'(n/2)/2h‘| — |_n/2h+1-| . .

Alternative solution

An alternative solution relies on four facts:

1. Every nodenot on the unique simple path from the last leaf to the root is the

root of a complete binary subtree.

2. A node that is the root of a complete binary subtree and baghtv: is the
ancestor o2” leaves.

3. By Exercise 6.1-7, am-element heap hgs:/2] leaves.
4. For nonnegative reaisandb, we have[a] -b > [ab].

The proof is by contradiction. Assume that mrelement heap contains at least
[n/2"1] 4+ 1 nodes of height:. Exactly one node of heiglit is on the unique

simple path from the last leaf to the root, and the subtretetbat this node has
at least one leaf (that being the last leaf). All other nodekeight /2, of which

the heap contains at legst/2"*!], are the roots of complete binary subtrees, and
each such node is the root of a subtree wftheaves. Moreover, each subtree
whose root is at heighi is disjoint. Therefore, the number of leaves in the entire
heap is at least

i

oht1

]-2”+1 > [” -2h]+1

ht1

- [3]

which contradicts the property that arelement heap hgs: /2] leaves. |

6-14

Solutions for Chapter 6: Heapsort

Solution to Exercise 6.4-1

This solution is also posted publicly

o 6 O
@3

@

@ ®i
© 66 O
e

(h)

Al2]4]5]7] 8131720 25

Solutions for Chapter 6: Heapsort 6-15

Solution to Exercise 6.5-2
This solution is also posted publicly

Solution to Exercise 6.5-6

Change the procedure to the following:

HEAP-INCREASEKEY (4, i, key)
if key< A[i]
error “new key is smaller than current key”
Ali] = key
while i > 1 andA[PARENT(i)] < A[i]
Ali] = A[PARENT(i)]
i = PARENT(i)
Ali] = key

Solution to Problem 6-1
This solution is also posted publicly

a. The procedures BILD-MAX-HEAP and BuiLD-MAX-HEAP' do not always
create the same heap when run on the same input array. Cottgdellowing
counterexample.

6-16 Solutions for Chapter 6: Heapsort

Input arrayA:
A

BUILD-MAX-HEAP(A):

oo e

BuiLD-MAX-HEAP'(A):

Tee @

b. An upper bound oD (n Ig n) time follows immediately from there being— 1
calls to Max-HEAP-INSERT, each takingO(lgn) time. For a lower bound
of Q(nlgn), consider the case in which the input array is given in $yrici-
creasing order. Each call to Ak-HEAP-INSERT causes HAP-INCREASE
KEY to go all the way up to the root. Since the depth of node |Igi |, the
total time is

doo(lgih = D e(lgln/21)

i=1 i=[n/2]

> elgr/2)))

i=[n/2]

=) O(llgn-1)
i=[n/2]

> n/2-0(gn)

= Q(nlgn).

%

In the worst case, therefore,UB.D-MAX-HEAP' requires®(nlgn) time to
build ann-element heap.

Solution to Problem 6-2

a. We can represent @-ary heap in al-dimensional array as follows. The root
resides inA[1], its d children reside in order im[2] through A[d + 1], their
children reside in order in[d + 2] throughA[d? + d + 1], and so on. The
following two procedures map a node with indeso its parent and to itgth
child (for 1 < j < d), respectively.

D-ARY-PARENT(Q)
return |[(i —2)/d + 1]

D-ARY-CHILD (i, j)
return d(i — 1)+ j + 1

Solutions for Chapter 6: Heapsort 6-17

To convince yourself that these procedures really workfyérat
D-ARY-PARENT(D-ARY-CHILD (i, j)) =i ,

foranyl < j < d. Notice that the binary heap procedures are a special case
of the above procedures when= 2.

b. Since each node has children, the height of @-ary heap withn nodes is
®(log; n) = O(gn/lgd).

c. The procedure HAP-EXTRACT-MAX given in the text for binary heaps works
fine for d-ary heaps too. The change needed to suppaty heaps is in MXx -
HEAPIFY, which must compare the argument node tafatthildren instead of
just 2 children. The running time of EhP-EXTRACT-MAX is still the running
time for MAX-HEAPIFY, but that now takes worst-case time proportional to the
product of the height of the heap by the number of childremmemad at each
node (at most/), namely®(d log, n) = ©(d Ilgn/lgd).

d. The procedure Mx-HEAP-INSERT given in the text for binary heaps works
fine ford -ary heaps too, assuming thakP-INCREASEKEY works ford -ary
heaps. The worst-case running time is siiliz), whereh is the height of the
heap. (Since only parent pointers are followed, the numbehitdren a node
has is irrelevant.) For d-ary heap, this i®(log, n) = O(lgn/lgd).

e. The HEAP-INCREASEKEY procedure with two small changes works &bary
heaps. First, because the problem specifies that the newslgyan by the
parametek, change instances of the varialdeyto k. Second, change calls of
PARENT to calls ofD-ARY-PARENT from part (a).

In the worst case, the entire height of the tree must be aderso the worst-
case running time i®(h) = ©(log, n) = O(lgn/lgd).

Lecture Notes for Chapter 7:
Quicksort

Chapter 7 overview

[The treatment in the second and third editions differs ftbat of the first edition.
We use a different partitioning method—known as “Lomutadiianing™—in the
second and third editions, rather than the “Hoare partitiphused in the first edi-
tion. Using Lomuto partitioning helps simplify the anak;swhich uses indicator
random variables in the second edition.]

Quicksort

* Worst-case running timed (n?).

* Expected running time®(n Ig n).

* Constants hidden i®(n Ig n) are small.
* Sorts in place.

Description of quicksort

Quicksort is based on the three-step process of dividecanduer.

* To sort the subarray[p .. r]:

Divide: Partition A[p ..r], into two (possibly empty) subarrayp ..q — 1]
andA[g + 1..r], such that each element in the first subardy ..q — 1] is
< A[g] andA[q] is < each element in the second subaridy + 1..r].

Conquer: Sort the two subarrays by recursive calls tOIQKSORT.

Combine: Nowork is needed to combine the subarrays, because thegréed s
in place.

* Perform the divide step by a procedurerR?ITION, which returns the indexy
that marks the position separating the subarrays.

7-2 Lecture Notes for Chapter 7: Quicksort

QUICKSORT(A, p,r)
if p<r
q = PARTITION(A, p,r)
QUICKSORT(A4, p,g — 1)
QUICKSORT(A4,q + 1,r)

Initial call is QUICKSORT(A4, 1, n).

Partitioning
Partition subarray|p .. r] by the following procedure:

PARTITION (A, p,r)

x = Alr]
i=p—1
for j = ptor—1
it A[j] < x
i=i+1

exchanged[i] with A[/]
exchanged[i + 1] with A[r]
return i +1

* PARTITION always selects the last elemefir] in the subarray[p .. r] as the
pivot—the element around which to partition.

* As the procedure executes, the array is partitioned into fegions, some of
which may be empty:
Loop invariant:
1. All entries inA[p . .i] are< pivot.
2. All entries inA[i + 1..j — 1] are> pivot.
3. A[r] = pivot.
It's not needed as part of the loop invariant, but the fougtfion isA[j ..r—1],

whose entries have not yet been examined, and so we don't knemwthey
compare to the pivot.

Example
On an8-element subarray.

Lecture Notes for Chapter 7: Quicksort 7-3

i p

8] 1]6[4] 0] 3 9
ip
8] 1]6[4] 0] 39

I.ﬂ .ﬁ
[6)] [6)]

r

o

i

d B DEIEE

pi

8] 6] 4] of 3 9

p | j

1[4]e]8]o[3[9
—

N——
L Alrl: pivot
A[j ..r-1]: not yet examined

Ali+1 ..j—1]: known to be > pivot
Alp ..i]: known to be< pivot

!

r

I
Lo

r

!

i j r
KK Bl EIE E

i jor
EICIE DK B E
i r

i
EICIE DK E
p i r
HEINE E HE

[The index;j disappears because it is no longer needed ondettheop is exited.]

p

I-OI

©

I

Correctness
Use the loop invariant to prove correctness aRPITION:

Initialization: Before the loop starts, all the conditions of the loop irmatiare
satisfied, becauseis the pivot and the subarrayp ..i] andA[i +1..j —1]
are empty.

Maintenance: While the loop is running, ifd[j] < pivot, thenA[j] and A[i + 1]
are swapped and thérand j are incremented. I[j] > pivot, then increment
only j.

Termination: When the loop terminateg, = r, so all elements i are parti-
tioned into one of the three cases$fp ..i] < pivot, A[i + 1..r — 1] > pivot,
andA[r] = pivot.

The last two lines of RRTITION move the pivot element from the end of the array
to between the two subarrays. This is done by swapping the pivd the first
element of the second subarray, i.e., by swappifig+ 1] and A[r].

Time for partitioning
O(n) to partition arm-element subarray.

7-4 Lecture Notes for Chapter 7: Quicksort

Performance of quicksort

The running time of quicksort depends on the partitioninghefsubarrays:

If the subarrays are balanced, then quicksort can run aagasergesort.
If they are unbalanced, then quicksort can run as slowly sexfion sort.

Worst case

Occurs when the subarrays are completely unbalanced.
Have 0 elements in one subarray and 1 elements in the other subarray.
Get the recurrence

T(n) = Tm—-1)4+T(0)+ On)
= Tn—-1)+06({n)
On?).

Same running time as insertion sort.

In fact, the worst-case running time occurs when quicksdes a sorted array
as input, but insertion sort runs ®(rn) time in this case.

Best case

Occurs when the subarrays are completely balanced eveey tim
Each subarray has n/2 elements.
Get the recurrence
Tn) = 2T(1n/2)+ O(n)
= O(nlgn).

Balanced partitioning

Quicksort's average running time is much closer to the basé ¢han to the
worst case.

Imagine that RRTITION always produces a 9-to-1 split.

Get the recurrence

T(n) < TOn/10)+ T(n/10) + O(n)

= O(nlgn).

Intuition: look at the recursion tree.

* It's like the one forT'(n) = T (n/3) + T(2n/3) + O(n) in Section 4.4.

+ Except that here the constants are different; we gef,lodull levels and
log,y,, 1 levels that are nonempty.

* Aslong as it's a constant, the base of the log doesn’'t mattessymptotic
notation.

* Any split of constant proportionality will yield a recursiaree of depth
O(gn).

Lecture Notes for Chapter 7: Quicksort 7-5

Intuition for the average case

* Splits in the recursion tree will not always be constant.

* There will usually be a mix of good and bad splits throughdw tecursion
tree.

* To see that this doesn't affect the asymptotic running tifmguacksort, assume
that levels alternate between best-case and worst-cate spl

(n-1)/2 0-1)/2

m-12-1 |(n-1)2

* The extra level in the left-hand figure only adds to the cartstigdden in the
®-notation.

* There are still the same number of subarrays to sort, andtamte as much
work was done to get to that point.

* Both figures result ir0(n Ig n) time, though the constant for the figure on the
left is higher than that of the figure on the right.

Randomized version of quicksort

* We have assumed that all input permutations are equalllylike

* This is not always true.

* To correct this, we add randomization to quicksort.

* We could randomly permute the input array.

* Instead, we useandom sampling or picking one element at random.

* Don't always used[r] as the pivot. Instead, randomly pick an element from the
subarray that is being sorted.

RANDOMIZED-PARTITION (4, p,r)

i = RANDOM(p, 1)
exchanged[r] with A[i]
return PARTITION(A, p,r)

Randomly selecting the pivot element will, on average, edhs split of the input
array to be reasonably well balanced.

RANDOMIZED-QUICKSORT(4, p,r)
ifp<r
q = RANDOMIZED-PARTITION (A, p,r)
RANDOMIZED-QUICKSORT(A4, p,q — 1)
RANDOMIZED-QUICKSORT(A4,q + 1,r)

7-6 Lecture Notes for Chapter 7: Quicksort

Randomization of quicksort stops any specific type of arraynfcausing worst-
case behavior. For example, an already-sorted array causstscase behavior in
non-randomized QICKSORT, but not in RANDOMIZED-QUICKSORT.

Analysis of quicksort

We will analyze

* the worst-case running time ofUYCKSORT and RANDOMIZED-QUICKSORT
(the same), and

* the expected (average-case) running time aNROMIZED-QUICKSORT.

Worst-case analysis

We will prove that a worst-case split at every level produgegorst-case running
time of O(n?).

* Recurrence for the worst-case running time afiQ<SORT:
T(n) = max (T(q)+T(n—q—1)+00).

* Because RRTITION produces two subproblems, totaling size- 1, g ranges
fromOton — 1.

* Guess:T(n) < cn?, for somec.
* Substituting our guess into the above recurrence:
T(n) < max (cq’>+c(n—q—1)>%) +0O(n)

0<g=<n-—1

= C-Omaxl(qz—i-(n—q—l)z)—l-@(n).
<q=n—

* The maximum value ofg> + (n — g — 1)) occurs wheny is either0 orn — 1.
(Second derivative with respect gds positive.) Therefore,

max (q2+(n—q—l)2) < (n—l)2

0=<g=<n-—1
= n?-2n+1.
* And thus,
T(n) < cn*—c@n—1)+0(n)
< cn? if c2Qn—1)>0O(n).

* Pickc so thatc(2n — 1) dominated(n).
« Therefore, the worst-case running time of quickso®i?).

+ Can also show that the recurrence’s solutio2i&?). Thus, the worst-case
running time is®(n?).

Lecture Notes for Chapter 7: Quicksort 7-7

Average-case analysis

* The dominant cost of the algorithm is partitioning.

* PARTITION removes the pivot element from future consideration eaunb.ti
* Thus, RRTITION is called at most times.

* QUICKSORT recurses on the partitions.

* The amount of work that each call tARTITION does is a constant plus the
number of comparisons that are performed iriatsloop.

* Let X = the total number of comparisons performed in all callsAe@ RTION.
* Therefore, the total work done over the entire executiofi(igs + X).

We will now compute a bound on the overall number of compasso
For ease of analysis:

* Rename the elements df aszi,z,,...,2,, With z; being theith smallest
element.
* Define the setZ;; = {z;,z;+1....,2;} to be the set of elements betwegn

andz;, inclusive.

Each pair of elements is compared at most once, becausergteare compared
only to the pivot element, and then the pivot element is nevany later call to
PARTITION.

Let X;; = 1{z; is compared ta,}.
(Considering whethet; is compared ta; at any time during the entire quicksort
algorithm, not just during one call ofARTITION.)

Since each pair is compared at most once, the total numbesnaparisons per-
formed by the algorithm is

n—1 n
X=> > X;.
i=1j=i+1
Take expectations of both sides, use Lemma 5.1 and linezrétypectation:
n—1 n
i=1j=i+1

= > > E[xy]

i=1j=i+1

E[X]

n—1 n

= > 3 Pri{z; is compared tq;} .

i=1j=i+1
Now all we have to do is find the probability that two elements@mpared.
* Think about when two elements amet compared.

* For example, numbers in separate partitions will not be @e

* Inthe previous exampl€g, 1,6,4,0, 3,9, 5) and the pivot is 5, so that none
of the sef{1, 4,0, 3} will ever be compared to any of the &t 6, 9}.

7-8

Lecture Notes for Chapter 7: Quicksort

* Once a pivotx is chosen such that; < x < z;, thenz; andz; will never be
compared at any later time.

* If either z; or z; is chosen before any other element4f, then it will be
compared to all the elements &f;, except itself.

* The probability that; is compared tg; is the probability that eithet; or z;
is the first element chosen.

* There arej —i + 1 elements, and pivots are chosen randomly and independently
Thus, the probability that any particular one of them is tingt fone chosen is

1/(j—i+1).
Therefore,
Pr{z; is compared ta; }

Pr{z; or z; is the first pivot chosen frorx;; }
Pr{z; is the first pivot chosen frorz;; }

+ Pr{z; is the first pivot chosen fronz;; }
1 1

J—i+1 + j—i+1
2

[The second line follows because the two events are mutaatijusive.]
Substituting into the equation for[K]:

n—1 n)
EXI=2_) s

i=1j=i+1

Evaluate by using a change in variablés=£ j —i) and the bound on the harmonic

series in equation (A.7):

n—1 n 2
BN = 2 2 o

i=1j=i+1

= O(nlgn).

So the expected running time of quicksort, usingNROMIZED-PARTITION, is

O(nlgn).

Solutions for Chapter 7:
Quicksort

Solution to Exercise 7.2-3
This solution is also posted publicly

PARTITION does a “worst-case partitioning” when the elements are nedsing
order. It reduces the size of the subarray under considerhyi only1 at each step,
which we've seen has running tintn?).

In particular, RRTITION, given a subarray[p ..r] of distinct elements in de-
creasing order, produces an empty partitiomip .. g — 1], puts the pivot (orig-
inally in A[r]) into A[p], and produces a partitioA[p + 1..r] with only one
fewer element thamt[p ..r]. The recurrence for QCKSORT becomesl’(n) =
T(n — 1) + ©(n), which has the solutiof (n) = @(n?).

Solution to Exercise 7.2-5
This solution is also posted publicly

The minimum depth follows a path that always takes the smpéet of the parti-
tion—i.e., that multiplies the number of elementsdayOne iteration reduces the
number of elements from to «n, andi iterations reduces the number of elements
toa'n. At a leaf, there is just one remaining element, and so at @mim-depth
leaf of depthm, we havea™rn = 1. Thus,a™ = 1/n. Taking logs, we get
mlga = —Ign,orm = —Ign/lga.

Similarly, maximum depth corresponds to always taking #ngdr part of the par-
tition, i.e., keeping a fractiol — o of the elements each time. The maximum
depthM is reached when there is one element left, that is, wheaa)™n = 1.
Thus,M = —Ign/Ig(1 — «).

All these equations are approximate because we are igntboioig and ceilings.

7-10 Solutions for Chapter 7: Quicksort

Solution to Exercise 7.3-1

We may be interested in the worst-case performance, buatrctise, the random-
ization is irrelevant: it won't improve the worst case. Whatdomization can do
is make the chance of encountering a worst-case scenarlb sma

Solution to Exercise 7.4-2

To show that quicksort’s best-case running tim&ig Ig »), we use a technique
similar to the one used in Section 7.4.1 to show that its wease running time
is O(n?).

Let T'(n) be the best-case time for the procedur@ €SORTon an input of size.
We have the recurrence

T(n) = min (T(q)+T(n—q—1)+0).

We guess thal'(n) > cn lgn for some constant. Substituting this guess into the
recurrence, we obtain

T(n) = min (cqlgg+cin—g—1lgn—g—1))+06(n)
<q<n—

= c;min (qlgg+(—q-1lgn—g—1)+O().
As we’ll show below, the expressianlgg + (n —g — 1)lIg(n — g — 1) achieves a
minimum over therangé < ¢ <n—1wheng = n—g—1,0rq = (n—1)/2, since
the first derivative of the expression with respecf is O wheng = (n —1)/2 and
the second derivative of the expression is positive. (lisdtienatter that; is not
an integer whem is even, since we’re just trying to determine the minimunueal

of a function, knowing that when we constrajrio integer values, the function’s
value will be no lower.)

Choosingg = (n — 1)/2 gives us the bound
min (¢lgg +(—q—Dlgn —q—1)

- n—ll n—1+ n—1 Y n—1 1
—_— —— n_—_
) T g 2

n—1
= (n—l)IgT.

Continuing with our bounding df (n), we obtain, fom > 2,
T() = c(—1)lg ? +On)
cn—1lgn—1)—c(n—1) + O(n)
cnlgln—1)—clgln—1)—c(n — 1) + ©(n)

1

> cnlgn/2)—clgn—1)—c(n—1) + O(n) (sincen > 2)
= cnlgn—cn—clgln—1)—cn+c + O(n)

= cnlgn— Q2cn+clg(n—1) —c) + O(n)

> c¢nlgn,

Solutions for Chapter 7: Quicksort 7-11

since we can pick the constansmall enough so that the(») term dominates the
quantity2cn + clg(n — 1) — c¢. Thus, the best-case running time of quicksort is
Qnlgn).

Letting f(¢) = ¢qlgqg + (n —g — 1)lg(n — g — 1), we now show how to find the
minimum value of this function in the rande< ¢ < n — 1. We need to find the
value ofg for which the derivative off with respect tag is 0. We rewrite this
function as

fq) = gng+n—qg—1)Inn—q—1)

In2
and so

, d (gng+(n—g—1)Inn—qg—1)

S'a) = o
q In2
ng+1—-Inn—g—1)—1
In2
Ing—In(n—g—1)
In2)

The derivativef’(¢) isO wheng = n — g — 1, or wheng = (n — 1)/2. To verify
thatg = (n — 1)/2 is indeed a minimum (not a maximum or an inflection point),
we need to check that the second derivativef a8 positive aly = (n — 1)/2:

" _ i |nq—|n(n—q—l)
o = dq(s)

o,

 In2\g n—-g-1
S(n—=1y _ 1 (2 2
f(2) B In2(n—1+n—1

1 4

n2 n—1
> 0 (sincen > 2).

Solution to Problem 7-2

a. If all elements are equal, then whesHTITION returnsg = r and all elements
in A[p ..q—1] are equal. We get the recurrerité:) = T(n—1)+T(0)+0O(n)
for the running time, and s6(n) = ©(n?).

Solutions for Chapter 7: Quicksort

b. The RRTITION' procedure:

PARTITION'(4, p,r)

x = Alp]
i=h=p
forj =p+1tor
/I Invariant: A[p..i — 1] < x, A[i .. h] = x,
Alh+1..j —1] > x, A[j .. r] unknown.
if A[j] <x
y = A[J]
Alj] = A[h + 1]
Alh + 1] = AJi]
Alil =y
i=i+1
h=h+1
elseifA[j] == x
exchanged[h + 1] with A[/]
h=h+1
return (i, h)

c. RANDOMIZED-PARTITION’ is the same as /RNDOMIZED-PARTITION, but

with the call to RRTITION replaced by a call toARTITION'.

QUICKSORT (4, p, 1)
ifp<r
(g.t) = RANDOMIZED-PARTITION'(4, p,r)
QUICKSORT (A4, p,g — 1)
QUICKSORT (A,t + 1,7)

. Putting elements equal to the pivot in the same partitiorhagtvot can only
help us, because we do not recurse on elements equal to tite piwus, the
subproblem sizes with QCkSORT, even with equal elements, are no larger
than the subproblem sizes withu@ksoRT when all elements are distinct.

Solution to Problem 7-4

a. QuicksoRT does exactly what QICkSORT does; hence it sorts correctly.

QuIcksORT and QUICKSORT do the same partitioning, and then each calls
itself with arguments4, p,g — 1. QUICKSORT then calls itself again, with
arguments4, g + 1,r. QUICKSORT instead setp = ¢ + 1 and performs
another iteration of itsvhile loop. This executes the same operations as calling
itself with A,g + 1, r, because in both cases, the first and third arguments (
andr) have the same values as before, arfias the old value of + 1.

. The stack depth of QIcksoRrT will be ®(n) on ann-element input array if
there are®(n) recursive calls to QICKSORT. This happens if every call to
PARTITION(A, p,r) returnsq = r. The sequence of recursive calls in this
scenario is

Solutions for Chapter 7: Quicksort 7-13

QUICKSORT (4, 1,n) ,
QUICKSORT (4,1,n — 1),
QUICKSORT (4,1,n —2),

QUICKSOR'IJ‘(A, 1,1).

Any array that is already sorted in increasing order willSEB@UICKSORT to
behave this way.

c. The problem demonstrated by the scenario in part (b) is i ewocation of
QUICKSORT calls QUICKSORT again with almost the same range. To avoid
such behavior, we must changes@KSORT so that the recursive call is on a
smaller interval of the array. The following variation ofu@KSORT checks
which of the two subarrays returned fromEX1TION is smaller and recurses
on the smaller subarray, which is at most half the size oftineeat array. Since
the array size is reduced by at least half on each recursiagl@mnumber of
recursive calls, and hence the stack deptt®) (& »n) in the worst case. Note
that this method works no matter how partitioning is perfedi(as long as
the RRTITION procedure has the same functionality as the procedure given
Section 7.1).

QUICKSORT'(4, p,r)

while p < r
/I Partition and sort the small subarray first.
q = PARTITION(A, p,r)

ifg—p<r—gq
QUICKSORT' (A4, p.g — 1)
p=q+1

elseQUICKSORT(A4,q + 1,r)
r=gq-—1

The expected running time is not affected, because exdwl\same work is
done as before: the same partitions are produced, and the S#mrrays are
sorted.

Lecture Notes for Chapter 8:
Sorting in Linear Time

Chapter 8 overview

How fast can we sort?

We will prove a lower bound, then beat it by playing a diffdrgame.

Comparison sorting

* The only operation that may be used to gain order informattoout a sequence
is comparison of pairs of elements.

» All sorts seen so far are comparison sorts: insertion sektcton sort, merge
sort, quicksort, heapsort, treesort.

Lower bounds for sorting

Lower bounds

* Q(n) to examine all the input.
» All sorts seen so far ar@(n lgn).
* We'll show thatQ2(n Ig n) is a lower bound for comparison sorts.

Decision tree

* Abstraction of any comparison sort.
* Represents comparisons made by
* a specific sorting algorithm
* on inputs of a given size.

* Abstracts away everything else: control and data movement.
* We're countingonly comparisons.

Lecture Notes for Chapter 8: Sorting in Linear Time

For insertion sort on 3 elements:
compareA[1] to Al2]

A1l <Al2] . s Al1] > Al2] (swap in array)

[Each internal node is labeled by indices of array eleméwoits their original
positions Each leaf is labeled by the permutation of orders that therdhm
determines.]

How many leaves on the decision tree? Therezarae! leaves, because every
permutation appears at least once.

For any comparison sort,

* 1 tree for each.

* View the tree as if the algorithm splits in two at each nodegldeon the infor-
mation it has determined up to that point.

* The tree models all possible execution traces.
What is the length of the longest path from root to leaf?

* Depends on the algorithm
* Insertion sort:®(n?)
* Merge sort:©(nlgn)

Lemma
Any binary tree of height has< 2" leaves.

In other words:
* [= # of leaves,
* h = height,
+ Thenl < 2",

(We'll prove this lemma later.)
Why is this useful?

Theorem
Any decision tree that soriselements has heiglft(n Ig n).

Lecture Notes for Chapter 8: Sorting in Linear Time 8-3

Proof
e [>n!
« Bylemman! <[<2"or2" > n!
* Take logs:h > Ig(n!)
* Use Stirling’s approximationz! > (n/e)" (by equation (3.17))
h = lg(n/e)"
= nlg(n/e)
= nlgn—nlge
= Qnlgn). m (theorem)
Now to prove the lemma:

Proof By induction on/.
Basis:# = 0. Tree is just one node, which is a leaf. = 1.

Inductive step: Assume true for heigh= h — 1. Extend tree of height — 1
by making as many new leaves as possible. Each leaf becomard pmtwo new

leaves.
of leaves for height = 2 - (# of leaves for height — 1)
= 2.1 (ind. hypothesis)
= 2k, = (lemma)
Corollary

Heapsort and merge sort are asymptotically optimal coraparsorts.

Sorting in linear time
Non-comparison sorts.

Counting sort

Depends on &ey assumptiamumbers to be sorted are integerginl, ..., k}.

Input: A[l..n], whereA[j] € {0,1,...,k} for j = 1,2,...,n. Array A and
valuesn andk are given as parameters.

Output: B[1..n], sorted. B is assumed to be already allocated and is given as a
parameter.

Auxiliary storage: CJ[0..k]

8-4

Lecture Notes for Chapter 8: Sorting in Linear Time

COUNTING-SORT(A, B,n, k)

let C[0..k] be anew array
fori =0tok
Clil]=0
for j = 1ton
ClA[j]l = C[A[j]1 +1
fori =1tok
Cli] =Cli]+C[i —1]
for j = ndownto 1
B[C[A[/]I] = A[/]
ClAljl = ClA[jl1 -1

Do an example fod = 2,54, 3;,01,2,,3,,0,, 33

Counting sort isstable (keys with same value appear in same order in output as
they did in input) because of how the last loop works.

Analysis

O(n + k), which is®(n) if k = O(n).

How big ak is practical?

* Good for sorting 32-bit values? No.

* 16-bit? Probably not.

* 8-bit? Maybe, depending on

* 4-bit? Probably (unless is really small).

Counting sort will be used in radix sort.

Radix sort

How IBM made its money. Punch card readers for census tadul@t early
1900’s. Card sorters, worked on one column at a time. It'sdlgerithm for
using the machine that extends the technique to multi-colsanting. The human
operator was part of the algorithm!

Key idea: Sortleastsignificant digits first.
To sortd digits:

RADIX-SORT(A4, d)

fori =1tod
use a stable sort to sort arrayon digit i

Lecture Notes for Chapter 8: Sorting in Linear Time 8-5

Example
\L sorted ¢

326 6 04 36
453 7 08 435
608 4 26 453
835 7 35 6008
751 — > 835 > 435 —> |60
435 4 51 7004
704 3 53 751
690 6 90 8135
Correctness

* Induction on number of passesif pseudocode).
* Assume digitsl, 2,...,i — 1 are sorted.
* Show that a stable sort on digiteaves digitsl, . .., i sorted:
* If 2 digits in positioni are different, ordering by positiohis correct, and

positionsl,...,i — 1 are irrelevant.

» If 2 digits in positioni are equal, numbers are already in the right order
(by inductive hypothesis). The stable sort on digiéaves them in the right
order.

This argument shows why it's so important to use a stablefeorintermediate
sort.

Analysis

Assume that we use counting sort as the intermediate sort.
* O(n + k) per pass (digitsinrang® . . . , k)

* d passes

* O(d(n + k)) total

* If k = O(n), time= O(dn).

How to break each key into digits?

* nwords.

* b bits/word.

* Break intor-bit digits. Haved = [b/r].

* Use counting sorty = 2" — 1.
Example: 32-bit words, 8-bit digitsh = 32, r = 8, d = [32/8] = 4,
k=2%—1=255.

« Time= 0(% (n +2")).

How to chooser? Balanceb/r andn + 2". Choosingr ~ Ign gives us

O (& (n +n)) = O(bn/Ign).

ign

8-6

Lecture Notes for Chapter 8: Sorting in Linear Time

* Ifwe chooser < Ign,thenb/r > b/lgn, andn + 2" term doesn't improve.

* If we chooser > Ign, thenn + 2" term gets big. Exampler = 2Ilgn =
o — 22Ign — (2Ign)2 — n2_

So, to sor!¢ 32-bit numbers, use = Ig 2'® = 16 bits. [»/r] = 2 passes.

Compare radix sort to merge sort and quicksort:

* 1 million (22°) 32-bit integers.

* Radix sort:[32/20] = 2 passes.

* Merge sort/quicksort: lg = 20 passes.

* Remember, though, that each radix sort “pass” is really 2gms-one to take
census, and one to move data.

How does radix sort violate the ground rules for a comparsmt?

* Using counting sort allows us to gain information about kkysneans other
than directly comparing 2 keys.

* Used keys as array indices.

Bucket sort

Assumes the input is generated by a random process thabudlis elements uni-
formly over[0, 1).

Idea

» Divide [0, 1) into n equal-sizeduckets

+ Distribute then input values into the buckets.

* Sort each bucket.

* Then go through buckets in order, listing elements in eagh on

Input: A[l..n], where0 < A[i] < 1 foralli.
Auxiliary array: BJ[0..n — 1] of linked lists, each list initially empty.

BUCKET-SORT(A, n)
let B[0..n — 1] be a new array

fori =1ton—1
makeB[i] an empty list
fori = 1ton
insertA[i] into list B[|n - A[i]]]
fori =0ton—1
sort list B[i] with insertion sort
concatenate list®8[0], B[1],..., B[n — 1] together in order

return the concatenated lists

Lecture Notes for Chapter 8: Sorting in Linear Time 8-7

Correctness

ConsiderA[i], A[j]. Assume without loss of generality thd{i] < A[j]. Then
|n-Ali]] < |[n-A[j]]. SoA[i]is placed into the same bucket 4§;] or into a
bucket with a lower index.

* If same bucket, insertion sort fixes up.
» If earlier bucket, concatenation of lists fixes up.

Analysis
* Relies on no bucket getting too many values.
* All lines of algorithm except insertion sorting tak&(n) altogether.

* Intuitively, if each bucket gets a constant number of elesei takesO(1)
time to sort each bucket- O(n) sort time for all buckets.

* We “expect” each bucket to have few elements, since the geasal element
per bucket.

* But we need to do a careful analysis.
Define a random variable:
* n; = the number of elements placed in buclBdi].

Because insertion sort runs in quadratic time, bucket sod is

n—1
T(n)=0@m) + Y 0n}).
=0
Take expectations of both sides:

E[T()] = E [®(n) + X_: O(Hf)}

n—1
= O+ Y E[0m})] (linearity of expectation)

i=0

= Om) + Y OE[n]) (ElaX]=aE[X])

Claim
Er}]=2-(1/n)fori =0,....,n—1.

Proof of claim
Define indicator random variables:

* X;; =1{A[j]falls in bucketi }
* Pr{A[j]fallsinbucketi} = 1/n

n
DI
=1

8-8 Lecture Notes for Chapter 8: Sorting in Linear Time

Then

ew] = E[(X”

= E[/ﬂ +2Z Z XUXLk}

=1 J=1k=j+1
n n—1 n
- E[X2]+2) " Y E[X;Xu] (inearity of expectation)
j=1 Jj=1k=j+1

E[X7] = 0%-Pr{A4[;] doesn't fall in bucket} + 1> - Pr{A[/] falls in bucket; }

1 1
=0-{1—— +1._
n n

1

n

E[X;; Xik] for j # k: Sincej # k, X;; andX;, are independent random variables

= E[X; Xix] = E[Xy,]E[Xit]
11
o n n
1
T on
Therefore:
n 1 n—1 n 1
E[n] = > —+2 2
n , n
j=1 J=1k=j+1
1+2 n\1
= n-— —_—
n 2 | n?
-1 1
_ 1oz —
n
—1
= 1+”
n
1
= 1+1—--
n
1 .
= 2—— m (claim)
n
Therefore:
n—1
E[T(m)] = Om)+) 0@2—1/n)
i=0
= O@n)+ 0n)
= 0O)

* Again, not a comparison sort. Used a function of key valuagsadex into an
array.

Lecture Notes for Chapter 8: Sorting in Linear Time 8-9

* This is aprobabilistic analysis—we used probability to analyze an algorithm
whose running time depends on the distribution of inputs.

» Different from arandomized algorithmwhere we use randomizationitnpose
a distribution.

* With bucket sort, if the input isn’t drawn from a uniform disution on[0, 1),
all bets are off (performance-wise, but the algorithm it stirrect).

Solutions for Chapter 8:
Sorting in Linear Time

Solution to Exercise 8.1-3
This solution is also posted publicly

If the sort runs in linear time fom input permutations, then the heightof the
portion of the decision tree consisting of the corresponding leaves and their
ancestors is linear.

Use the same argument as in the proof of Theorem 8.1 to shawhthas impos-
sible form = n!/2,n!/n, orn!/2".

We have2" > m, which gives us: > Igm. For all the possiblen’s given here,
lgm = Q(nlgn), henceh = Q(nlgn).

In particular,

n!
Ig? = Ign!—1>nlgn—nlge—1,

n!
lg— = lgn!—Ign>nlgn—nige—Ign,
n

n!
Igz—n = Ign!—n>nlgn—nlge—n.

Solution to Exercise 8.1-4

Let S be a sequence afelements divided inta / k subsequences each of length
where all of the elements in any subsequence are larger thahthe elements
of a preceding subsequence and smaller than all of the etsro&a succeeding
subseguence.

Claim
Any comparison-based sorting algorithm to sorhust take2(n Ig k) time in the
worst case.

Proof First notice that, as pointed out in the hint, we cannot prihes lower
bound by multiplying together the lower bounds for sortiragte subsequence.
That would only prove that there is no faster algorittivat sorts the subsequences

Solutions for Chapter 8: Sorting in Linear Time 8-11

independently This was not what we are asked to prove; we cannot introdoge
extra assumptions.

Now, consider the decision tree of heighfor any comparison sort fa8. Since the
elements of each subsequence can be in any order, any /of pleemutations cor-
respond to the final sorted order of a subsequence. And, 8irce are:/k such
subsequences, each of which can be in any order, therg §fé* permutations
of S that could correspond to the sorting of some input order.sThay decision
tree for sortingS must have at leagk!)”/* leaves. Since a binary tree of height
has no more thad” leaves, we must hav® > (k!)"/* or h > Ig((k!)"*). We
therefore obtain

ho = lg((k!)"*
= (n/k)lg(k")
> (n/k)1g((k/2)*?)
= (n/2)lg(k/2).
The third line comes fromk! having itsk /2 largest terms being at lealsf2 each.

(We implicitly assume here thatis even. We could adjust with floors and ceilings
if & were odd.)

Since there exists at least one path in any decision tre@ftng S that has length
at least(n/2) 1g(k /2), the worst-case running time of any comparison-based sort-
ing algorithm forS is Q(nlg k). [

Solution to Exercise 8.2-3
This solution is also posted publicly

[The following solution also answers Exercise 8.2-2.]

Notice that the correctness argument in the text does nandepn the order in
which A is processed. The algorithm is correct no matter what osdased!

But the modified algorithm is not stable. As before, in thelffoaloop an element
equal to one taken from earlier is placed before the earlier one (i.e., at a lower
index position) in the output arrral. The original algorithm was stable because
an element taken from later started out with a lower index than one taken earlier.
But in the modified algorithm, an element taken frofrlater started out with a
higher index than one taken earlier.

In particular, the algorithm still places the elements witllue £ in positions
Clk — 1] + 1 throughC k], but in the reverse order of their appearancdin

Solution to Exercise 8.2-4

Compute theC array as is done in counting sort. The number of integersen th
rangela .. b] is C[b] — Cla — 1], where we interpre€ [—1] asO0.

8-12

Solutions for Chapter 8: Sorting in Linear Time

Solution to Exercise 8.3-2

Insertion sort is stable. When insertidg);j | into the sorted sequencfil1 ... j —1],
we do it the following way: compard|;] to A[i], starting withi = j — 1 and
going down tai = 1. Continue at long ad[;] < A[i].

Merge sort as defined is stable, because when two elemenpaoedrare equal, the
tie is broken by taking the element from arraywhich keeps them in the original
order.

Heapsort and quicksort are not stable.

One scheme that makes a sorting algorithm stable is to dterentex of each
element (the element’s place in the original ordering) with element. When
comparing two elements, compare them by their values anaklties by their
indices.

Additional space requirements: Forelements, their indices aife ..n. Each can
be written in lgn bits, so together they tak@(n Ig ») additional space.

Additional time requirements: The worst case is when alinglets are equal. The
asymptotic time does not change because we add a constaohi@ofovork to
each comparison.

Solution to Exercise 8.3-3
This solution is also posted publicly

Basis:If d = 1, there’s only one digit, so sorting on that digit sorts thear

Inductive step: Assuming that radix sort works fat — 1 digits, we’'ll show that it
works ford digits.

Radix sort sorts separately on each digit, starting fronit digThus, radix sort of
d digits, which sorts on digit$, .. ., d is equivalent to radix sort of the low-order
d — 1 digits followed by a sort on digi#. By our induction hypothesis, the sort of
the low-orderd — 1 digits works, so just before the sort on digit the elements
are in order according to their low-ordér— 1 digits.

The sort on digitd will order the elements by thei/th digit. Consider two ele-
ments,a andb, with dth digitsa, andb, respectively.

* If a; < by, the sort will putaz beforeb, which is correct, since < b regardless
of the low-order digits.

* If ay > by, the sort will puta afterb, which is correct, since > b regardless
of the low-order digits.

* If ay = by, the sort will leavex andb in the same order they were in, because
it is stable. But that order is already correct, since theembrorder ofz andb
is determined by the low-order— 1 digits when their/ th digits are equal, and
the elements are already sorted by their low-oefler 1 digits.

If the intermediate sort were not stable, it might rearraegaments whosé'th
digits were equal—elements thatere in the right order after the sort on their
lower-order digits.

Solutions for Chapter 8: Sorting in Linear Time 8-13

Solution to Exercise 8.3-4
This solution is also posted publicly

Treat the numbers a@sdigit numbers in radix. Each digit ranges froriton — 1.
Sort thesa-digit numbers with radix sort.

There are calls to counting sort, each takirt®(n + n) = ®(n) time, so that the
total time iSO (n).

Solution to Exercise 8.4-2

The worst-case running time for the bucket-sort algoritlweuns when the assump-
tion of uniformly distributed input does not hold. If, foramxple, all the input ends
up in the first bucket, then in the insertion sort phase it ag¢edort all the input,
which takesO(n?) time.

A simple change that will preserve the linear expected mgptime and make the
worst-case running timé@(r Ig n) is to use a worst-cas@ (n Ig n)-time algorithm,
such as merge sort, instead of insertion sort when sortmgulkets.

Solution to Problem 8-1
This solution is also posted publicly

a. For a comparison algorithm to sort, no two input permutations can reach the
same leaf of the decision tree, so there must be ati¢dshves reached ifiy,
one for each possible input permutation. Sircds a deterministic algorithm, it
must always reach the same leaf when given a particular patioi as input,
so at mostu! leaves are reached (one for each permutation). Therefawlgx
n! leaves are reached, one for each input permutation.

Thesen! leaves will each have probabilitl/n!, since each of the! possible
permutations is the input with the probability»!. Any remaining leaves will
have probability0, since they are not reached for any input.

Without loss of generality, we can assume for the rest ofgtoblem that paths
leading only to0-probability leaves aren't in the tree, since they cannfecaf
the running time of the sort. That is, we can assumeZhaonsists of only the
n! leaves labeled/n! and their ancestors.

b. If £ > 1, then the root off is not a leaf. This implies that all df's leaves
are leaves in.T andRT. Since every leaf at depthin LT or RT has depth
h+1inT, D(T) must be the sum ab(LT), D(RT), andk, the total number
of leaves. To prove this last assertion, dget(x) = depth of nodex in treeT.
Then,

8-14

Solutions for Chapter 8: Sorting in Linear Time

D(T) = Y dr(x)

x€leavegT)

= Y A+ Y dr)
x€leave§LT) x€leave§RT)

= Y (dr®+D+ Y (drr(x)+1)
x€leave§LT) x€leave§RT)

= Z dpr(x) + Z drr(x) + Z 1
x€leave§LT) x€leave§RT) x€leavesT)

= D(LT)+ D(RT)+k .

c. To show thatd(k) = min;<;<x—1{d(i) + d(k —i) + k} we will show sepa-
rately that

dk) < 1<r‘rli]£1_1 {di) +d(k —i)+ k}
and

dk) = min {d(Q) +dk—i) +k} .

* Toshowthat/(k) < mini<;<x—1{d(i) + d(k — i) + k}, we need only show

thatd(k) <d(@)+d(k —i)+ k,fori =1,2,...,k — 1. For anyi from 1
to k — 1 we can find treeR T with i leaves and.T with k — i leaves such
thatD(RT) = d(i)andD(LT) = d(k —i). Constructl” such thatRT and
LT are the right and left subtrees Bfs root respectively. Then
dk)y < D(T) (by definition ofd as minD(T') value)

= D(RT)+ D(LT)+ k (by part (b))

= d(@i)+d(k—i)+k (bychoice ofRT andLT).
To show that/ (k) > min;<;<x—1 {d(i) + d(k —i) + k}, we need only show
thatd(k) > d(i) + d(k —i) + k, for somei in {1,2,...,k — 1}. Take the
treeT with k leaves such thab(T') = d(k), let RT and LT be T’s right
and left subtree, respecitvely, andidie the number of leaves IRT. Then
k — i is the number of leaves ihT and
dk)y = D(T) (by choice ofT")

= D(RT)+ D(LT)+ k (by part (b))

> d(i)+d(k —i)+k (bydefintion ofd as minD(T) value) .
Neitheri nork —i can be0 (and hencd < i < k — 1), since if one of these
were(, either RT or LT would contain allk leaves ofT’, and thatk-leaf

subtree would have & equal toD(T') — k (by part (b)), contradicting the
choice ofT as thek-leaf tree with the minimunD.

d. Let fx(i) =ilgi + (k—i)lg(k —i). Tofind the value of that minimizesf;,
find thei for which the derivative off; with respect ta is 0:

von o d (ilni+ (k—i)In(k —1i)
f@ = E(In2)
i+ 1—Intk—i)—1
- In2
Ini —In(k —i)

In2

Solutions for Chapter 8: Sorting in Linear Time 8-15

is0ati = k/2. To verify this is indeed a minimum (not a maximum), check
that the second derivative ¢f, is positive at = k/2:

v 4 (Ini—In(k—i)
e = di(In2)

_11+1
 mn2\i k—-i)~

, 1 (2 2
ek/2) = In2(k+k)
1 4
In2 k
0 sincek > 1 .

Now we use substitution to prow&k) = Q(klgk). The base case of the
induction is satisfied becaugkl) > 0 = ¢ - 1 -Ig1 for any constant. For
the inductive step we assume tli#i) > cilgi for 1 <i <k — 1, wherec is
some constant to be determined.

diky = min {d() +d(k—i)+k}
min {e(ilgi + (k =) Ig(k —i)) + &}

1<i<k—

= min {efe) +k}

CHEHIE
- ckig(5) ++

clklgk —k)+k
= cklgk + (k —ck)
> cklgk ife<1l,
and sod (k) = Q(klgk).
e. Using the result of part (d) and the fact that (as modified in our solution to
part (a)) has:! leaves, we can conclude that
D(Ty) = d(n!) = Q(n!lg(n!)) .

D(T,) is the sum of the decision-tree path lengths for sortingradut per-
mutations, and the path lengths are proportional to theime.tSince the:!
permutations have equal probabilityn!, the expected time to sastrandom
elements [input permutation) is the total time for all permutationsidiéed
by n!:

Qn!lg(n!))
n!

A%

= Q(g(n!) = Q@lgn) .

f. We will show how to modify a randomized decision tree (altfor) to define a
deterministic decision tree (algorithm) that is at leasi@zd as the randomized
one in terms of the average number of comparisons.

At each randomized node, pick the child with the smallestregh(the subtree
with the smallest average number of comparisons on a patle&d)a Delete all

8-16

Solutions for Chapter 8: Sorting in Linear Time

the other children of the randomized node and splice outghdamized node
itself.

The deterministic algorithm corresponding to this modifieg still works, be-
cause the randomized algorithm worked no matter which pathtaken from
each randomized node.

The average number of comparisons for the modified algoritmo larger
than the average number for the original randomized treeesive discarded
the higher-average subtrees in each case. In particuldr,tmae we splice out
a randomized node, we leave the overall average less thagual ® what it
was, because

* the same set of input permutations reaches the modifiecesutgrbefore, but
those inputs are handled in less than or equal to averagéhandefore, and

* the rest of the tree is unmodified.

The randomized algorithm thus takes at least as much timeenage as the
corresponding deterministic one. (We've shown that theeetgd running time
for a deterministic comparison sorti&n Ig n), hence the expected time for a
randomized comparison sort is al@gn Ig n).)

Solution to Problem 8-3

a. The usual, unadorned radix sort algorithm will not solves thioblem in the

required time bound. The number of passéswould have to be the number
of digits in the largest integer. Suppose that thererarategers; we always
havem < n. In the worst case, we would have one integer witl digits and
n/2 integers with one digit each. We assume that the range ofgéesitigit is
constant. Therefore, we would hade= n/2 andm = n/2 + 1, and so the
running time would b& (dm) = O(n?).

Let us assume without loss of generality that all the integee positive and
have no leading zeros. (If there are negative integers agdl,with the positive
numbers, negative numbers, and O separately.) Under susmgdion, we can
observe that integers with more digits are always greatam thtegers with
fewer digits. Thus, we can first sort the integers by numbedigits (using

counting sort), and then use radix sort to sort each grouptegers with the
same length. Noting that each integer has between L aligits, letm; be the

number of integers with digits, fori = 1,2,...,n. Since there are digits

altogether, we hav®_’_, i - m; = n.

It takesO(n) time to compute how many digits all the integers have andeonc
the numbers of digits have been computed, it tal¥€s: + n) = O(n) time

to group the integers by number of digits. To sort the groujlh wi; digits by
radix sort take® (i - m;) time. The time to sort all groups, therefore, is

i@(i -m;) = ®<Xn:i 'mi)

= 0O(n).

Solutions for Chapter 8: Sorting in Linear Time 8-17

b. One way to solve this problem is by a radix sort from right tib. I&ince the
strings have varying lengths, however, we have to pad ougtiatigs that are
shorter than the longest string. The padding is on the rigttad the string,
and it's with a special character that is lexicographicddlgs than any other
character (e.g., in C, the charactérO’ with ASCII value 0). Of course, we
don’t have to actually change any string; if we want to knoevith character of
a string whose length i, then if j > k, the jth character is the pad character.

Unfortunately, this scheme does not always run in the reduiime bound.
Suppose that there are strings and that the longest string hasharacters.
In the worst case, one string hag2 characters and, before padding/2
strings have one character each. As in part (a), we would Haxen /2 and

m =n/2 + 1. We still have to examine the pad characters in each pasdiaf ra
sort, even if we don't actually create them in the strings.suksing that the
range of a single character is constant, the running timadikrsort would be
O(dm) = O(n?).

To solve the problem i (n) time, we use the property that, if the first letter
of string x is lexicographically less that the first letter of stripg thenx is
lexicographically less tham, regardless of the lengths of the two strings. We
take advantage of this property by sorting the strings orfiteeletter, using
counting sort. We take an empty string as a special case antlfpgt. We
gather together all strings with the same first letter as agrdhen we recurse,
within each groupbased on each string with the first letter removed.

The correctness of this algorithm is straightforward. Amadg the running
time is a bit trickier. Let us count the number of times thatrestring is sorted
by a call of counting sort. Suppose that ttik string, s;, has length;. Then

s; is sorted by at most + 1 counting sorts. (The+1" is because it may have
to be sorted as an empty string at some point; for exanafleggnda end up in
the same group in the first pass and are then ordered basedrmhthe empty
string in the second pass. The strags sorted its length, 1, time plus one more
time.) A call of counting sort om strings takesd(¢) time (remembering that
the number of different characters on which we are sortimgognstant.) Thus,
the total time for all calls of counting sort is

(0] (i(li + 1)) = 0 (i I + m)
- = O(nl—T— m)
= O,

where the second line follows froth;_, /; = n, and the last line is because
m <n.

Solution to Problem 8-4

a. Compare each red jug with each blue jug. Since there ageel jugs and: blue
jugs, that will take®(n?) comparisons in the worst case.

8-18 Solutions for Chapter 8: Sorting in Linear Time

b. To solve the problem, an algorithm has to perform a seriesooiparisons
until it has enough information to determine the matchinge &&n view the
computation of the algorithm in terms of a decision tree. rigweternal node
is labeled with two jugs (one red, one blue) which we compane, has three
outgoing edges (red jug smaller, same size, or larger thambltie jug). The
leaves are labeled with a unique matching of jugs.

The height of the decision tree is equal to the worst-caseéoruof comparisons
the algorithm has to make to determine the matching. To bthatdsize, let us
first compute the number of possible matchingsifoed and: blue jugs.

If we label the red jugs from to n and we also label the blue jugs from
to n before starting the comparisons, every outcome of the idthgorcan be
represented as a set

{(,7(i)) : 1 <i <nandx is a permutation ofl,...,n}} ,

which contains the pairs of red jugs (first component) ane plgs (second
component) that are matched up. Since every permutatioarresponds to a
different outcome, there must be exactlydifferent results.

Now we can bound the heightof our decision tree. Every tree with a branch-
ing factor of3 (every inner node has at most three children) has at Bfost
leaves. Since the decison tree must have at leastildren, it follows that

3" >nl'>n/e)" = h>nlogsn —nlog,e = Qnlgn) .
So any algorithm solving the problem must ¥36: Ig n) comparisons.

c. Assume that the red jugs are labeled with numbets ..., n and so are the
blue jugs. The numbers are arbitrary and do not correspottieteolumes of
jugs, but are just used to refer to the jugs in the algorithetdption. Moreover,
the output of the algorithm will consist af distinct pairs(i, j), where the red
jugi and the blue jug have the same volume.

The procedure MTCH-JUGS takes as input two sets representing jugs to be
matched: R C {l1,...,n}, representing red jugs, aml < {1,...,n}, rep-
resenting blue jugs. We will call the procedure only withutgthat can be
matched; one necessary condition is fiijt= | B|.

Solutions for Chapter 8: Sorting in Linear Time 8-19

MATCH-JUGS(R, B)

if |R| == Il sets are empty
return

if |R|== /I sets contain just one jug each
let R = {r}andB = {b}
output “(r, b)”
return

elser = arandomly chosen jug iR
comparer to every jug ofB
B. = the set of jugs imB that are smaller than
B. = the set of jugs inB that are larger than
b = the one jug inB with the same size as
compareb to every jug ofR — {r}
R_. = the set of jugs inR that are smaller thah
R. = the set of jugs iR that are larger thah
output “(r, b)”
MATCH-JUGS(R-, B.)
MATCH-JUGS(R-., B-.)

Correctness can be seen as follows (remember|fijat= |B| in each call).
Once we pick- randomly fromR, there will be a matching among the jugs in
volume smaller thamn (which are in the setR. andB..), and likewise between
the jugs larger than (which are inR.. andB..). Termination is also easy to see:
since|R-| + |R~| < | R]| in every recursive step, the size of the first parameter
reduces with every recursive call. It eventually must re@doh 1, in which case
the recursion terminates.

What about the running time? The analysis of the expectedorumf com-
parisons is similar to that of the quicksort algorithm in 8@t 7.4.2. Let us
order the jugs as,,...,r, andby,...,b, wherer; < r;; andb; < b;,, for

i =1,...,n,andr; = b;. Our analysis uses indicator random variables

X;; = | {red jugr; is compared to blue jug;} .

As in quicksort, a given pair; andb; is compared at most once. When we
comparer; to every jug inB, jug r; will not be put in eitherR. or R... When
we compare; to every jug inR — {r;}, jug b; is not put into eitherB. or B-.
The total number of comparisons is

n—1 n
X=Z Z X,’j.

i=1j=i+1

To calculate the expected value Xf we follow the quicksort analysis to arrive
at

n—1 n
E[X] =)) Pr{r is compared td,} .

i=1j=i+1

As in the quicksort analysis, once we choose arjuguch that; < r, < b;,
we will put r; in R. andb; in R, and sor; andb; will never be compared

8-20 Solutions for Chapter 8: Sorting in Linear Time

again. Let us denot&;; = {r;,...,r;}. Then jugs:; andb; will be compared
if and only if the first jug inR;; to be chosen is eithet or r;.

Still following the quicksort analysis, until a jug froR;; is chosen, the entire
setR;; is together. Any jug inR;; is equally likely to be first one chosen. Since
|R;j| = j —i + 1, the probability of any given jug being the first one chosen
in R;; is1/(j —i +1). The remainder of the analysis is the same as the quicksort
analysis, and we arrive at the solution@tr Ig n) comparisons.

Just like in quicksort, in the worst case we always chooséatigest (or small-
est) jug to partition the sets, which reduces the set sizesilyyl. The running
time then obeys the recurreng&n) = T(n — 1) + ®(n), and the number of
comparisons we make in the worst casé'{g) = O(n?).

Solution to Problem 8-7

a. A[g] must go the wrong place, because it goes whie] should go. Since
A[p] is the smallest value in array that goes to the wrong array locatiof|p]
must be smaller thad[g].

b. From how we have defined the arrdy, we have that ifA[i] < A[j] then
Bli] < B[j]. Therefore, algorithm X performs the same sequence of exggs
on arrayB as it does on arrayl. The output produced on array is of the
form... A[q]... A[p]..., and so the output produced on armys of the form
...B[q]...B[p]...,or...1...0.... Hence algorithm X fails to sort arra
correctly.

c. The even steps perform fixed permutations. The odd stepgaoit column
by some sorting algorithm, which might not be an oblivioumpare-exchange
algorithm. But the result of sorting each column would beghme as if we did
use an oblivious compare-exchange algorithm.

d. After step 1, each column has Os on top and 1s on the bottotm afvihost one
transition between 0s and 1s, and it & & 1 transition. (As we read the array
in column-major order, all — 0 transitions occur between adjacent columns.)
After step 2, therefore, each consecutive group/afrows, read in row-major
order, has at most one transition, and again it@sa 1 transition. All1 — 0
transitions occur at the end of a grouprgf rows. Since there are groups
of r/s rows, there are at mostdirty rows, and the rest of the rows are clean.
Step 3 moves the Os to the top rows and the 1s to the bottom fidves. dirty
rows are somewhere in the middle.

e. The dirty area after step 3 is at mastows high and columns wide, and so its
area is at most?. Step 4 turns the clean Os in the top rows into a clean area on
the left, the clean 1s in the bottom rows into a clean area emigfit, and the
dirty area of size? is between the two clean areas.

f. First, we argue that if the dirty area after step 4 has size@dtny2, then
steps 5-8 complete the sorting. If the dirty area has sizeoat mi2 (half a
column), then it either resides entirely in one column oeglides in the bottom

Solutions for Chapter 8: Sorting in Linear Time 8-21

half of one column and the top half of the next column. In therfer case,
step 5 sorts the column containing the dirty area, and stefsr@intain that
the array is sorted. In the latter case, step 5 cannot inetbassize of the dirty
area, step 6 moves the entire dirty area into the same coktemmy sorts it, and
step 8 moves it back.

Second, we argue that the dirty area after step 4 has sizesat 20 But that
follows immediately from the requirement that> 252 and the property that
after step 4, the dirty area has size at most

g. If s does not divide, then after step 2, we can see up th— 1 transitions and
s — 1 1 — 0 transitions in the rows. After step 3, we would have ugio- 1
dirty rows, for a dirty area size of at maxt> —s. To push the correctness proof
through, we nee@s? —s < r/2, orr > 4s% — 2s.

h. We can reduce the number of transitions in the rows afterategck down to
at mosts by sorting every other column in reverse order in step 1. Nowei
have a transition (eithelkr — 0 or 0 — 1) between columns after step 1, then
either one of the columns had all 1s or the other had all Os,hichwvcase we
would not have a transition within one of the columns.

Lecture Notes for Chapter 9:
Medians and Order Statistics

Chapter 9 overview

* ith order statisticis theith smallest element of a set mfelements.
* Theminimum is the first order statistia (= 1).

* Themaximumis thenth order statistici(= n).

* A medianis the “halfway point” of the set.

* Whenn is odd, the median is unique,at= (n + 1)/2.

* Whenn is even, there are two medians:

* Thelower median ati = n/2, and
* Theupper medianati =n/2 + 1.
* We mean lower median when we use the phrase “the median.”

Theselection problem

Input: A setA of n distinct numbers and a numberwith 1 <i < n.

Output: The elemeni € A that is larger than exactly— 1 other elements inl.
In other words, théth smallest element of.

We can easily solve the selection problentn Ig n) time:

* Sort the numbers using ah(n Ig n)-time algorithm, such as heapsort or merge
sort.

* Then return théth element in the sorted array.

There are faster algorithms, however.
* First, we'll look at the problem of selecting the minimum améximum of a

set of elements.

* Then, we'll look at a simple general selection algorithmhnattime bound of
O(n) in the average case.

* Finally, we'll look at a more complicated general selectadgorithm with a
time bound ofO(n) in the worst case.

9-2 Lecture Notes for Chapter 9: Medians and Order Stafistic

Minimum and maximum

We can easily obtain an upper boundief 1 comparisons for finding the minimum

of a set ofn elements.

* Examine each element in turn and keep track of the smallest on

» Thisis the best we can do, because each element, exceptrilmeum, must be
compared to a smaller element at least once.

The following pseudocode finds the minimum element in antgly. . n]:

MINIMUM (A4, n)
min = A[l]
fori =2ton
if min> A[i]
min = A[i]
return min

The maximum can be found in exactly the same way by replatieg twith < in
the above algorithm.

Simultaneous minimum and maximum

Some applications need both the minimum and maximum of & sé¢ments.

* For example, a graphics program may need to scale a <et, o) data to fit
onto a rectangular display. To do so, the program must firdtthie minimum
and maximum of each coordinate.

A simple algorithm to find the minimum and maximum is to findleaoe indepen-
dently. There will ber — 1 comparisons for the minimum amd— 1 comparisons
for the maximum, for a total dtrn — 2 comparisons. This will result i®(n) time.

In fact, at mosB | /2| comparisons suffice to find both the minimum and maxi-

mum:

* Maintain the minimum and maximum of elements seen so far.

* Don't compare each element to the minimum and maximum stghara

* Process elements in pairs.

* Compare the elements of a pair to each other.

* Then compare the larger element to the maximum so far, angpa@nthe
smaller element to the minimum so far.

This leads to onl\8 comparisons for every elements.

Setting up the initial values for the min and max depends oethdr. is odd or

even.

» If nis even, compare the first two elements and assign the largesxt and the
smaller to min. Then process the rest of the elements in.pairs

* If nis odd, set both min and max to the first element. Then protesgest of
the elements in pairs.

Lecture Notes for Chapter 9: Medians and Order Statistics 3 9-

Analysis of the total number of comparisons

If nis even, we do 1 initial comparison and thm — 2) /2 more comparisons.

. 3(n—2
of comparisons = % +1

. 3n—6+1

2
3n

= ——-3+1
5 +
3n

= ——=2.
2

If nis odd, we d&(n — 1)/2 = 3 |n/2] comparisons.

In either case, the maximum number of comparisons ¥|n/2].

Selection in expected linear time

Selection of theth smallest element of the arralycan be done i®(n) time.

The function RANDOMIZED-SELECT uses RINDOMIZED-PARTITION from the
quicksort algorithm in Chapter 7. RIDOMIZED-SELECT differs from quicksort
because it recurses on one side of the partition only.

RANDOMIZED-SELECT(A, p,r,i)

if p==r
return A[p]
q = RANDOMIZED-PARTITION (A, p,r)
k=g—p+1
if i ==k /I pivot value is the answer
return A[q]
elseifi <k

return RANDOMIZED-SELECT(A, p,q — 1,i)
else return RANDOMIZED-SELECT(A4,q + 1,r,i — k)

After the call to RRNDOMIZED-PARTITION, the array is partitioned into two sub-
arraysA[p..q — 1] andA[qg + 1..r], along with apivotelementA[g].

The elements of subarradfp ..q — 1] are all< A[q].

The elements of subarrayiq + 1..r] are all> A[q].

The pivot element is théth element of the subarrayg[p..r], wherek =
qg—p+1L

If the pivot element is théth smallest element (i.e.,= k), return A[q].
Otherwise, recurse on the subarray containing thesmallest element.

* If i <k, thissubarray isl[p..q — 1], and we want théth smallest element.

* If i > k, this subarray isA[g + 1..r] and, since there arke elements in
A[p..r] that preceded[g + 1 ..r], we want the(i — k)th smallest element
of this subarray.

Lecture Notes for Chapter 9: Medians and Order Stafistic

Analysis

Worst-case running time

©(n?), because we could be extremely unlucky and always recursesabarray
that is only 1 element smaller than the previous subarray.

Expected running time

RANDOMIZED-SELECT works well on average. Because it is randomized, no par-
ticular input brings out the worst-case behavior constiten

The running time of RNDOMIZED-SELECT is a random variable that we denote
by T'(n). We obtain an upper bound on’E(n)] as follows:

* RANDOMIZED-PARTITION is equally likely to return any element of as the
pivot.

* For eachk such thatl < k < n, the subarray[p . .q] hask elements (alk
pivot) with probability 1 /n. [Note that we’re now considering a subarray that
includes the pivot, along with elements less than the fgivot.

* Fork =1,2,...,n, define indicator random variable
X = I {subarrayA[p . .q] has exactlyt element$.

* Since P{subarrayA[p . .q] has exactlyt element$ = 1/n, Lemma 5.1 says
that E[X;] = 1/n.

* When we call RNDOMIZED-SELECT, we don’t know if it will terminate im-
mediately with the correct answer, recurse #fp..q — 1], or recurse on

Alg + 1..r]. It depends on whether thith smallest element is less than, equal
to, or greater than the pivot elemetiy].

* To obtain an upper bound, we assume th&t) is monotonically increasing
and that theth smallest element is always in the larger subarray.

* Foragiven call of RNDOMIZED-SELECT, X; = 1 for exactly one value af,
and X, = 0 for all otherk.

* WhenX; = 1, the two subarrays have sizes- 1 andn — k.

* For a subproblem of size, RANDOMIZED-PARTITION takesO(n) time. [Ac-
tually, it takesd (n) time, butO (n) suffices, since we're obtaining only an upper
bound on the expected running time.]

* Therefore, we have the recurrence

T(n) < Y Xe-(T(maxk —1.n—k))+ O(n))

k=1

= > X - T(maxk —1.n—k)) + O(n).
k=1
* Taking expected values gives
E[T(n)]

< E [Z Xi - T(maxtk — 1,n —k)) + O(n)i|

k=1

Lecture Notes for Chapter 9: Medians and Order Statistics 5 9-

= Z E[X, -T(maxk —1,n —k))] + O(n) (linearity of expectation)
k=1

= Xn: E[Xk]-E[T(maxk —1,n —k))] + O(n) (equation (C.24))
k=1

_ Z%-E[T(max(k— Ln— k)] + Om) .

k=1
* Werely onX; and7T (maxtk — 1,n — k)) being independent random variables
in order to apply equation (C.24).

* Looking at the expression m@x— 1,n — k), we have

k—1 ifk>[n/2],

maxk =Ln =Ky =y & itk <2,

* If nis even, each term frofi([rn/2]) up toT'(n — 1) appears exactly twice
in the summation.

* If nis odd, these terms appear twice adr/2|) appears once.

* Either way,
2 n—1
E[Tm] =~ > EITK]+0@m).
k=|n/2]
» Solve this recurrence by substitution:

* Guessthaf’(n) < cn for some constant that satisfies the initial conditions
of the recurrence.

* Assume thaf’(n) = O(1) for n < some constant. We’'ll pick this constant
later.

» Also pick a constant such that the function described by tb&n) term is
bounded from above hyn for all n > 0.

* Using this guess and constaatanda, we have
n—1

2
E[T(m] < =) ck+an
k=|n/2]

n—1 ln/2]—1

(Zk— Z k)+an

(Z bn (n/2 =) Ln/ZJ)
2

(n— l)n (n/2 2)(n/2 — l))

2

2/4— 3n/242
+an
2 2

T)4
—_— an
4

¥ =[] =¥ =|'€’

S0 x
NIE

9-6

Lecture Notes for Chapter 9: Medians and Order Stafistic

_ 3n+12+
- Nag Ty

- 3cn+c+
= Ty T
cn ¢
= cn—(————an).
4 2
* To complete this proof, we choosesuch that
cn/4—c/2—an > 0
cnf/d—an > c¢/2
nc/d—a)y = c¢/2
. c/2
T~ c¢/d—a
2c
n = .
~ c¢—4a

* Thus, as long as we assume tligz) = O(1) forn < 2¢/(c —4a), we have
E[T(n)] = O(n).

Therefore, we can determine any order statistic in lineae tbn average.

Selection in worst-case linear time

We can find théth smallest element i@ (n) timein the worst caseWe'll describe
a procedure SLECT that does so.

SELECT recursively partitions the input array.

Idea: Guarantee a good split when the array is partitioned.

Will use the deterministic proceduraARTITION, but with a small modifica-
tion. Instead of assuming that the last element of the sapasrthe pivot, the
modified RARTITION procedure is told which element to use as the pivot.

SELECT works on an array of > 1 elements. It executes the following steps:

1. Divide then elements into groups & Get[n/5] groups:|n/5| groups with

exactly 5 elements and, if does not divide:, one group with the remaining
n mod5 elements.

Find the median of each of tlie /5] groups:

* Run insertion sort on each group. Tak@s¢l) time per group since each
group has< 5 elements.

* Then just pick the median from each group(hil) time.

Find the medianx of the [n/5] medians by a recursive call toeSECT. (If
[n/5] is even, then follow our convention and find the lower median.

Using the modified version ofaARTITION that takes the pivot element as input,
partition the input array around. Let x be thekth element of the array after
partitioning, so that there ake— 1 elements on the low side of the partition and
n — k elements on the high side.

Lecture Notes for Chapter 9: Medians and Order Statistics 7 9-

5. Now there are three possibilities:

e Ifi =k, justreturnx.

* If i <k, return theith smallest element on the low side of the partition by
making a recursive call toERECT.

* Ifi > k, return the(i —k)th smallest element on the high side of the partition
by making a recursive call tOERECT.

Analysis

Start by getting a lower bound on the number of elements tieagt@ater than the
partitioning element:

[Each group is a column. Each white circle is the median ofaugyr as found
in step 2. Arrows go from larger elements to smaller elemérgsed on what we
know after step 4. Elements in the region on the lower rigakaiown to be greater
thanx.]

* At least half of the medians found in step 2 arex.

* Look at the groups containing these medians that=are. All of them con-
tribute 3 elements that are- x (the median of the group and tReelements
in the group greater than the group’s median), excep? fof the groups: the
group containingr (which has only2 elements> x) and the group with< 5
elements.

1 ,
* Forget about these groups. That leaves h (%H — 2 groups with3 ele-

ments known to be- x.
* Thus, we know that at least

3 l[q)= g
215 10
elements are- x.

Symmetrically, the number of elements that are is at leasBr /10 — 6.

Therefore, when we callE&.ECT recursively in step 5, it's o 7n/10 + 6 ele-
ments.

Develop a recurrence for the worst-case running timemfEg T:
* Steps 1, 2, and 4 each tak¥n) time:

9-8

Lecture Notes for Chapter 9: Medians and Order Stafistic

» Step 1: making groups of 5 elements tak&@:) time.

» Step 2: sortingn /5] groups inO(1) time each.

» Step 4: partitioning tha-element array around takesO(n) time.
Step 3 takes tim&'([n/5]).

Step 5 takes time< T'(7n/10 + 6), assuming thaf (n) is monotonically in-
creasing.

Assume thatl’'(n) = O(1) for small enough:. We'll usen < 140 as “small
enough.” Why 1407 We’'ll see why later.

Thus, we get the recurrence

o(1) if n < 140,

T(n) =)
T([n/51)+ T(n/10 +6) + O(n) if n > 140.

Solve this recurrence by substitution:

Inductive hypothesisT (n) < c¢n for some constant and alln > 0.

Assume that is large enough thal'(n) < cn for all n < 140. So we are
concerned only with the case> 140.

Pick a constant: such that the function described by tlign) term in the
recurrence i< an for alln > 0.

Substitute the inductive hypothesis in the right-hand sidihe recurrence:
T(n) < c[n/514+c(Tn/10+46) +an
< cn/5+c+7cn/10 + 6¢ + an
9cn/10 + 7c + an
= cn+ (—cn/10 +7c +an) .

This last quantity is< c¢n if

—cn/10+7¢c +an < 0
cn/10—7¢ > an
cn—T70c > 10an
c(n—170) > 10an
¢ > 10a(n/(n —170)).

Because we assumed that- 140, we haven/(n — 70) < 2.

Thus,20a > 10a(n/(n—70)), so choosing > 20a givesc > 10a(n/(n—70)),
which in turn gives us the condition we need to show fhat) < cn.

We conclude thal’(n) = O(n), so that ELECTruns in linear time in all cases.
Why 140? We could have used any integer strictly greater 7ban

* Observe that forn > 70, the fraction:/(n — 70) decreases asincreases.

* We pickedr > 140 so that the fraction would b& 2, which is an easy
constant to work with.

* We could have picked, say,> 71, so that for allz > 71, the fraction would
be< 71/(71 — 70) = 71. Then we would have ha2ba > 710a, so we'd
have needed to choose> 710a.

Lecture Notes for Chapter 9: Medians and Order Statistics 9 9-

Notice that $LECT and RANDOMIZED-SELECT determine information about the
relative order of elements only by comparing elements.

Sorting require$2(n Ig n) time in the comparison model.

Sorting algorithms that run in linear time need to make aggioms about their
input.

Linear-time selectionalgorithms do not require any assumptions about their
input.

Linear-time selection algorithms solve the selection fmobwithout sorting
and therefore are not subject to i2¢n Ig n) lower bound.

Solutions for Chapter 9:
Medians and Order Statistics

Solution to Exercise 9.1-1

The smallest ofi numbers can be found with— 1 comparisons by conducting a
tournament as follows: Compare all the numbers in pairsy @ smaller of each
pair could possibly be the smallest of allso the problem has been reduced to that
of finding the smallest ofn /2] numbers. Compare those numbers in pairs, and so
on, until there’s just one number left, which is the answer.

To see that this algorithm does exactly- 1 comparisons, notice that each number
except the smallest loses exactly once. To show this monedity, draw a binary
tree of the comparisons the algorithm does. Amaimbers are the leaves, and each
number that came out smaller in a comparison is the parehedito numbers that
were compared. Each non-leaf node of the tree representa@acizon, and there
aren — 1 internal nodes in am-leaf full binary tree (see Exercise (B.5-3)), so
exactlyn — 1 comparisons are made.

In the search for the smallest number, the second smallegbeiumust have come
out smallest in every comparison made with it until it wasrdually compared
with the smallest. So the second smallest is among the etsrtieat were com-
pared with the smallest during the tournament. To find itdemh another tourna-
ment (as above) to find the smallest of these numbers. At ffgsi (the height
of the tree of comparisons) elements were compared withrnttedlesst, so finding
the smallest of these tak@lg n] — 1 comparisons in the worst case.

The total number of comparisons made in the two tournameass w
n—14+Tlgn]—1=n+1[lgn] -2
in the worst case.

Solution to Exercise 9.3-1
This solution is also posted publicly

For groups of 7, the algorithm still works in linear time. Timember of elements
greater thanx (and similarly, the number less thaiis at least

(31512

Solutions for Chapter 9: Medians and Order Statistics 9-11

and the recurrence becomes

T(n) <T(n/71)+T(5Bn/7+8)+ O(n),

which can be shown to b€ (n) by substitution, as for the groups of 5 case in the
text.

For groups of 3, however, the algorithm no longer works iadintime. The number
of elements greater than and the number of elements less tharis at least

1rn n
2({5 hH —2) =37
and the recurrence becomes
T(n) <T(n/3])+TR2n/3+4)+ O0n),

which does not have a linear solution.

We can prove that the worst-case time for groups of Qs lgn). We do so by
deriving a recurrence for a particular case that tdkeslg n) time.

In counting up the number of elements greater thagand similarly, the num-
ber less thanx), consider the particular case in which there are ex*%lg/g
groups with mediang= x and in which the “leftover” group does contribute 2
elements greater than Then the number of elements greater thais exactly
2 (B(%ﬂ — 1) + 1 (the —1 discountsx’s group, as usual, and thel is con-
tributed byx’s group)= 2 [n/6] — 1, and the recursive step for elementst has
n—Q2[n/6]l—-1)>n—-2n/6+1)—1) =2n/3 — 1 elements. Observe also
that theO(n) term in the recurrence is realty(n), since the partitioning in step 4
takes®(n) (not justO(n)) time. Thus, we get the recurrence

Tn)=>T(n/3)+TR2n/3—1)+0OMn)>Tn/3)+TQ2n/3—-1)+O@H),

from which you can show thdf(n) > c¢nlgn by substitution. You can also see
that7'(n) is nonlinear by noticing that each level of the recursioe sems to:.

[In fact, any odd group size 5 works in linear time.]

Solution to Exercise 9.3-3
This solution is also posted publicly

A modification to quicksort that allows it to run i@ (n Ig n) time in the worst case
uses the deterministicARTITION algorithm that was modified to take an element
to partition around as an input parameter.

SELECT takes an arrayl, the boundsg andr of the subarray i, and the rank
of an order statistic, and in time linear in the size of thesstdy A[p . . r] it returns
theith smallest elementid[p .. r].

9-12 Solutions for Chapter 9: Medians and Order Statistics

BEST-CASE-QUICKSORT(A, p,r)
if p<r
i=[r—p+1/2]
x = SELECT(A, p,r,i)
q = PARTITION(x)
BESTCASE-QUICKSORT(A4, p,qg — 1)
BESTCASE-QUICKSORT(A4,q + 1,r)

For ann-element array, the largest subarray thatsB CASE-QUICKSORT re-
curses on has/2 elements. This situation occurs when= r — p + 1 is even;
then the subarrayi[g + 1..r] hasn/2 elements, and the subarralyp..q — 1]
hasn/2 — 1 elements.

Because BsTCASE-QUICKSORT always recurses on subarrays that are at most
half the size of the original array, the recurrence for thesivoase running time is
T(n) <2T(n/2) + ©(n) = O(nlgn).

Solution to Exercise 9.3-5
This solution is also posted publicly

We assume that are given a procedureVhN that takes as parameters an ar-
ray A and subarray indiceg andr, and returns the value of the median element of
Alp..r]in O(n) time in the worst case.

Given MEDIAN, here is a linear-time algorithmeSecT for finding thei th small-
est element iM[p .. r]. This algorithm uses the deterministia®rITION algo-
rithm that was modified to take an element to partition arcamdn input parame-
ter.

SELECT (A, p,r,i)
if p==r
return A[p]
x = MEDIAN(A, p,1)
q = PARTITION(x)

k=g—p+1
if i ==

return Alg]
elseifi < k

return SELECT (4, p,q — 1,i)
else return SELECT (A,q + 1,r,i — k)

Becausex is the median ofd4[p..r], each of the subarrayd[p..q — 1] and
Alg + 1..r] has at most half the number of elementsAdp . . r]. The recurrence
for the worst-case running time oESECT is T'(n) < T(n/2) + O(n) = O(n).

Solutions for Chapter 9: Medians and Order Statistics 9-13

Solution to Exercise 9.3-8

Let's start out by supposing that the median (the lower nredignce we know we
have an even number of elements) iskinLet’s call the median value:, and let’s
suppose that it's inX [k]. Thenk elements ofX are less than or equal 9 and
n —k elements ofX are greater than or equalta We know that in the two arrays
combined, there must beelements less than or equaltoandn elements greater
than or equal tan, and so there must be— k elements oft” that are less than or
equal tom andn — (n — k) = k elements o’ that are greater than or equalio

Thus, we can check that[k] is the lower median by checking whethéfn — k] <
X[k] < Y[n — k + 1]. A boundary case occurs fér= n. Thenn — k = 0, and
there is no array entr¥ [0]; we only need to check thaf[n] < Y [1].

Now, if the median is inX but is not in X [k], then the above condition will not
hold. If the median is inX [k’], wherek’ < k, thenX[k] is above the median, and
Y[n —k + 1] < X[k]. Conversely, if the median is iX [k"], wherek” > k, then
X [k] is below the median, andl [k] < Y [n — k].

Thus, we can use a binary search to determine whether thareXi$k] such that
eitherk <nandY [n—k] < X[k] < Y[n—k+1]ork =nandX[k] < Y[n—k+1];

if we find such anX [k], then it is the median. Otherwise, we know that the median
is in Y, and we use a binary search to find’'g] such that eithek < » and
Xn—kl <Ykl <X[n—k+1ork =nandY[k] < X[n —k + 1]; such a

Y [k] is the median. Since each binary search tak@g) time, we spend a total

of O(lgn) time.

Here’s how we write the algorithm in pseudocode:

TwoO-ARRAY-MEDIAN(X,Y)

n = X.length /I n also equald’.length
median= FIND-MEDIAN(X,Y,n,1,n)
if median== NOT-FOUND
median= FIND-MEDIAN(Y, X,n,1,n)
return median

FIND-MEDIAN (A, B, n,low, high)

if low > high
return NOT-FOUND
elsek = |(low + high)/2|
if k ==n andA[n] < B[1]
return A[n]
elseifk <nandB[n — k] < A[k] < Bln —k + 1]
return Alk]
elseif A[k] > B[n —k + 1]
return FIND-MEDIAN (A, B,n,low,k — 1)
else return FIND-MEDIAN (A4, B, n, k + 1, high)

9-14 Solutions for Chapter 9: Medians and Order Statistics

Solution to Exercise 9.3-9

In order to find the optimal placement for Professor Olayfsefine, we need only
find the median(s) of thg-coordinates of his oil wells, as the following proof
explains.

Claim
The optimaly-coordinate for Professor Olay’s east-west oil pipelinasgollows:

* If nis even, then on either the oil well whogecoordinate is the lower median
or the one whose-coordinate is the upper median, or anywhere between them.

* If nis odd, then on the oil well whosg-coordinate is the median.

Proof We examine various cases. In each case, we will start outthatipipeline

at a particulary-coordinate and see what happens when we move it. We’'ll denot
by s the sum of the north-south spurs with the pipeline at theistptocation,
ands’ will denote the sum after moving the pipeline.

We start with the case in whichis even. Let us start with the pipeline somewhere
on or between the two oil wells whosecoordinates are the lower and upper me-
dians. If we move the pipeline by a vertical distart&vithout crossing either of
the median wells, then/2 of the wells become/ farther from the pipeline and
n/2 becomed closer, and se’ = s +dn/2 —dn/2 = s; thus, all locations on or
between the two medians are equally good.

Now suppose that the pipeline goes through the oil well wheseordinate is the
upper median. What happens when we increaseytbeordinate of the pipeline
by d > 0 units, so that it moves above the oil well that achieves theumedian?
All oil wells whosey-coordinates are at or below the upper median becomngits
farther from the pipeline, and there are at lea&t + 1 such oil wells (the upper
median, and every well at or below the lower median). Theeeaamost:/2 — 1

oil wells whosey-coordinates are above the upper median, and each of tHese oi
wells becomes at most units closer to the pipeline when it moves up. Thus, we
have a lower bound os1 of s > s + d(n/2 + 1) —dn/2 —-1) = s +2d > s.

We conclude that moving the pipeline up from the oil well a thpper median
increases the total spur length. A symmetric argument slioatsf we start with
the pipeline going through the oil well whosecoordinate is the lower median and
move it down, then the total spur length increases.

We see, therefore, that whenis even, an optimal placement of the pipeline is
anywhere on or between the two medians.

Now we consider the case wherns odd. We start with the pipeline going through
the oil well whosey-coordinate is the median, and we consider what happens when
we move it up byl > 0 units. All oil wells at or below the median becomeunits
farther from the pipeline, and there are at Igast 1)/2 such wells (the one at the
median and thén — 1)/2 at or below the median. There are at m@st- 1)/2 oil

wells above the median, and each of these becomes atdnasts closer to the
pipeline. We get a lower bound ohof s’ > s +dn + 1)/2 —dn —1)/2 =

s +d > s, and we conclude that moving the pipeline up from the oil waelihe

Solutions for Chapter 9: Medians and Order Statistics 9-15

median increases the total spur length. A symmetric argusteows that moving
the pipeline down from the median also increases the totallspgth, and so the
optimal placement of the pipeline is on the median. m (claim)

Since we know we are looking for the median, we can use thaditime median-
finding algorithm.

Solution to Problem 9-1
This solution is also posted publicly

We assume that the numbers start out in an array.

a. Sort the numbers using merge sort or heapsort, which@®akeg) worst-case
time. (Don't use quicksort or insertion sort, which can ta&ke:?) time.) Put
thei largest elements (directly accessible in the sorted airdag)the output
array, taking®(i) time.

Total worst-case running tim@&(nlgn + i) = O(nlgn) (becauseé < n).

b. Implement the priority queue as a heap. Build the heap using ®B-HEAP,
which takes®(n) time, then call HAP-EXTRACT-MAX i times to get the
largest elements, i®(i Ign) worst-case time, and store them in reverse order
of extraction in the output array. The worst-case extractime is©(i Ign)
because

* | extractions from a heap wit@(n) elements takes- O(Ign) = O(i lgn)
time, and

* half of thei extractions are from a heap with n/2 elements, so thosg?2
extractions takéi /2)Q2(Ig(n/2)) = (i Ign) time in the worst case.

Total worst-case running timé&(n + i Ign).

c. Use the &LECT algorithm of Section 9.3 to find thieh largest number i® ()
time. Partition around that number @(r) time. Sort the largest numbers in
O(i lgi) worst-case time (with merge sort or heapsort).

Total worst-case running tim@&(n + i Ig 7).

Note that method (c) is always asymptotically at least asigaothe other two
methods, and that method (b) is asymptotically at least asl gs (a). (Com-
paring (c) to (b) is easy, but it is less obvious how to comgayeand (b) to (a).
(c) and (b) are asymptotically at least as good as (a) becaudei, andi Ign are

all O(nlgn). The sum of two things that ai@(n Ig n) is alsoO(n lgn).)

9-16 Solutions for Chapter 9: Medians and Order Statistics

Solution to Problem 9-2

a. The medianx of the elementsc;, x,, ..., x,, iS an elemenk = x; satisfy-
ing [{x; : 1 <i <nandx; <x}| <n/2and|{x; : 1 <i <nandx; > x}| <
n/2. If each element; is assigned a weight; = 1/n, then we get

Ew,-: —
n

Xj <X X <X

and

N
&
|
S| =

Xj>X

&
v

. Z 1
X;j>x

{x; 1 <i <nandx; > x}|

[\

N —=I [=S| = I|=
S

which proves that is also the weighted median #f, x,, .. ., x,, with weights
w; = 1/n,fori =1,2,...,n.

b. We first sort the: elements into increasing order by values. Then we scan
the array of sorted;’s, starting with the smallest element and accumulating
weights as we scan, until the total exceéd3?. The last element, say,, whose
weight caused the total to exce&, is the weighted median. Notice that the
total weight of all elements smaller than is less thanl /2, becausex; was
the first element that caused the total weight to exdg@d Similarly, the total
weight of all elements larger thary is also less than/2, because the total
weight of all the other elements excedd?.

The sorting phase can be doneGxrn Ig n) worst-case time (using merge sort
or heapsort), and the scanning phase takés) time. The total running time
in the worst case, therefore, @(n Ign).

c. We find the weighted median 8 (n) worst-case time using th®(n) worst-
case median algorithm in Section 9.3. (Although the firsageaph of the
section only claims a®(n) upper bound, it is easy to see that the more precise

Solutions for Chapter 9: Medians and Order Statistics 9-17

running time of® (n) applies as well, since steps 1, 2, and 4 B &CT actually
take®(n) time.)

The weighted-median algorithm works as follows. nlf< 2, we just return

the brute-force solution. Otherwise, we proceed as followe find the actual
medianx, of then elements and then partition around it. We then compute the
total weights of the two halves. If the weights of the two leghare each strictly
less tharl /2, then the weighted medianig. Otherwise, the weighted median
should be in the half with total weight exceedihg2. The total weight of the
“light” half is lumped into the weight ok, and the search continues within the
half that weighs more thahy/2. Here’s pseudocode, which takes as input a set
X ={xX1,X2,...,Xp}

WEIGHTED-MEDIAN (X)
if n==
return x,
elseifn ==
if w; = Wy
return x;
else return x,
elsefind the medianx; of X = {x;,x,,...,x,}
partition the sefX aroundx;
computeW, = 3 _ w; andWg = }_
if W <1/2andWg < 1/2
return x;
elseif W, > 1/2
wr = wi + Wg
X' ={x; € X :x; <xi}
return WEIGHTED-MEDIAN (X”)
elsewy = wy + W
X' ={x; e X :x; = xx}
return WEIGHTED-MEDIAN (X")

Xi>Xg wl

The recurrence for the worst-case running time OEIBHTED-MEDIAN is
T(n) = T(n/2+4+1)+ O(n), since there is at most one recursive call on half the
number of elements, plus the median elemgntand all the work preceding the
recursive call take®(n) time. The solution of the recurrencelign) = O(n).

d. Let thern points be denoted by their coordinates x,, ..., x,, let the corre-
sponding weights b&,, w,, ..., w,, and letx = x; be the weighted median.
For any pointp, let f(p) = Y_.7'_, w; |p — x;|; we want to find a poinp such
that f(p) is minimum. Lety be any point (real number) other thanWe show
the optimality of the weighted medianby showing thatf (y) — f(x) > 0. We
examine separately the cases in whjcly x andx > y. For anyx andy, we
have

9-18 Solutions for Chapter 9: Medians and Order Statistics

J) =)

n n
Zwi |y_xi|_zwi |x — xi
i=1 i=1

= Zwi(|y_xi| —|x = x| .
i=1

Wheny > x, we bound the quantityy — x;| — |x — x;| from below by exam-
ining three cases:

l.x <y <x;: Here,lx—y|+|y—xi| = |x—x;|]and|x —y| = y — x,
which imply that|y — x;| — |x —x;| = —|x —y| =x —y.

2.x < x; < y:Here,|y—x;| >0and|x; —x| <y — x, which imply that
ly —xif —lx —xi[=z =(y —x) =x —y.

3.x; <x <y Here|x—x;)|+|y—x| =|y—x;|and|y —x| = y — x,
which imply that|y — x;| — |x —x;| = |y — x| = y — x.

Separating out the first two cases, in which< x;, from the third case, in
which x > x;, we get

fM = f@ = Y wlly—x]—lx—xl)
i=1

Yowilx—y)+ Y wily—x)

X<X; X=Xj

(y—x)(wa—Zwi) :

X>Xi X<Xj

A%

The property thad . w; < 1/2 implies thaty_ . w; > 1/2. This fact,
combined withy —x > 0 andzxqi w; < 1/2,yields thatf(y) — f(x) > 0.
Whenx > y, we again bound the quantity — x;| — |x — x;| from below by
examining three cases:

1.x; <y <ux:Here|y—x;|+|x—y|=|x—x;]and|x —y| = x — y,
which imply that|y — x;| — [x —x;| = —|x —y| =y — x.

2.y < x; < x: Here,|y —x;| > 0and|x —x;| < x — y, which imply that
y—xi| =[x —xi|==-(x—y) =y —x.

3.y <x <x;. Here,|x —y|+ |x —x;] = |y —x;|and|x —y| = x — y,
which imply that|y — x;| — |x —x;| = |x —y| = x — y.

Separating out the first two cases, in which> x;, from the third case, in
whichx < x;, we get

fO =@ = Y willy —x]—lx—xl
i=1

Z w; (y —x) + Z w;(x —y)

X>X; X<Xj

(- xu).

X=<X;i X>X;

A%

The property thad .

w; < 1/2implies that}_ _ w; > 1/2. This fact,
combined withy —y > 0and)_

w; < 1/2, yields thatf(y) — f(x) > 0.

X>Xi

Solutions for Chapter 9: Medians and Order Statistics 9-19

e. We are givem 2-dimensional pointg,, p,,..., p,, where eaclp; is a pair of
real numbery; = (x;, y;), and positive weights,, w,,...,w,. The goal is
to find a pointp = (x, y) that minimizes the sum

o) =D willx—xi|+ 1y =yl .

We can express the cost function of the two variablgs;, v), as the sum of
two functions of one variable eachf(x,y) = g(x) + h(y), whereg(x) =
M wilx —x;|, andh(y) = Y., w; |y — y:|. The goal of finding a point
p = (x,y) that minimizes the value of (x, y) can be achieved by treating
each dimension independently, becagsioes not depend opand/ does not
depend orx. Thus,

@Tfudo = @y@oo+h@»
= rrlin (myin(g(x) + h(y)))

- m%gm+mmwﬁ
x y
= ming(x) + minh(y) .
x y
Consequently, finding the best location in 2 dimensions eaddmne by finding
the weighted median; of the x-coordinates and then finding the weighted

mediany; of the y-coordinates. The pointx, y;) is an optimal solution for
the 2-dimensional post-office location problem.

Solution to Problem 9-3

a. Our algorithm relies on a particular property af1%CT: that not only does it
return theith smallest element, but that it also partitions the inptayaso that
the firsti positions contain thé smallest elements (though not necessarily in
sorted order). To see thaES=CT has this property, observe that there are only
two ways in which returns a value: whan= 1, and when immediately after
partitioning in step 4, it finds that there are exagtlglements on the low side
of the partition.

Taking the hint from the book, here is our modified algorittarsélect the'th
smallest element of elements. Whenever it is called with> /2, it just calls
SELECT and returns its result; in this cadé,(n) = T'(n).

Wheni < n/2, our modified algorithm works as follows. Assume that the

input is in a subarrayl[p + 1.. p + n], and letm = |n/2]. In the initial call,

p=1

1. Divide the input as follows. If: is even, divide the input into two parts:
Alp+1..p+mlandA[p + m+ 1.. p + n]. If n is odd, divide the input
into three partsd[p+1..p+m], A[p+m+1.. p+n—1],andA[p + n]
as a leftover piece.

2. Compared[p+i]andA[p+i +m]fori = 1,2,...,m, putting the smaller
of the the two elements intd[p + i + m] and the larger into[p + i].

9-20 Solutions for Chapter 9: Medians and Order Statistics

3. Recursively find theéth smallest element idl[p + m + 1.. p + n], but
with an additional action performed by the partitioning ggdure: whenever
it exchangesA[j] and A[k] (wherep +m + 1 < j.k < p + 2m), it
also exchanged|[j — m] and A[k — m]. The idea is that after recursively
finding theith smallest element id[p + m + 1.. p + n], the subarray
Alp+m+ 1.. p+m+i] contains the smallest elements that had been in
Alp+m+1.. p+n]andthe subarraj[p+1.. p +i] contains their larger
counterparts, as found in step 1. Tile smallest elementoA[p+1.. p+n]
must be either one of thesmallest, as placed inté[p+m+1.. p+m+i],
or it must be one of the larger counterparts, as placedAfto+ 1.. p +i].

4. Collect the subarrayd[p +1..p +i]andA[p+m+1.. p+m +i]into
a single arrayB|[1..2i], call SELECT to find theith smallest element aB,
and return the result of this call teeBECT.

The number of comparisons in each step is as follows:

1. No comparisons.

2. m = |n/2] comparisons.

3. Since we recurse afti[p +m + 1.. p + n], which has[n/2] elements, the
number of comparisons i3; ([n/2]).

4. Since we call BLECT on an array witl2i elements, the number of compar-
isons isT' (2i).

Thus, when < n/2, the total number of comparisons|is/2| + U;([n/2]) +
T(2i).

b. We show by substitution thatif < n/2, thenU;(n) = n + O(T(2i)lg(n/i)).
In particular, we show thal/;(n) < n + c¢T(2i)lg(n/i) —d(glgn)T(2i) =
n—+cTQRi)lgn —cTi)lgi —d(Iglgn)T(2i) for some positive constaiat
some positive constanmt to be chosen later, and> 4. We have

Ui(n) = [n/2] +Ui([n/2]) + T (2i)

< |n/2] + /2] + ¢TQi)lg[n/2] — cT(2i)lgi
—d(lglg [n/2])T (2i)
= n+cTQi)lg[n/2] —cTQi)lgi —d(glg [n/2))T(2i)
< n4cTQi)lgm/2+1) —cT(2i)lgi —d(glg(n/2))T(2i)

= n+cTQi)lgn/2+4+1)—cTi)lgi —d(g(gn — 1))T(2i)

< n+cTQRi)lgn—cTQRi)lgi —d(lglgn)T(2i)
if cTQ2i)lg(n/2+1)—d(g(gn—1))T(2i) <cT2i)lgn—d(glgn)T(2i).
Simple algebraic manipulations gives the following seqessf equivalent con-
ditions:
cTi)lgn/24+1)—d(g(lgn —1))T(2i) < cT2i)lgn —d(lglgn)T(2i)
clg(n/2+1)—d(g(lgn — 1)) < clgn —d(lglgn)
c(g(n/2+1) —lgn) < d(g(gn — 1) —Iglgn)

241 [—1
c(lg”/ +)gdlg gn
n Ign

1o lgn — 1
C(IQ(EJFE))SCZIQ g n

Solutions for Chapter 9: Medians and Order Statistics 9-21

Observe that/2+1/n decreases asincreases, bulgrn—1)/Ign increases as
n increases. Whem = 4, we havel /2+1/n = 3/4and(lgn—1)/lgn = 1/2.
Thus, we just need to choogesuch that 19(3/4) < d Ig(1/2) or, equivalently,
clg(3/4) < —d. Multiplying both sides by—1, we getd < —clg(3/4) =
clg(4/3). Thus, any value of that is at most lg(4/3) suffices.
c. Wheni is a constant7'(2i) = O(1) and Ign/i) = Ign —Igi = O(lgn).
Thus, when' is a constant less thary2, we have that
Un) = n+O0(T@2i)gn/i)
= n+ 0(0Q1)-0(gn))
= n+ 0(gn).
d. Suppose that = n/k fork > 2. Theni < n/2. If k > 2, theni < n/2, and
we have
Uin) = n+ O(TQ2i)lg(n/i)
= n+0(TQ2n/k)lgn/(n/k))
= n+O0(TQ2n/k)lgk) .

If Kk =2,thenn = 2i and Igk = 1. We have

Ui(n) = T(n)
= n+(T(n)—n)
< n+(TQRi)—n)

n+ (T2n/k) —n)
n+ (T2n/k)lgk —n)
= n+0(TQ2n/k)lgk) .

Solution to Problem 9-4

a. As in the quicksort analysis, elements and z; will not be compared with
each other if any element {1, 2,42, ..., 21} IS chosen as a pivot element
before eitherz; or z;, because; andz; would then lie in separate partitions.
There can be another reason thatandz; might not be compared, however.
Suppose thak < i, so thatzy < z;, and suppose further that the element
chosen as the pivot is;, wherek < [< i. In this case, because < [,
the recursion won'’t consider elements indexed higher thaiherefore, the
recursion will never look at; or z;, and they will never be compared with each
other. Similarly, ifj < k and the pivot elemery; is such thaty <[< k, then
the recursion won'’t consider elements indexed less thand agairz; andz;
will never be compared with each other. The final case is whenk < j
(but disallowingi = j), so thatz; < zx < z;; in this case, we have the same
analysis as for quicksort;; andz; are compared with each other only if one of
them is chosen as the pivot element.

Getting back to the case in whidh < i, it is again true that; andz; are
compared with each other only if one of them is chosen as tha plement.
As we know, they won't be compared with each other if the piefeiment is

9-22 Solutions for Chapter 9: Medians and Order Statistics

between them, and we argued above that they won’'t be compatkedcach
other if the pivot element ig; for [< i. Similarly, whenj < k, elementg;
andz; are compared with each other only if one of them is choseneapitiot
element.

Now we need to compute the probability thgtandz; are compared with
each other. Le,;; be the set of elements that includgs. . ., z;, along with

ZhrooZim Ik <iOrzjgg,...,zx if j <k.Inother words,
{zi Ziv1,..., 25y fi<k<j,

Zijk = { {2k 2kr1. ... 25} Tk <i,
{ZisZig1s.- o zey M j <k

With this definition ofZ;;, we have that
|Zijk| =max(j —i +1,j —k+1,k—i+1).

As in the quicksort analysis, we observe that until an eldénfiem Z,; is
chosen as the pivot, the whole s&} is together in the same partition, and so
each element o is equally likely to be the first one chosen as the pivot.

Letting C be the event that; is compared wittr; when findingz, sometime
during the execution of the algorithm, we have that

E[X;x] = Pr{C}
= Pr{z; orz; is the first pivot chosen frorZ; }
Pr{z; is the first pivot chosen frorz; ;; }

+ Pr{z; is the first pivot chosen fronZ . }
1 N 1
| Zijil 1 Ziji]

2
maxj —i+1,j —k+1L,k—i+1)°
b. Adding up all the possible pairs that might be compared gives

n—1 n
Xi = Z Z Xijk »

i=1j=i+1

and so, by linearity of expectation, we have

E[Xy] = E[X_: > Xijk}

i=1j=i+1
n—1 n
= Z Z E[Xijk]
i=1j=i+1
_ i Z 2
i=1j=i+l ma)(]_l+1,J—k+1,k—l+1)

We break this sum into the same three cases as beferek < j, k < i, and
Jj < k. With k fixed, we varyi andj. We get an inequality because we cannot

Solutions for Chapter 9: Medians and Order Statistics 9-23

havei = k = j, but our summation will aIIow it:

(2 28

i=1 j=k j=k+1i=k+1

k=2 k-1 |
+ —
i=1j=i+1 k—i+ 1)

B (ZZ e Z] k+1 Zk::;)‘

i=1j=k k+1

E[Xk]

IA

c. First, let's focus on the latter two summations. Each onessfuattions that are
strictly less tharl. The middle summation has— k terms, and the right-hand
summation hag —2 terms, and so the latter two summations sum to lessrthan

Now we look at the first summation. Let = j —i. There is only one way
for m to equal0: if i = k = j. There are only two ways forn to equall: if
i=k—1landj =k,orifi =kandj =k + 1. There are only three ways for
mtoequalk:ifi =k —2andj =k,ifi =k—1landj =k +1,0rifi =k
andj = k + 2. Continuing on, we see that there are at most 1 ways for
j —itoequaln. Sincej —i <n — 1, we can rewrite the first summation as

m 1

—m+ 1

Thus, we have

E[X:] < 2(n+n)
= 4n.

d. To show that RNDOMIZED-SELECT runs in expected tim&(n), we adapt
Lemma 7.1 for RNDOMIZED-SELECT. The adaptation is trivial: just re-
place the variableX in the lemma statement by the random variakilethat
we just analyzed. Thus, the expected running time aRBROMIZED-SELECT
isO(n + Xi) = O(n).

Lecture Notes for Chapter 11.:
Hash Tables

Chapter 11 overview

Many applications require a dynamic set that supports dreylictionary opera-
tions INSERT, SEARCH, and DELETE. Example: a symbol table in a compiler.

A hash table is effective for implementing a dictionary.

* The expected time to search for an element in a hash talBlélis under some
reasonable assumptions.

* Worst-case search time®(n), however.

A hash table is a generalization of an ordinary array.
* With an ordinary array, we store the element whose kayiispositionk of the

array.

* Given a keyk, we find the element whose keyksby just looking in thekth
position of the array. This is calledirect addressing

» Direct addressing is applicable when we can afford to alloea array with
one position for every possible key.

We use a hash table when we do not want to (or cannot) alloosderay with one
position per possible key.

* Use a hash table when the number of keys actually stored i sefsive to
the number of possible keys.

* A hash table is an array, but it typically uses a size propodi to the number
of keys to be stored (rather than the number of possible keys)

* Given a keyk, don't just usek as the index into the array.

* Instead, compute a function &f and use that value to index into the array. We
call this function ghash function

Issues that we’'ll explore in hash tables:

* How to compute hash functions. We’'ll look at the multiplicat and division
methods.

* What to do when the hash function maps multiple keys to theedatrlie entry.
We'll look at chaining and open addressing.

11-2 Lecture Notes for Chapter 11: Hash Tables

Direct-address tables

Scenario
* Maintain a dynamic set.

* Each element has a key drawn from a univérse- {0, 1,...,m — 1} wherem
isn't too large.

* No two elements have the same key.

Represent by direct-address tableor array,7[0...m — 1]:

* Eachslot, or position, corresponds to a keylin
* Ifthere’s an element with key k, thenT [k] contains a pointer t@.
* Otherwise,I'[k] is empty, represented L.

T
0
5 ; 1 key satellite data
(universe of keys) 2 \
oe 6e® 2
3 >3
/ 4
i
/ 6
/ 7
——{s8[|
/ 9

Dictionary operations are trivial and tak&(1) time each:

DIRECT-ADDRESSSEARCH(T, k)
return 7'[k]

DIRECT-ADDRESSINSERT(T, x)
T [keyx]] = x

DIRECT-ADDRESSDELETE(T, x)
T[keyx]] = NIL

Hash tables

The problem with direct addressing is if the univetses large, storing a table of
size|U | may be impractical or impossible.

Often, the seX of keys actually stored is small, comparedlto so that most of
the space allocated f@r is wasted.

Lecture Notes for Chapter 11: Hash Tables 11-3

* WhenK is much smaller tha®/, a hash table requires much less space than a
direct-address table.

* Can reduce storage requirement®tgK|).
* Can still getO(1) search time, but in thaverage casenot theworst case

Idea

Instead of storing an element with kéyin slot k, use a functior: and store the
element in slofi(k).

* We callz ahash function
e h:U —{0,1,...,m— 1}, so thath(k) is a legal slot number iff".
* We say thak hasheso sloti (k).

Collisions
When two or more keys hash to the same slot.

* Can happen when there are more possible keys than Hlbts-(m).

* For a given seKK of keys with|K| < m, may or may not happen. Definitely
happens if K| > m.

* Therefore, must be prepared to handle collisions in allxase
* Use two methods: chaining and open addressing.
* Chaining is usually better than open addressing. We'll érarboth.

Collision resolution by chaining

Put all elements that hash to the same slot into a linked list.

T
; /
(universe of keys) / Akl‘ Hk‘l‘/‘
’
/
<\ P
RS ES
ko / /
- gliivd
ke| k[]
/

[This figure shows singly linked lists. If we want to deleterakents, it’s better to
use doubly linked lists.]

» Slotj contains a pointer to the head of the list of all stored elém#rat hash
to j [or to the sentinel if using a circular, doubly linked listtvia sentinel]

* If there are no such elements, sfjotontainsniL.

11-4

Lecture Notes for Chapter 11: Hash Tables

How to implement dictionary operations with chaining:

* |nsertion:

CHAINED-HASH-INSERT(T, x)
insertx at the head of list'[h(key{x])]

* Worst-case running time i@(1).
* Assumes that the element being inserted isn't already ifighe
* It would take an additional search to check if it was alreatberted.

* Search;

CHAINED-HASH-SEARCH(T, k)
search for an element with ketyin list T'[h(k)]

Running time is proportional to the length of the list of elts in slot (k).
* Deletion:

CHAINED-HASH-DELETE(T, x)
deletex from the listT [h(keyx])]

* Given pointerx to the element to delete, so no search is needed to find this
element.

* Worst-case running time i@ (1) time if the lists are doubly linked.

» If the lists are singly linked, then deletion takes as long@arching, be-
cause we must find’s predecessor in its list in order to correctly update
nextpointers.

Analysis of hashing with chaining

Given a key, how long does it take to find an element with thgt &eto determine
that there is no element with that key?

* Analysis is in terms of théoad factora = n/m:

* n = # of elements in the table.
* m = # of slots in the table= # of (possibly empty) linked lists.
* Load factor is average number of elements per linked list.
* Canhavex < l,a = 1,0ra > 1.
* Worst case is when allkeys hash to the same slet get a single list of length
= worst-case time to search@(n), plus time to compute hash function.

* Average case depends on how well the hash function diséshibe keys among
the slots.

We focus on average-case performance of hashing with clggini

* Assumesimple uniform hashing any given element is equally likely to hash
into any of them slots.

Lecture Notes for Chapter 11: Hash Tables 11-5

e Forj = 0,1,...,m — 1, denote the length of lisf'[j] by n;. Then
n=no+n;+--+nyu_.

* Average value ofi; iSE[n;] =a =n/m.

* Assume that we can compute the hash functio®{n) time, so that the time

required to search for the element with keylepends on the length,, of the
list T'[h(k)].

We consider two cases:

* Ifthe hash table contains no element with keyhen the search is unsuccessful.

» If the hash table does contain an element with kethen the search is success-
ful.

[In the theorem statements that follow, we omit the asswmnptthat we're resolv-
ing collisions by chaining and that simple uniform hashipglées.]

Unsuccessful search

Theorem
An unsuccessful search takes expected ik + «).

Proof Simple uniform hashings any key not already in the table is equally likely
to hash to any of the: slots.

To search unsuccessfully for any keyneed to search to the end of the ig# (k)].
This list has expected length[i,)] = «. Therefore, the expected number of
elements examined in an unsuccessful seargh is

Adding in the time to compute the hash function, the totaletinequired is
O + a). [

Successful search
* The expected time for a successful search is @éb+ «).
* The circumstances are slightly different from an unsudakssarch.

* The probability that each list is searched is proportionahte number of ele-
ments it contains.

Theorem
A successful search takes expected tigé + «).

Proof Assume that the elementbeing searched for is equally likely to be any of
then elements stored in the table.

The number of elements examined during a successful searghis 1 more than
the number of elements that appear beforimm x’s list. These are the elements
insertedafter x was inserted (because we insert at the head of the list).

So we need to find the average, over thelementsx in the table, of how many
elements were inserted inics list after x was inserted.

Fori = 1,2,...,n, let x; be theith element inserted into the table, and let
ki = keyx;].

11-6

Lecture Notes for Chapter 11: Hash Tables

For alli andj, define indicator random variable;; = | {h(k;) = h(k;)}.

Simple uniform hashing= Pr{h(k;) = h(k;)} = 1/m = E[X;;] = 1/m (by
Lemma 5.1).

Expected number of elements examined in a successful sisarch

[:5 0 2m)

Jj=i+1
l n n

= > [1+ > E[Xxy]] (inearity of expectation)
— j=itl ‘

NI (n2 _ M) (equation (A.1))

Adding in the time for computing the hash function, we get tha expected total
time for a successful search@?2 + «/2 — «/2n) = O(1 + «).

Alternative analysis, using indicator random variablesevmore

For each slot and for each pair of keyk; andk;, define the indicator random
variableX;;; = | {the search is fox;, h(k;) = [, andh(k;) =1}. X;;; = 1 when
keysk; andk; collide at slot/ and when we are searching for.

Simple uniform hashing= Pr{i(k;) =1} = 1/m and PRh(k;) =1} = 1/m.
Also have Pithe searchis fox;} = 1/n. These events are all independest
Pr{X;; =1} = 1/nm* = E[X;;;] = 1/nm?* (by Lemma 5.1).

Define, for each element;, the indicator random variable

Y; = | {x; appears in a list prior to the element being searched for

Y; = 1ifand only if there is some sldtthat has both elements and.x; in its list,
and alsa < j (so thatx; appears aftex; in the list). Therefore,

j—1 m—1

Yj:Z Xijl-

i=1 1=

Lecture Notes for Chapter 11: Hash Tables 11-7

One final random variableZ , which counts how many elements appear in the list
prior to the element being searched fdr:=);_, ¥;. We must count the element
being searched for as well as all those preceding it in its$iompute BZ + 1]:

E[Z+1] = E|:1 +ZY,}
j=1
n j—1m—1
= 1+4+E |:Z Xl-j,:| (linearity of expectation)
j=1i=1 [=0
n j—1m—1
= 1+ Z E[Xii] (linearity of expectation)
j=1i=1[1=0
n j—1m—1 1
= 1+
; i=11=0 nm?
n 1
= 1+ (2) T ame
! nn—1) 1
N 2 “nm
= e
N 2m
oL
N 2m 2m
— 1422
2 2n
Adding in the time for computing the hash function, we get tha expected total
time for a successful search@2 + «/2 —«/2n) = O(1 + «). [
Interpretation

If n = O(m), thena = n/m = O(m)/m = O(1), which means that searching
takes constant time on average.
Since insertion take® (1) worst-case time and deletion takéx1) worst-case

time when the lists are doubly linked, all dictionary opimnas takeO(1) time on
average.

Hash functions

We discuss some issues regarding hash-function designraedrp schemes for
hash function creation.

What makes a good hash function?

* Ideally, the hash function satisfies the assumption of smpiform hashing.

11-8

Lecture Notes for Chapter 11: Hash Tables

* In practice, it's not possible to satisfy this assumptiance we don't know in
advance the probability distribution that keys are drawmifrand the keys may
not be drawn independently.

* Often use heuristics, based on the domain of the keys, ttecad@ash function
that performs well.

Keys as natural numbers

* Hash functions assume that the keys are natural numbers.

* When they're not, have to interpret them as natural numbers.

+ Example: Interpret a character string as an integer expressed in sadie
notation. Suppose the string@ RS:
* ASCllvalues:C=67,L =76,R=282,S = 83.
* There are 128 basic ASCII values.

- SointerprelCLRS as(67 - 1283) + (76 - 1282) + (82 - 1281) + (83 - 128°) =
141,764,947.

Division method
h(k) = k modm .

Example: m = 20 andk = 91 = h(k) = 11.

Advantage: Fast, since requires just one division operation.

Disadvantage: Have to avoid certain values of:

* Powers of2 are bad. Ifm = 27 for integer p, thenh(k) is just the least
significantp bits ofk.

* If k is a character string interpreted in radi® (as in CLRS example), then
m = 27 — 1 is bad: permuting characters in a string does not changedis h
value (Exercise 11.3-3).

Good choice forn: A prime not too close to an exact powerf

Multiplication method

Choose constat in the range) < A < 1.
Multiply key k by A.

Extract the fractional part dfA.

Multiply the fractional part byn.

. Take the floor of the result.

a s e

Put another wayi(k) = |m (k Amod1)]|, wherek Amod1l = kA — |kA| =
fractional part ofk A.

Disadvantage: Slower than division method.
Advantage: Value ofm is not critical.

Lecture Notes for Chapter 11: Hash Tables 11-9

(Relatively) easy implementation:

Choosen = 27 for some integep.

Let the word size of the machine hebits.

Assume thak fits into a single word.X takesw bits.)

Lets be an integer in the range< s < 2%. (s takesw bits.)
RestrictA to be of the forms /2.

w bits

——— extractp bits

binary poin(

Multiply &k by s.
Since we're multiplying twaw-bit words, the result i8w bits, r,2* +rq, where
r, is the high-order word of the product anglis the low-order word.

r1 holds the integer part dfA (|kA]) andry holds the fractional part ot A
(k Amodl = kA — |kA]). Think of the “binary point” (analog of decimal
point, but for binary representation) as being betwgesndr,. Since we don’t
care about the integer part bH, we can forget about; and just usey.

Since we wani{m (k A mod1)], we could get that value by shifting to the
left by p = Igm bits and then taking the bits that were shifted to the left of
the binary point.

We don't need to shift. The bits that would have been shifted to the left of
the binary point are thp most significant bits of,. So we can just take these
bits after having formed, by multiplying k& by s.

Example: m = 8 (impliesp = 3), w = 5, k = 21. Must have0 < s < 2°;
chooses = 13 = A = 13/32.

» Using just the formula to computgk): kA = 21-13/32 =273/32 = 8§—;
= kAmodl = 17/32 = m(k Amodl) = 8-17/32 = 17/4 = 41 =
[m (k A mod1)]| = 4, so thath(k) = 4.

+ Using the implementationks = 21-13 =273 = 8-2° + 17 = r; = 8,
ro = 17. Written inw = 5 bits, ry = 10001. Take thep = 3 most signifi-
cant bits ofry, get100 in binary, or4 in decimal, so thak(k) = 4.

How to choosed :

The multiplication method works with any legal value Af

But it works better with some values than with others, dependn the keys
being hashed.

Knuth suggests using ~ (+/5 — 1)/2.

11-10

Lecture Notes for Chapter 11: Hash Tables

Universal hashing

[We just touch on universal hashing in these notes. See tbk foo a full treat-
ment.]

Suppose that a malicious adversary, who gets to choose yeddkbe hashed, has
seen your hashing program and knows the hash function imadvd hen he could
choose keys that all hash to the same slot, giving worst{oelsavior.

One way to defeat the adversary is to use a different hashidmneach time. You
choose one at random at the beginning of your program. Unkessdversary
knows how you’ll be randomly choosing which hash functiorus®, he cannot
intentionally defeat you.

Just because we choose a hash function randomly, that toesah it's a good
hash function. What we want is to randomly choose a singlk hasction from a
set of good candidates.

Consider a finite collectiod? of hash functions that map a univer§eof keys into
theranggo0, 1,...,m — 1}. # isuniversalif for each pair of key%,! € U, where
k # [, the number of hash functiose # for whichh(k) = h(l)is < |#| /m.
Put another way# is universal if, with a hash function chosen randomly
from J¢, the probability of a collision between two different kegsnio more than
than1/m chance of just choosing two slots randomly and indepengentl

Why are universal hash functions good?
* They give good hashing behavior:

Theorem
Using chaining and universal hashing on Kkey

* If k is not in the table, the expected lengtlfnk,] of the list thatk hashes
tois < a.

* If k is in the table, the expected lengthrgy)] of the list that holdst is
<l+a.

Corollary
Using chaining and universal hashing, the expected timedoh $ARCH op-
eration isO(1).

* They are easy to design.

[See book for details of behavior and design of a universaxdf hash functions.]

Open addressing

An alternative to chaining for handling collisions.

Lecture Notes for Chapter 11: Hash Tables 11-11

Idea

Store all keys in the hash table itself.
Each slot contains either a key orL.
To search for key:

* Computei(k) and examine slot(k). Examining a slot is known aspobe

» If slot i (k) contains ke, the search is successful. If this slot contains,
the search is unsuccessful.

* There’s a third possibility: sloi(k) contains a key that is nét We compute
the index of some other slot, based/oand on which probe (count frot
Oth, 1st, 2nd, etc.) we’re on.

» Keep probing until we either find kely (successful search) or we find a slot
holdingNIL (unsuccessful search).

We need the sequence of slots probed to be a permutation slotheumbers
(0,1,...,m—1) (so that we examine all slots if we have to, and so that we
don’t examine any slot more than once).

Thus, the hash functionis: U x {0,1,...,m — 1} - {0,1,...,m — 1}.

probe number slot number

The requirement that the sequence of slots be a permutatidf, d, ...,
m — 1) is equivalent to requiring that therobe sequencéh(k, 0), h(k, 1),
..., h(k,m — 1)) be a permutation ofo, 1,...,m —1).

To insert, act as though we're searching, and insert at thienfic slot we find.

Pseudocode for searching
HASH-SEARCH(T, k)

i=0
repeat
Jj = h(k,i)
it T[j] ==
return j
i=i+1
until T[j]==NILori =m
return NiL

HASH-SEARCH returns the index of a slot containing kieyor NIL if the search is
unsuccessful.

11-12

Lecture Notes for Chapter 11: Hash Tables

Pseudocode for insertion
HASH-INSERT(T, k)
i=0
repeat
j = h(k,i)
if T[j]==NIL
T[j] =k
return j
elsei =i +1
until i ==m
error “hash table overflow”

HASH-INSERT returns the number of the slot that gets Keyor it flags a “hash
table overflow” error if there is no empty slot in which to petyk.

Deletion
Cannot just puNiL into the slot containing the key we want to delete.

» Suppose we want to delete kiyin slot ;.

* And suppose that sometime after inserting keywe were inserting kek’, and
during this insertion we had probed slpo{which contained key).

* And suppose we then deleted kieyy storingNIL into slot .
» And then we search for key .

* During the search, we would probe slptbeforeprobing the slot into which
key k' was eventually stored.

* Thus, the search would be unsuccessful, even thoughk’keyin the table.

Solution: Use a special valueeLETED instead ofNIL when marking a slot as
empty during deletion.

* Search should treateLETED as though the slot holds a key that does not match
the one being searched for.

* Insertion should treadELETED as though the slot were empty, so that it can be
reused.

The disadvantage of USIEELETED is that now search time is no longer dependent
on the load factou.

How to compute probe sequences

The ideal situation isiniform hashing. each key is equally likely to have any of
them! permutations of0, 1, ..., m — 1) as its probe sequence. (This generalizes
simple uniform hashing for a hash function that produces alevprobe sequence
rather than just a single number.)

It's hard to implement true uniform hashing, so we approxargwith techniques
that at least guarantee that the probe sequence is a paonaifo, 1,...,m—1).

None of these techniques can producesdlprobe sequences. They will make use
of auxiliary hash functions which maplU — {0,1,...,m — 1}.

Lecture Notes for Chapter 11: Hash Tables 11-13

Linear probing

Given auxiliary hash functiott’, the probe sequence starts at gl@k) and con-
tinues sequentially through the table, wrapping after:slet 1 to slot0.

Given keyk and probe number(0 < i < m), h(k,i) = (h'(k) + i) modm.
The initial probe determines the entire sequess®nly m possible sequences.

Linear probing suffers fromprimary clustering long runs of occupied sequences
build up. And long runs tend to get longer, since an empty@leteded by full
slots gets filled next with probabilityy + 1)/m. Result is that the average search
and insertion times increase.

Quadratic probing

As in linear probing, the probe sequence startd' @t). Unlike linear probing, it
jumps around in the table according to a quadratic functiotme® probe number:
h(k,i) = (W' (k) + c1i + c,i?) modm, wherec,, ¢, # 0 are constants.

Must constraircy, ¢,, andm in order to ensure that we get a full permutation of
(0,1,...,m—1). (Problem 11-3 explores one way to implement quadraticipgop

Can getsecondary clustering if two distinct keys have the sanig value, then
they have the same probe sequence.

Double hashing

Use two auxiliary hash functiong,; andh,. h; gives the initial probe, and,

gives the remaining probesi(k,i) = (h,(k) + ih,(k)) modm.

Must haveh, (k) be relatively prime ton (no factors in common other thdr in

order to guarantee that the probe sequence is a full peliotft(0, 1,...,m—1).

* Could choosen to be a power oR and#, to always produce an odd number
> 1.

* Could letm be prime and havé < h, (k) < m.

©(m?) different probe sequences, since each possible comhinatio; (k)
andh, (k) gives a different probe sequence.

Analysis of open-address hashing

Assumptions

* Analysis is in terms of load factax. We will assume that the table never
completely fills, so we always hae<n <m = 0 < «a < 1.

* Assume uniform hashing.
* No deletion.
* In asuccessful search, each key is equally likely to be bedrfor.

Theorem
The expected number of probes in an unsuccessful searchissat /(1 — «).

11-14

Lecture Notes for Chapter 11: Hash Tables

Proof Since the search is unsuccessful, every probe is to an @xtsjot, except
for the last probe, which is to an empty slot.

Define random variabl&’ = # of probes made in an unsuccessful search.

Define events;, fori = 1,2,..., to be the event that there is & probe and
that it's to an occupied slot.
X > i ifand only if probesl, 2, ...,i — 1 are made and are to occupied slets

Pr{X >i}=Pr{d,NA,N---NA;_}.

By Exercise C.2-5,

Prid,NA,N---NA;_1} = Pr{A;}-Pr{d,| A} -Pr{d;| A, N Ay}---
Pr{d,_; |AiNA,N---NA; 5} .

Claim
Pr{d;, | AsNA,N---NA;_} =(n—j+1)/(m—j+1). Boundary casej = 1
= Pr{A,} =n/m.

Proof For the boundary casg = 1, there aren stored keys and: slots, so the
probability that the first probe is to an occupied slat j3n.

Given thatj —1 probes were made, all to occupied slots, the assumptionifofom
hashing says that the probe sequence is a permutationiof . . ,m — 1), which in
turn implies that the next probe is to a slot that we have nbpyebed. There are
m — j + 1 slots remainingg — j + 1 of which are occupied. Thus, the probability
that thejth probe is to an occupied slotis — j + 1)/(m — j + 1). = (claim)

Using this claim,
PF{XEI'}=£~”_1~n_2---n_l_+2.
m m—1 m—2 m—i+2

i — 1 factors

n<m=(n—j)/(m—j)<n/mforj >0, which implies
i—1
PrX >i} < (1)
m

— ai—l .

By equation (C.25),

E[X] = iPr{Xzi}
i=1
iai—l
i=1
i=0

- - ! (equation (A.6)) . m (theorem)
—

A

Lecture Notes for Chapter 11: Hash Tables 11-15

Interpretation

If « is constant, an unsuccessful search takék) time.

* If @ = 0.5, then an unsuccessful search takes an averagg(df— 0.5) = 2
probes.

* If @« = 0.9, takes an average of (1 — 0.9) = 10 probes.

Corollary
The expected number of probes to insert is at m@ét —).

Proof Since there is no deletion, insertion uses the same proheeseg as an
unsuccessful search. [

Theorem
. 1 1
The expected number of probes in a successful search is apnmsl—.

o —
Proof A successful search for kéy follows the same probe sequence as when
key k was inserted.
By the previous corollary, ik was the(i + 1)st key inserted, thea equaled /m
at the time. Thus, the expected number of probes made in ehsteak is at most
1/(01—i/m) =m/(m —1i).
That was assuming thatwas the(i + 1)st key inserted. We need to average over
all n keys:

n—1
>
n—m-—i

i=0

n—1

p—

|3

~.

IA
~
sg I
(=]
='M§ 3
x
| =

(1/x)dx (by inequality (A.12))

m

5

3

=
3

5

m (theorem)

LQImRI— R~ R~
3

—_
|
S

Solutions for Chapter 11.:
Hash Tables

Solution to Exercise 11.1-4

We denote the huge array fyand, taking the hint from the book, we also have a
stack implemented by an arrdy The size ofS equals the number of keys actually
stored, so tha$ should be allocated at the dictionary’s maximum size. Thekst
has an attribute'. top, so that only entrie§[1.. S.top| are valid.

The idea of this scheme is that entriesTolnd S validate each other. If kel is
actually stored irf", thenT [k] contains the index, say, of a valid entry inS, and
S[/j] contains the valué. Let us call this situation, in which < T'[k] < S.top,
S[Tlk]] = k,andT[S[j]] = j, avalidating cycle

Assuming that we also need to store pointers to objects idioect-address table,
we can store them in an array that is parallel to eitfiear S. SinceS is smaller
thanT, we'll use an arrays’, allocated to be the same sizedor these pointers.
Thus, if the dictionary contains an objectwith key k, then there is a validating
cycle andS’[T [k]] points tox.

The operations on the dictionary work as follows:

* Initialization: Simply setS.top = 0, so that there are no valid entries in the
stack.

* SEARCH:. Given keyk, we check whether we have a validating cycle, i.e.,
whetherl < T'[k] < S.topandS[T'[k]] = k. If so, we returnS’[T [k]], and
otherwise we returmiL.

* INSERT. To insert objectx with key k, assuming that this object is not already
in the dictionary, we incremerf.top, setS[S.top] = k, setS’[S.top] = x,
and sefl'[k] = S.top.

* DELETE To delete objectx with key k, assuming that this object is in the
dictionary, we need to break the validating cycle. The tigko also ensure
that we don'’t leave a “hole” in the stack, and we solve thifm by moving
the top entry of the stack into the position that we are vagatitand then fixing
up that entry’s validating cycle. That is, we execute the followsgguence of
assignments:

Solutions for Chapter 11: Hash Tables 11-17

S[T[k]] = S[S.top]
S'[T[k]] = S'[S.top]
TIS[T[k]l] = T[k]
Tkl =0

S.top = S.top—1

Each of these operations—initializatione&CH, INSERT, and DELETE—takes
O(1) time.

Solution to Exercise 11.2-1
This solution is also posted publicly

For each pair of key%, !, wherek # [, define the indicator random variable
X = 1{h(k) = h(l)}. Since we assume simple uniform hashing{ @y, = 1} =
Pr{h(k) = h(l)} = 1/m, and so BXy,] = 1/m.

Now define the random variablE to be the total number of collisions, so that
Y =} 1. Xw- The expected number of collisions is

E[Y] = E[ZXH}
k#£l
= > E[Xu] (linearity of expectation)
k#l
_ n\l1
N 2Im

nn—1)

nn—1)
2m

Solution to Exercise 11.2-4
This solution is also posted publicly

The flag in each slot will indicate whether the slot is free.

* A free slot is in the free list, a doubly linked list of all freshots in the table.
The slot thus contains two pointers.

* A used slot contains an element and a pointer (possillyto the next element
that hashes to this slot. (Of course, that pointer pointsntuheer slot in the
table.)

11-18 Solutions for Chapter 11: Hash Tables

Operations

* Insertion:

* If the element hashes to a free slot, just remove the slot fhenfree list and
store the element there (withnaL pointer). The free list must be doubly
linked in order for this deletion to run i@ (1) time.

* If the element hashes to a used slgoitheck whether the elementalready
there “belongs” there (its key also hashes to glot

* If so, add the new element to the chain of elements in this Jlotdo
so, allocate a free slot (e.g., take the head of the freefbstjhe new
element and put this new slot at the head of the list pointeoytthe
hashed-to slotf).

* If not, E is part of another slot’s chain. Move it to a new slot by allo-
cating one from the free list, copying the old slotgs) contents (ele-
mentx and pointer) to the new slot, and updating the pointer in kbie s
that pointed tgj to point to the new slot. Then insert the new element in
the now-empty slot as usual.

To update the pointer tp, it is necessary to find it by searching the chain
of elements starting in the slathashes to.

* Deletion: Let j be the slot the elementto be deleted hashes to.

* If x is the only element iy (j doesn’t point to any other entries), just free
the slot, returning it to the head of the free list.

* If x isin j but there’s a pointer to a chain of other elements, move tke fir
pointed-to entry to sloj and free the slot it was in.

» If x is found by following a pointer frony, just freex’s slot and splice it out
of the chain (i.e., update the slot that pointed:tm point tox’s successor).

» Searching: Check the slot the key hashes to, and if that is not the desired
element, follow the chain of pointers from the slot.

All the operations take expectad(1) times for the same reason they do with
the version in the book: The expected time to search the shai@(1 + «)
regardless of where the chains are stored, and the factlthla¢ &lements are
stored in the table means that< 1. If the free list were singly linked, then
operations that involved removing an arbitrary slot from firee list would not
runin O(1) time.

Solution to Exercise 11.2-6

We can view the hash table as if it hadrows andL columns; each row stores
one chain. The array hasL entries storing: keys, andnl — n empty values.
The procedure picks array positions at random until it finleya which it returns.
The probability of success on one drawnigmL, somL/n = L/« trials are
needed. Each trial takes tind¥(1), since the individual chain sizes are known. The
chain for the last draw needs to be scanned to find the dedeatkent, however,
costingO(L).

Solutions for Chapter 11: Hash Tables 11-19

Solution to Exercise 11.3-3

First, we observe that we can generate any permutation byguwesee of inter-
changes of pairs of characters. One can prove this propamyafly, but infor-

mally, consider that both heapsort and quicksort work bgrittanging pairs of
elements and that they have to be able to produce any peromutdttheir input

array. Thus, it suffices to show that if stringcan be derived from string by

interchanging a single pair of characters, ttvesindy hash to the same value.

Let us denote théth character inx by x;, and similarly fory. The interpreta-
tion of x in radix 27 is 3_0—; x;2'7, and soh(x) = (31—, x;2'7) mod (27 — 1).
Similarly, 1(y) = (Xi=5 ¥:2'?) mod (27 — 1).

Suppose that andy are identical strings of characters except that the characters

in positionsa andb are interchangedx, = y, andy, = x;. Without loss of
generality, letz > b. We have

h(x) — h(y) = (2—: xi2i”) mod (27 — 1) — (i yi2i”) mod (27 — 1) .

i=0 i=0
Since0 < h(x),h(y) < 27 — 1, we have that- (22 — 1) < h(x) — h(y) <27 — 1.
If we show that(k(x) — k(y)) mod (2?2 — 1) = 0, thenh(x) = h(y).
Since the sums in the hash functions are the same exceptdioesa andb, we
have
(h(x) —h(y)) mod(2” —1)

= ((%a2" 4 x52°7) — (ya2*” + y52"7)) mod (27 — 1)

= (X429 + xp2°P) — (x2%7 4 x,2°P)) mod (27 — 1)

= ((xa — X5)2% — (x4 — x)2"7) mod (27 — 1)

= ((xa — %) (2 —2°7)) mod (27 — 1)

= ((xg — xp)2°P 297D 1)) mod (27 — 1) .
By equation (A.5),

a—b—1 2(a—b)p 1

> 2= 2w _1

i=0
and multiplying both sides by” — 1, we ge@ 7 —1 = (X¢207" 27%) (27 - 1).
Thus,

(h(x) = h(y)) mod (27 — 1)

a—b—1
— ((xa — xp)27 (> 21”') (27 — 1)) mod (27 — 1)

i=0
= 0,
since one of the factors & — 1.
We have shown that:(x) — 4(y)) mod (27 — 1) = 0, and sth(x) = h(y).

11-20 Solutions for Chapter 11: Hash Tables

Solution to Exercise 11.3-5

Leth = |B| andu = |U|. We start by showing that the total number of collisions
is minimized by a hash function that mapgb elements ofU to each of theb

values inB. For a given hash function, lat be the number of elements that map
toj € B. We haveu =), _p u;. We also have that the number of collisions for

agivenvalue off € Bis (*y) = u;(u; —1)/2.

Lemma
The total number of collisions is minimized when = u /b for eachj € B.

Proof If u; < u/b, let us callj underloaded and ifu; > u/b, let us call j
overloaded Consider an unbalanced situation in which # u/b for at least

one value; € B. We can think of converting a balanced situation in which all
u; equalu/b into the unbalanced situation by repeatedly moving an ehérnet
maps to an underloaded value to map instead to an overloadiael yIf you think

of the values ofB as representing buckets, we are repeatedly moving elements
from buckets containing at mos{/s elements to buckets containing at leagb
elements.)

We now show that each such move increases the number ofi@adljsso that
all the moves together must increase the number of colbsioBuppose that
we move an element from an underloaded vajuéo an overloaded valué,
and we leave all other elements alone. Becaysis underloaded and is
overloaded,u; < u/b < u;. Considering just the collisions for values
and k, we haveu;(u; — 1)/2 + ux(ux — 1)/2 collisions before the move and
(uj — 1)(u; —2)/2 4+ (ur + uy /2 collisions afterward. We wish to show that
wju; —1)/2 +up(ur —1)/2 < (uj —)(u; —2)/2 + (ur + Dug /2. We have
the following sequence of equivalent inequalities:
uj < up+1
2up +2
U —2u; +2
7 —uj +up —ug u? —3u; + 2+ up +ug
uj(u; — 1) +ug(ug — 1) (u; — D —2) + (ux + Dug
wiu; — /2 +urur —1)/2 < (u; —D; —2)/2 4+ (ur + Dug/2.
Thus, each move increases the number of collisions. We adac¢hat the number
of collisions is minimized whemn; = u/b for each;j € B. [

21/{]'

u? —

AN AN A

By the above lemma, for any hash function, the total humberotifsions must
be at leasb(u/b)(u/b — 1)/2. The number of pairs of distinct elements(l§ =
u(u — 1)/2. Thus, the number of collisions per pair of distinct elersentist be at
least

Solutions for Chapter 11: Hash Tables 11-21

bu/b)u/b—1)/2 u/b—1
u(u—1)/2 o ou—1
u/b—1
u
1 1

b u’
Thus, the bound on the probability of a collision for any pair of distinct etents
can be nolessthatyb —1/u = 1/|B|—1/|U|.

Solution to Problem 11-1

a. Since we assume uniform hashing, we can use the same olize@sis used
in Corollary 11.7: that inserting a key entails an unsudc¢search followed
by placing the key into the first empty slot found. As in thegdrof Theo-
rem 11.6, if we letX be the random variable denoting the number of probes
in an unsuccessful search, then{Rr> i} < «’~!. Sincen < m/2, we have
a < 1/2. Lettingi = kK + 1, we have P{X >k} = Pr{X >k + 1} <
(1/2)(k+1)—1 — 2k

b. Substitutingk = 2Ign into the statement of part (a) yields that the probability
that theith insertion requires more than= 2Ign probes is at most=2'9" =
(292 =n"2 = 1/n2.

We must deal with the possibility thatlg » is not an integer, however. Then
the event that théth insertion requires more thahgn probes is the same
as the event that thah insertion requires more thgi2lgn | probes. Since
[2lgn] > 2Ilgn — 1, we have that the probability of this event is at most
212lanl < p=Clen=) = 2 /n2 = O(1/n?).

c. Letthe evend beX > 2Ilgn,andfori = 1,2,...,n, letthe event4; be X; >
2lgn. In part (b), we showed that PA;} = O(1/n?) fori = 1,2,...,n.
From how we defined these events,= 4, U 4, U --- U A,. Using Boole’s
inequality, (C.19), we have

Pr{d} < Pr{d;} +Pr{d,}+---+Pr{4,}
< n-0(1/n?
= o(i/n).

d. We use the definition of expectation and break the sum intgpavts:

11-22 Solutions for Chapter 11: Hash Tables

E[X] =) k-Pr{X =k}
k=1
[21gn] n
= Y k-PiX=ki+ > k-Pr{X=k}
k=1 k=[2lgn]+1
[21gn] n
< Y [2lgn]-Pr{X =k}+ Y n-Pr{X =k}
k=1 k=[2lgn]+1
[21gn] n
= [2ign] > Pr{X =k}+n Y = Pr{X=k}.
k=1 k=[2Ign]+1

Since X takes on exactly one value, we have thaf>9" Pr{x = k}
Pr{X <[2lgnl} < 1 and)} 5,41 PH{X =k} < Pr{X >2lgn}
O(1/n), by part (c). Therefore,

E[X] < [2lgn]-1+n-0(1/n)
[2lgn] + O(1)
= O(gn).

Solution to Problem 11-2
This solution is also posted publicly

a. A particular key is hashed to a particular slot with probiapil /n. Suppose
we select a specific set #fkeys. The probability that thedekeys are inserted
into the slot in question and that all other keys are insegteelwhere is

ey

Since there ar(%’{) ways to choose our keys, we get

1\ 1" (n
=|- 1—— .
o=(3) (-3) ;)
b. Fori = 1,2,...,n, let X; be a random variable denoting the number of keys

that hash to slat, and let4; be the event thak; = k, i.e., that exactlyk keys
hash to sloi. From part (a), we have RA} = Q. Then,

P = Pr{M =k}

Prilmee) = 4

Pr{there exists such thatX; = k and thatX; <k fori = 1,2,...,n}
Pr{there exists such thatX; = k}

Pr{A,UA,U---UA,}

Pr{A,} + Pr{4d,} +--- + Pr{4,} (by inequality (C.19))

= nQy .

1 VA [

IA

Solutions for Chapter 11: Hash Tables 11-23

c. We start by showing two facts. Firstt — 1/n < 1, which implies
(1 =1/n)"* < 1. Secondn!/(n—k)! =n-(n—1)-(n—=2)--- (n—k+1) < n*.
Using these facts, along with the simplificatibh> (k /e)* of equation (3.18),
we have

1* N * al
O = (E) (1_2) K'(n —k)!

n! .
< AT (1=1/n)"* <1)
< % (n!/(n —k)! < n¥)
ek | i
< = (k!> (k/e)*) .

d. Notice that whem = 2, Iglgn = 0, so to be precise, we need to assume that
n>3.

In part (c), we showed tha@, < e*/k* for anyk; in particular, this inequality
holds fork,y. Thus, it suffices to show thaf‘O/kok" < 1/n3 or, equivalently,
thatn? < ko0 /eko.

Taking logarithms of both sides gives an equivalent cooditi

3lIgn < ko(lgko —Ige)

IZJIQ (gc +1glgn —Iglglgn —Ige) .

Dividing both sides by lg gives the condition

Igl—(lgc+lglgn—lglglgn—lge)

o1+ lgc —Ige B lglglgn ‘
lglgn lglgn
Let x be the last expression in parentheses:
“(1+ lgc —Ige 3 lglglgn .
lglgn lglgn
We need to show that there exists a constast1 such thaB < cx.

Noting that lim,_.., x = 1, we see that there existg such thatc > 1/2 for all
n > ng. Thus, any constant > 6 works forn > n,.

We handle smaller values af—in particular,3 < n < ny—as follows. Since
n is constrained to be an integer, there are a finite numberiofthe range
3 < n < no. We can evaluate the expressierior each such value of and
determine a value af for which3 < cx for all values ofn. The final value ot

that we use is the larger of

* 6, which works for alln > n,, and

* MaX%<,<n, {c : 3 < cx}, i.e., the largest value af that we chose for the
range3 < n < ny.

Thus, we have shown th&,, < 1/n3, as desired.

To see thatP;, < 1/n? for k > ko, we observe that by part (bfx < nQy
for all k. Choosingk = ko gives Py, < nQx, < n-(1/n*) = 1/n*. For

11-24 Solutions for Chapter 11: Hash Tables

k > ko, we will show that we can pick the constansuch thatQ; < 1/n* for
all k > ko, and thus conclude tha, < 1/»2 for all k > k.

To pick ¢ as required, we let be large enough th#ty > 3 > e. Thene/k < 1
for all k > ko, and soe¥ / k* decreases dsincreases. Thus,

QO < /K
< eko/kko
< 1/n’
for k > k.

e. The expectation oM is

E[M] = Xn:k-Pr{M =k}

k=0

kO n
= Y k-Pe{M =k}+ Y k-Pr{M =k}
k=0 k=ko+1

n

ko
D ko-PriM =k}+ > n-Pr{M =k}

k=0 k=ko+1

IA

kO n
< ko) Pr{M =k}+n Y Pr{M =k}
k=0 k=ko+1
= koPr{M§k0}+nPr{M>k0} ,
which is what we needed to show, singe= clgn/Iglgn.

To show that BEM] = O(lgn/lglgn), note that P{M < kq} <1 and
PH{M >k} = Y Pr{M=k}
k=ko+1

:Zpk

k=ko+1

< Y yn (by part (d))

k=ko+1
< n-(1/n?
= 1/n.
We conclude that
EM] < ko-1+n-(1/n)
= ko+1
O(lgn/lglgn) .

Solution to Problem 11-3

a. From how the probe-sequence computation is specified, #dg & see that
the probe sequence (% (k), h(k) + 1, h(k) + 1 + 2, h(k) + 1 + 2 + 3,

Solutions for Chapter 11: Hash Tables 11-25

o h(ky+1+2+3+---+1,...), where all the arithmetic is modula.
Starting the probe numbers frdintheith probe is offset (module) from (k)
by

i

(S I B
Z]— > —51 —1—51.
Jj=0

Thus, we can write the probe sequence as

1.1
W(k,i) = (h(k) +aits i2) modm ,

which demonstrates that this scheme is a special case ofajigzgorobing.

b. Let 4'(k,i) denote theith probe of our scheme. We saw in part (a) that
W(k,i) = (h(k) +i(i + 1)/2) modm. To show that our algorithm exam-
ines every table position in the worst case, we show that fliven key, each of
the firstm probes hashes to a distinct value. That is, for anyikeyd for any
probe numbers andj such thal <i < j < m, we haveh'(k,i) # W' (k, j).
We do so by showing thdt (k,i) = h'(k, j) yields a contradiction.

Let us assume that there exists a kegnd probe numbersand j satsifying
0<i<j<mforwhichht'(k,i) =HW(k,j). Then

hk) +i(i +1)/2=h(k)+ j(j +1)/2 (modm),

which in turn implies that

ii+1)/2=j(+1)/2 (modm),

or

JUG+1)/2—i(i +1)/2=0 (modm).

Sincej(j + 1)/2—i(i+1)/2=(j —i)(j +i+1)/2, we have
(G—i)j+i+1)/2=0 (modm).

The factorsj — i and j + i + 1 must have different parities, i.ej, — i is
even if and only ifj + i + 1 is odd. (Work out the various cases in which
i and j are even and odd.) Sinag —i)(j +i + 1)/2 = 0 (modm),
we have(j —i)(j +i +1)/2 = rm for some integer or, equivalently,
(j—i)(+i+1) = r-2m. Using the assumption that is a power
of 2, let m = 2P for some nonnegative integer, so that now we have
(j —i)(j +i+1) = r-2°t Because exactly one of the factois— i
andj + i + 1 is even,2?*! must divide one of the factors. It cannot be
j —i,sincej —i < m < 2Pt Butit also cannot bg + i + 1, since
jHi+1<(m—-1)+m—2)+1=2m—2 < 2P+ Thus we have derived
the contradiction tha2”*! divides neither of the factors —i andj +i + 1.
We conclude thak'(k,i) # h'(k, j).

Lecture Notes for Chapter 12:
Binary Search Trees

Chapter 12 overview

Search trees

Data structures that support many dynamic-set operations.
Can be used as both a dictionary and as a priority queue.
Basic operations take time proportional to the height ofttee.

* For complete binary tree with nodes: worst cas®(lg n).
* For linear chain ofi nodes: worst cas®(n).

Different types of search trees include binary search treelsblack trees (cov-
ered in Chapter 13), and B-trees (covered in Chapter 18).

We will cover binary search trees, tree walks, and operatwrbinary search trees.

Binary search trees

Binary search trees are an important data structure forrdimsets.

Accomplish many dynamic-set operations(h) time, whereh = height of
tree.

Asin Section 10.4, we represent a binary tree by a linkedstatature in which
each node is an object.

T.root points to the root of tre&'.
Each node contains the attributes

» key(and possibly other satellite data).
* left: points to left child.

* right: points to right child.

* p: points to parentZ.root.p = NIL.

12-2

Lecture Notes for Chapter 12: Binary Search Trees

+ Stored keys must satisfy thenary-search-tree property

* If yisinleft subtree of, theny.key< x.key.
* If yisinright subtree ok, theny.key> x.key.

Draw sample tree.

[This is Figure 12.1(a) from the text, usig B, D, F, H, K in place of 2, 3, 5,
5, 7, 8, with alphabetic comparisons. It's OK to have dupédeeys, though there
are none in this example. Show that the binary-search-t@eepty holds.]

The binary-search-tree property allows us to print keys minary search tree in
order, recursively, using an algorithm called ianrder tree walk Elements are
printed in monotonically increasing order.

How INORDER-TREE-WALK works:

* Check to make sure thatis notNIL.

* Recursively, print the keys of the nodesiiis left subtree.
* Printx’s key.

* Recursively, print the keys of the nodesiils right subtree.

INORDER-TREE-WALK (x)
if x # NIL
INORDERTREE-WALK (x.left)
print key{x]
INORDER-TREE-WALK (x.right)

Example
Do the inorder tree walk on the example above, getting thewtut BDFHK .

Correctness
Follows by induction directly from the binary-search-tyg®perty.

Time
Intuitively, the walk take® (n) time for a tree withh nodes, because we visit and
print each node oncgBook has formal proof.]

Lecture Notes for Chapter 12: Binary Search Trees 12-3

Querying a binary search tree

Searching

TREE-SEARCH(x, k)
if x == NIL ork == ke)jx]
return x
if £ < x.key
return TREE-SEARCH(x.left, k)
else return TREE-SEARCH(x.right, k)

Initial call is TREE-SEARCH(T.root, k).

Example
Search for value® andC in the example tree from above.

Time
The algorithm recurses, visiting nodes on a downward paim fthe root. Thus,
running time isO(h), whereh is the height of the tree.

[The text also gives an iterative version ®REE-SEARCH, which is more effi-
cient on most computers. The above recursive procedure g stiaightforward,
however.]

Minimum and maximum

The binary-search-tree property guarantees that

* the minimum key of a binary search tree is located at the eftmode, and
* the maximum key of a binary search tree is located at themght node.

Traverse the appropriate pointeksfi or right) until NIL is reached.

TREE-MINIMUM (x)

while x.left # NIL
x = x.left
return x

TREEMAXIMUM (x)

while x.right # NIL
x = x.right
return x

Time
Both procedures visit nodes that form a downward path froenrdot to a leaf.
Both procedures run i@ (k) time, whereh is the height of the tree.

12-4 Lecture Notes for Chapter 12: Binary Search Trees

Successor and predecessor

Assuming that all keys are distinct, the successor of a nodethe nodey such
that y.keyis the smallest key- x.key. (We can findx’s successor based entirely
on the tree structure. No key comparisons are necessary.hdt the largest key
in the binary search tree, then we say thiatsuccessor isliL.

There are two cases:

1. If nodex has a non-empty right subtree, thes successor is the minimum in
x’'s right subtree.

2. If nodex has an empty right subtree, notice that:

* As long as we move to the left up the tree (move up through dpfidren),
we're visiting smaller keys.

* x’s successoy is the node that is the predecessor of (is the maximum
in y’s left subtree).

TREE-SUCCESSORX)
if x.right # NIL
return TREE-MINIMUM (x.right)
y =x.p
while y # NIL andx == y.right
X =Y
y=Y.P
return y

TREE-PREDECESSORS symmetric to REE-SUCCESSOR

Example

* Find the successor of the node with key value 15. (Answer: \edye 17)
* Find the successor of the node with key value 6. (Answer: Kdyes7)
* Find the successor of the node with key value 4. (Answer: Kdye/6)
* Find the predecessor of the node with key value 6. (Answey:vaiie 4)

Time

For both the REE-SucCcEssORand TREE-PREDECESSORprocedures, in both
cases, we visit nodes on a path down the tree or up the tree, Mimning time is
O(h), whereh is the height of the tree.

Lecture Notes for Chapter 12: Binary Search Trees 12-5

Insertion and deletion

Insertion and deletion allows the dynamic set represenyed tinary search tree
to change. The binary-search-tree property must hold tiféechange. Insertion is
more straightforward than deletion.

Insertion

TREE-INSERT(T, 2)

y = NIL
x = T.root
while x # NIL
y=x
if z.key< x.key
x = x.left
elsex = x.right
z.p=y
if y==NIL
T.root = 7 /I treeT was empty
elseifz.key< y.key
y.left =z

elsey.right = z
* Toinsert valuev into the binary search tree, the procedure is given noaéth
z.key=v, z.left = NIL, andz.right = NIL.
* Beginning at root of the tree, trace a downward path, maimgitwo pointers.

* Pointerx: traces the downward path.
* Pointery: “trailing pointer” to keep track of parent of.

» Traverse the tree downward by comparing the value of nodeveith v, and
move to the left or right child accordingly.

* Whenx is NIL, it is at the correct position for node

* Comparez’s value withy's value, and insert at eithery’s left or right, appro-
priately.

Example
Run TREE-INSERT(T, C) on the first sample binary search tree. Result:

12-6

Lecture Notes for Chapter 12: Binary Search Trees

Time
Same as REE-SEARCH. On a tree of height, procedure take® (k) time.

TREE-INSERTcan be used withNORDER-TREE-WALK to sort a given set of num-
bers. (See Exercise 12.3-3.)

Deletion

[Deletion from a binary search tree changed in the thirdiedit In the first two
editions, when the node passed taf REE-DELETE had two childrenz’s succes-
sory was the node actually removed, witls contents copied intg. The problem
with that approach is that if there are external pointers the binary search tree,
then a pointer tg from outside the binary search tree becomes stale. In the thi
edition, the node passed td REE-DELETE is always the node actually removed,
so that all external pointers to nodes other thasmain valid.]

Conceptually, deleting nodefrom binary search tre€ has three cases:

1. If z has no children, just remove it.

2. If z has just one child, then make that child take position in the tree, drag-
ging the child’s subtree along.

3. If z has two children, then find’s successop and replace; by y in the tree.
y must be inz’s right subtree and have no left child. The restz&f original
right subtree becomess new right subtree, and's left subtree becomeg’s
new left subtree.

This case is a little tricky because the exact sequence jof sd&en depends on
whethery is z’s right child.

The code organizes the cases a bit differently. Since itmdl/e subtrees around
within the binary search tree, it uses a subroutineRANSPLANT, to replace one
subtree as the child of its parent by another subtree.

TRANSPLANT(T, u, v)
if u.p==NIL
T.root = v
elseifu == u.p.left
u.pleft =v
elseu.p.right = v
if v £ NIL
V.p = u.p
TRANSPLANT(T, u, v) replaces the subtree rooteduaby the subtree rooted at
* Makesu's parent become’s parent (unless is the root, in which case it makes

v the root).

* u’s parent gety as either its left or right child, depending on whethewras a
left or right child.

* Doesn't update. left or v.right, leaving that up to RANSPLANT'S caller.

TREE-DELETE(T, z) has four cases when deleting nogddrom binary search
treeT:

Lecture Notes for Chapter 12: Binary Search Trees 12-7

* If z has no left child, replace by its right child. The right child may or may not
benNiL. (If z's right child isNIL, then this case handles the situation in which
has no children.)

NIL r

« If z has just one child, and that child is its left child, then esglz by its left
child.

¢ Otherwise,z has two children. Find’s successor. y must lie inz’s right
subtree and have no left child (the solution to Exercise-b2a page 12-15 of
this manual shows why).

Goal is to replace by y, splicingy out of its current location.

* If yisz’s right child, replacez by y and leavey’s right child alone.

* Otherwise,y lies within z’s right subtree but is not the root of this subtree.
Replacey by its own right child. Then replaceby y.

12-8

Lecture Notes for Chapter 12: Binary Search Trees

TREE-DELETE(T, 2)
if z.left==NIL
TRANSPLANT(T, z, z.right) /I z has no left child
elseifz.right == NIL
TRANSPLANT(T, z, z.left) I/l z has just a left child
else// z has two children.
y = TREEMINIMUM (z.right) Il yis z's successor
if y.p#z
/I y lies within z’s right subtree but is not the root of this subtree.
TRANSPLANT(T, y, y.right)
y.right = z.right
y.right.p =y
/I Replacez by y.
TRANSPLANT(T, z, y)
y.left = z.left

y.leftp=y

Note that the last three lines execute whéras two children, regardless of whether
y is z’s right child.

Example
On this binary search treg,

run the following.[You can either start with the original tree each time ortstaith
the result of the previous call. The tree is designed so ittagrevay will elicit all
four cases.]

* TREE-DELETE(T, I) shows the case in which the node deleted has no left child.

* TREEDELETE(T, G) shows the case in which the node deleted has a left child
but no right child.

* TREE-DELETE(T, K) shows the case in which the node deleted has both chil-
dren and its successor is its right child.

* TREE-DELETE(T, B) shows the case in which the node deleted has both chil-
dren and its successor is not its right child.

Lecture Notes for Chapter 12: Binary Search Trees 12-9

Time
O(h), on a tree of heighti. Everything isO(1) except for the call to REE-
MINIMUM .

Minimizing running time

We've been analyzing running time in terms/ofthe height of the binary search
tree), instead of (the number of nodes in the tree).

* Problem: Worst case for binary search tre®is)—no better than linked list.
* Solution: Guarantee small height (balanced trek)=0(lg n).

In later chapters, by varying the properties of binary dearees, we will be able
to analyze running time in terms of

* Method: Restructure the tree if necessary. Nothing spésiagquired for
querying, but there may be extra work when changing the tsireof the tree
(inserting or deleting).

Red-black trees are a special class of binary trees thatistbé worst-case be-
havior of O(n) that we can see in “plain” binary search trees. Red-bladsteze
covered in detail in Chapter 13.

Expected height of a randomly built binary search tree

[These are notes on a starred section in the book. | coveredrifterial in an
optional lecture.]

Given a set of: distinct keys. Insert them in random order into an initiaippty
binary search tree.
* Each of then! permutations is equally likely.

» Different from assuming that every binary search treenockeys is equally
likely.

Try it for n = 3. Will get 5 different binary search trees. When we look at the
binary search trees resulting from each of3haput permutations, 4 trees will
appear once and 1 tree will appear twi¢€his gives the idea for the solution
to Exercise 12.4-3.]

* Forget about deleting keys.

We will show that the expected height of a randomly built bjnsearch tree is
O(lgn).

Random variables

Define the following random variables:

* X, = height of a randomly built binary search treeokeys.

12-10

Lecture Notes for Chapter 12: Binary Search Trees

« Y, = 2% = exponential height
* R, = rank of the root within the set of keys used to build the binary search
tree.

* Equally likely to be any element ¢fi, 2, ..., n}.
* If R, =i, then

* Left subtree is a randomly-built binary search tree enl keys.
* Right subtree is a randomly-built binary search trea:eni keys.

Foreshadowing

We will need to relate |,] to E[X,,].
We'll useJensen’s inequality

E[f(X)] = f(E[X]). [leave on board]
provided

* the expectations exist and are finite, and
* f(x)isconvex forallx,yandall0 <A <1

JAx+ (A -D)y) =Af()+ A=) f(y).

T+ (LA)),

X AXx+ (1)y y

Convex= “curves upward”

We'll use Jensen’s inequality fof (x) = 2*.

Since2* curves upward, it's convex.

Lecture Notes for Chapter 12: Binary Search Trees 12-11

Formula for Y,

Think aboutY,,, if we know thatR, = i:

Height of root is 1 more than the maximum height of its chifdre
Yy =2-maX¥i-1, Yni) .

Base cases:

« Y; = 1 (expected height of &node tree i2° = 1).

* DefineY, = 0.

Define indicator random variableés, 1, Z, 5, ..., Zyn:
Z,i=W{R, =i} .

R, is equally likely to be any element ét,2, ..., n}
= Pr{R, =i} =1/n
=E[Z,;]=1/n [leave on board]
(since I {A}] = Pr{4})
Consider a givem-node binary search tree (which could be a subtree). Exactly
oneZ,; is 1, and all others aré. Hence,

Y, = Z Zni-(2-max¥;_,.Y,;)). [leave on board]
i=1

[Recall: Y, = 2-max(¥;_,Y,_;) was assuming that, = i.]

Bounding E[Y,]

We will show that HY,] is polynomial inn, which will imply that E[X,] =
O(lgn).

Claim
Z,.: isindependent of;_; andY,_;.

Justification If we choose the root such th&t, = i, the left subtree containis- 1
nodes, and it's like any other randomly built binary searele withi — 1 nodes.
Other than the number of nodes, the left subtree’s struttasenothing to do with
it being the left subtree of the root. Hendé,, andZ,, ; are independent.

Similarly, Y,_; andZ, ; are independent. m (claim)

12-12 Lecture Notes for Chapter 12: Binary Search Trees

Fact
If X andY are nonnegative random variables, thdmBx X, Y)] < E[X]+E[Y].
[Leave on board. This is Exercise C.3-4 from the text.]

Thus,

E [Yn] = E |:i Zn,i (2 : ma)(Yi—l» Yn—i))i|

i=1

= Z E[Z,;, -2 -maxYi_,Y,—))] (linearity of expectation)
i=1

= Y E[Z,]-E[2-max¥;_;.Y,;)] (independence)
i=1

— Z% . E[2.max(Y,~_1,Yn_i)] (E[Zn,i] — l/l’l)
2 n

= ;;E[max(yi—layn—i)] (ElaX] =a E[X])
2 & _

= 5 ;(E [Yio1] + E[Yasi]) (earlier fact) .

Observe that the last summation is
(E[Yo] + E[Yami]) + (E[Nh] + E[Ys—2]) + (E[Y2] + E[Ya-3])

n—1

+o+ (E[Y,] +E[Yo) =2) E[V],
i=0
and so we get the recurrence

4 n—1
E[Y,] <=) E[Y]. [leave on board]
n i=0

Solving the recurrence

We will show that for all integers > 0, this recurrence has the solution

1 3
el < ("),

4 3
Lemma

()-00)

[This lemma solves Exercise 12.4-1.]

Lecture Notes for Chapter 12: Binary Search Trees 12-13

-1 -1
Proof Use Pascal’s identity (Exercise C.1- ()Z) (n) + (n i)

3

Also using the simple identit() =1= (3

<n+3) n+2 n+2
= +

), we have

4 3 4

n+4+2 n—+1
3 3

—;3) . m (lemma)

We solve the recurrence by induction on
Basis:n = 1.

3
Inductive step: Assume that EY;] < Z(Z -;) foralli < n. Then

4
Ev] < - Z E[Y:] (from before)

IA

41 [i+3
-3 —(l +) (inductive hypothesis)
n 4 3

1 [i+3
-:x(7)
(n:3) (lemma)

(n + 3)!

4 (n—1)!

(n + 3)!
3! n!

Bl= S| = S|

12-14

Lecture Notes for Chapter 12: Binary Search Trees

_ln+3
o4\ 3)7

1 3
Thus, we've proven that |,] < 1 (n ;r)

Bounding E[X,]

With our bound on HY,,], we use Jensen’s inequality to bounfg;]:
2FX < E[2%] = E[Y,] .
Thus,

XAl < 1fn+3
o4\ 3

l . m+3y(n+2)n+1)
4 6
= 0@n?).
Taking logs of both sides gives[&,] = O(Ign).
Done!

Solutions for Chapter 12:
Binary Search Trees

Solution to Exercise 12.1-2
This solution is also posted publicly

In a heap, a node’s key is both of its children’s keys. In a binary search tree, a
node’s key is> its left child’s key, but< its right child’s key.

The heap property, unlike the binary-searth-tree propeigsn’t help print the
nodes in sorted order because it doesn't tell which subtf@enode contains the
element to print before that node. In a heap, the largesteziesmaller than the
node could be in either subtree.

Note that if the heap property could be used to print the kaysorted order in
O(n) time, we would have ai(n)-time algorithm for sorting, because building
the heap takes onl@ (n) time. But we know (Chapter 8) that a comparison sort
must takeQ2(n Ig n) time.

Solution to Exercise 12.2-5

Let x be a node with two children. In an inorder tree walk, the nddes's left
subtree immediately precedeand the nodes im’s right subtree immediately fol-
low x. Thus,x’s predecessor is in its left subtree, and its successoriis nght
subtree.

Lets bex’s successor. Thencannot have a left child, for a left child efwould
come betweenx ands in the inorder walk. (It's afterx because it's inc’s right
subtree, and it's beforebecause it's in’s left subtree.) If any node were to come
betweenx ands in an inorder walk, then would not bex’s successor, as we had
supposed.

Symmetrically,x’s predecessor has no right child.

12-16

Solutions for Chapter 12: Binary Search Trees

Solution to Exercise 12.2-7
This solution is also posted publicly

Note that a call to REE-MINIMUM followed byn — 1 calls to TREE-SUCCESSOR
performs exactly the same inorder walk of the tree as dogwrttedure NORDER-
TREE-WALK. INORDERTREE-WALK prints the TREE-MINIMUM first, and by
definition, the TREE-SucCESSORoOf a node is the next node in the sorted order
determined by an inorder tree walk.

This algorithm runs ir®(n) time because:

* It requires2(n) time to do then procedure calls.
* lttraverses each of the— 1 tree edges at most twice, which tak@gn) time.

To see that each edge is traversed at most twice (once gomygttie tree and once
going up), consider the edge between any noded either of its children, node

By starting at the root, we must traverge, v) downward fromu to v, before
traversing it upward fronv to u. The only time the tree is traversed downward is
in code of TREE-MINIMUM, and the only time the tree is traversed upward is in
code of TREE-SuccESsORwhen we look for the successor of a node that has no
right subtree.

Suppose that is u’s left child.

» Before printingu, we must print all the nodes in its left subtree, which is ealbot
atv, guaranteeing the downward traversal of efige).

» After all nodes inu’s left subtree are printea, must be printed next. Procedure
TREE-SUCCESSORtraverses an upward path#dfrom the maximum element
(which has no right subtree) in the subtree rooted dthis path clearly includes
edge(u, v), and since all nodes in’s left subtree are printed, edde, v) is
never traversed again.

Now suppose that is u’s right child.

» After u is printed, TREE-SUCCESSORu) is called. To get to the minimum
element irnu’s right subtree (whose root ig, the edggu, v) must be traversed
downward.

* After all values inu’s right subtree are printed,REE-SUCCESSORIs called on
the maximum element (again, which has no right subtree)drstttree rooted
atv. TREE-SUCCESSORtraverses a path up the tree to an element after
sinceu was already printed. Edda, v) must be traversed upward on this path,
and since all nodes in’s right subtree have been printed, edgev) is never
traversed again.

Hence, no edge is traversed twice in the same direction.
Therefore, this algorithm runs i@ (n) time.

Solutions for Chapter 12: Binary Search Trees 12-17

Solution to Exercise 12.3-3
This solution is also posted publicly

Here’s the algorithm:

TREE-SORT(A)

let T be an empty binary search tree
fori =1ton

TREE-INSERT(T, A[i])
INORDER-TREE-WALK (T.root)

Worst case® (n?)—occurs when a linear chain of nodes results from the regeate
TREE-INSERT operations.

Best case®(n Ig n)—occurs when a binary tree of heigh{lg) results from the
repeated REE-INSERT operations.

Solution to Exercise 12.4-2

We will answer the second part first. We shall show that if therage depth of a
node is®(Ign), then the height of the tree @(,/nlgn). Then we will answer
the first part by exhibiting that this bound is tight: theraisinary search tree with
average node depth(lgn) and height®(/nlgn) = w(lgn).

Lemma
If the average depth of a node in armode binary search tree &(Ig n), then the

height of the tree i©)(\/nlgn).

Proof Suppose that an-node binary search tree has average dépdly ») and
height/. Then there exists a path from the root to a node at diegpdind the depths
of the nodes on this path abel, ..., s. Let P be the set of nodes on this path and
0 be all other nodes. Then the average depth of a node is

% (Z depth(x) + Y depﬂ(y)) > % Y depthx)

xeP yeQ xeP
h
1
= _Zd
nd=0
l 2
= —.0MH).
n

For the purpose of contradiction, suppose thas not O(/nlgn), so thath =
w(y/nlgn). Then we have

1 0% = 1 -w(nlgn)
n n
= o(lgn),

12-18 Solutions for Chapter 12: Binary Search Trees

which contradicts the assumption that the average dep&(lgn). Thus, the

height isO(/n Ign). [

Here is an example of an-node binary search tree with average node depth
®(lg n) but heightw(lg n):

n—/nlgn

nodes

vnlgn nodes

In this tree,n — \/nlgn nodes are a complete binary tree, and the otfielg n
nodes protrude from below as a single chain. This tree hahhei

O(g(n — v/nlgn)) + /nlgn = ©O(y/nlgn)
= w(gn).

To compute an upper bound on the average depth of a node, we@(le) as
an upper bound on the depth of each of the /nIgn nodes in the complete

binary tree part and(lgn + /nlgn) as an upper bound on the depth of each of

the /nlgn nodes in the protruding chain. Thus, the average depth ofla i®
bounded from above by

%-O(w/nlgn (lgn + +/rlgn) + (n — /nlgn)lgn) = %-O(nlgn)

= 0O(gn).
To bound the average depth of a node from below, observe tltbdbdttommost
level of the complete binary tree part h@gn — \/n Ign) nodes, and each of these
nodes has dept®(lgn). Thus, the average node depth is at least

%.@((n_ vyrlgn)lgn) = %-Q(n lgn)

= Q(gn).
Because the average node depth is ity #n) andQ2(Ign), itis ®(lg n).

Solution to Exercise 12.4-4

We'll go one better than showing that the functigh is convex. Instead, we’'ll
show that the functior® is convex, for any positive constant According to
the definition of convexity on page 1199 of the text, a functif(x) is con-
vex if for all x andy and for all0 < A < 1, we havef(Ax + (1 — 1)y) <
Af(x)+ (1 —A)f(y). Thus, we need to show that for @ll< A < 1, we have
A=Y < de* 4 (1= A)c?.

We start by proving the following lemma.

Solutions for Chapter 12: Binary Search Trees 12-19

Lemma
For any real numberg andbd and any positive real number

c“>ct+(@a—-b)linc.

Proof We first show that for all real, we haver™ > 1 +r Inc. By equation (3.12)
from the text, we have* > 1 + x for all realx. Letx = rlInc, so thate* =
e’'"¢ = (") = ¢". Thenwe have” = e""¢ > 1 4+ rinc.

Substitutingz — b for r in the above inequality, we havé™ > 1 + (a — b) Inc.
Multiplying both sides by? givesc® > ¢? + (a — b)c®Inc. m (lemma)

Now we can show that**+(=y < Ae* 4+ (1 —A)c? forall 0 < A < 1. For
convenience, let = Ax + (1 — A)y.

In the inequality given by the lemma, substitutéor ¢ andz for b, giving
c*>ct 4+ (x—2z)ctInc.
Also substitutey for ¢ andz for b, giving
¢’ >ct+(y—2)tInc.
If we multiply the first inequality byL and the second by — A and then add the
resulting inequalities, we get
Ac* + (1= A)e?
> AMc*+ (x—z)c*Ine) + (1 —=A)(c*+ (y —z2)ctInc)
= Act+ AxctInc—Azc*Ine+ (1 —=A)c*+ (1 —=A)yctIne
—(1=X)zctInc
A+A =)+ Ax+ (1 =2)y)c*Inc— A+ (1—=21))zc*Ine
= ¢*+zc*lnec—zc%Ine

= c*t

C/\x+(1—/l)y ,

as we wished to show.

Solution to Problem 12-2
This solution is also posted publicly

To sort the strings af, we firstinsert them into a radix tree, and then use a preorder
tree walk to extract them in lexicographically sorted ordene tree walk outputs
strings only for nodes that indicate the existence of agt(ire., those that are
lightly shaded in Figure 12.5 of the text).

Correctness
The preorder ordering is the correct order because:

* Any node’s string is a prefix of all its descendants’ stringd &ence belongs
before them in the sorted order (rule 2).

12-20 Solutions for Chapter 12: Binary Search Trees

* Anode’s left descendants belong before its right descerdimtause the corre-
sponding strings are identical up to that parent node, atiteinext position the
left subtree’s strings have 0 whereas the right subtregfgsthave 1 (rule 1).

Time
O(n).

* Insertion take® (n) time, since the insertion of each string takes time propor-
tional to its length (traversing a path through the tree weHeagth is the length
of the string), and the sum of all the string lengths.is

* The preorder tree walk take®(n) time. It is just like NORDER-TREE-WALK
(it prints the current node and calls itself recursively ba keft and right sub-
trees), so it takes time proportional to the number of nodethé tree. The
number of nodes is at most 1 plus the sum ¢f the lengths of the binary
strings in the tree, because a lengtktring corresponds to a path through the
root andi other nodes, but a single node may be shared among many string
paths.

Solution to Problem 12-3

a. The total path lengtl? (T') is defined a9 _ .., d(x, T'). Dividing both quanti-
ties byn gives the desired equation.

b. For any nodex in T, we haved(x,T;) = d(x,T) — 1, since the distance to
the root of 7y, is one less than the distance to the roof'ofSimilarly, for any
nodex in Tg, we haved(x,Tg) = d(x,T) — 1. Thus, if T hasn nodes, we
have

P(T) = P(TL) + P(Tg) +n—1,
since each of the nodes ofT" (except the root) is in eithef, or Tk.

c. If T is a randomly built binary search tree, then the root is dguikiely to
be any of the: elements in the tree, since the root is the first elementtieder
It follows that the number of nodes in subtrég is equally likely to be any
integer in the sef0, 1,...,n — 1}. The definition of P(n) as the average total
path length of a randomly built binary search tree, alondpirt (b), gives us
the recurrence
1 n—1
Pin)y=—-Y (P()+Pmn—i-1)+n—1).
n =0
d. SinceP(0) = 0, and since fok = 1,2,...,n — 1, each termP (k) in the
summation appears once A¢i) and once a® (n —i — 1), we can rewrite the
equation from part (c) as

P(n) = %i P(k)+0O(@n).
k=1

Solutions for Chapter 12: Binary Search Trees 12-21

e. Observe that if, in the recurrence (7.6) in part (c) of Problé3, we replace
E[T(-)] by P(-) and we replaceg by k, we get almost the same recurrence as in
part (d) of Problem 12-3. The remaining difference is tha®roblem 12-3(d),
the summation starts dtrather thar2. Observe, however, that a binary tree
with just one node has a total path lengtiDpgo thatP (1) = 0. Thus, we can
rewrite the recurrence in Problem 12-3(d) as

P(n) = %X_: P(k)+ ©(n)

k=2
and use the same technique as was used in Problem 7-3 totsolve i
We start by solving part (d) of Problem 7-3: showing that

n—1

1
Zklgk< —n?lgn — 8 n’.

Following the hint in Problem 7-3(d), we split the summatioto two parts:
n/21-1

Zklgk_ Z klgk + Z klgk .

k=[n/2]

The Igk in the first summation on the right is less thafulg?) = Ign — 1, and
the Igk in the second summation is less thamjg'hus,

n—1 [n/2]1—1

> klgk < (gn-1) Z k +lgn Z k

k=2 k=[n/2]
n—1 [n/2]—1

= lgn)y k— Y k
k=2 k=2

1 1 /n n
< _ _ —__ (= _ _
= gnr=Dlgn 2(2 1)2

1 1
< Enzlgn—gn2

if n > 2.
Now we show that the recurrence

2 n—1
P(n) =- P(k) + Om)
has the solutionP (n) = O(nlgn). We use the substitution method. Assume
inductively thatP(n) < anlgn + b for some positive constantsandb to be
determined. We can pick andb sufficiently large so thainlgn + 5 > P(1).
Then, forn > 1, we have by substitution

P(n) = %iP(k)—i—@(n)
k=2

n—1

= Z(ak lgk + b) + O(n)
k 2

IA

12-22 Solutions for Chapter 12: Binary Search Trees

2a L 2b
= 5 kigk + 2 -2) + O()
n n

k=2
2 1 1 2
< (—n2 lgn — —nz) + —b(n —2)+ 0O(n)
n \2 8 n

< anlgn—%n+2b+®(n)

a
= anlgn+b+(®(n)+b—zn)
< anlgn+5b,

since we can choose large enough so thatn dominates®(n) + b. Thus,
P(n) = O(nlgn).

f. We draw an analogy between inserting an element into a fubfra binary
search tree and sorting a subarray in quicksort. Observeticae an element
is chosen as the root of a subtrée all elements that will be inserted after
into 7" will be compared tax. Similarly, observe that once an elemenis
chosen as the pivot in a subarr8y all other elements i$ will be compared
to y. Therefore, the quicksort implementation in which the cangmns are
the same as those made when inserting into a binary seaecistsimply to
consider the pivots in the same order as the order in whicteldments are
inserted into the tree.

Lecture Notes for Chapter 13:
Red-Black Trees

Chapter 13 overview

Red-black trees

* Avariation of binary search trees.
* Balanced height isO(lg n), wheren is the number of nodes.
* Operations will takeD(Ig n) time in the worst case.

[These notes are a bit simpler than the treatment in the Hoakake them more
amenable to a lecture situation. Our students first see lead-frees in a course
that precedes our algorithms course. This set of lecturesnist intended as a
refresher for the students, bearing in mind that some timg mase passed since
they last saw red-black trees.

The procedures in this chapter are rather long sequencagofipcode. You might

want to make arrangements to project them rather than smpgetiche writing them
on a board.]

Red-black trees

A red-black treeis a binary search tree + 1 bit per node: an attritaati®r, which
is either red or black.

All leaves are empty (nil) and colored black.

* We use a single sentind, nil, for all the leaves of red-black tre&e.
* T.nil.color is black.
* Theroot’s parent is als®. nil.

All other attributes of binary search trees are inheriteddutblack treeskgy; left,
right, and p). We don't care about the key ifinil.

Red-black properties

[Leave these up on the board.]

13-2

Lecture Notes for Chapter 13: Red-Black Trees

Every node is either red or black.

The root is black.

Every leaf {.nil) is black.

If a node is red, then both its children are black. (Hencénmreds in a row
on a simple path from the root to a leaf.)

5. For each node, all paths from the node to descendant leamégin the same
number of black nodes.

P w DR

Example:

[Nodes with bold outline indicate black nodes. Don't addjhes and black-heights
yet. We won't bother with drawind. nil any more.]

Height of a red-black tree

* Height of a nodeis the number of edges in a longest path to a leaf.

* Black-heightof a nodex: bh(x) is the number of black nodes (includifgnil)
on the path fronmx to leaf, not countinge. By property 5, black-height is well
defined.

[Now label the example tree with heightandbh values.]

Claim
Any node with height: has black-height //2.

Proof By property 4,< h/2 nodes on the path from the node to a leaf are red.
Hence> h/2 are black. m (claim)

Claim
The subtree rooted at any nogeontains> 2°"®) — 1 internal nodes.

Lecture Notes for Chapter 13: Red-Black Trees 13-3

Proof By induction on height ok.

Basis:Height ofx = 0 = x is a leaf= bh(x) = 0. The subtree rooted athas0
internal nodes2® — 1 = 0.

Inductive step: Let the height ofx be # and blx) = b. Any child of x has
heighti — 1 and black-height either (if the child is red) orb — 1 (if the child is
black). By the inductive hypothesis, each child kag°"™®-! — 1 internal nodes.
Thus, the subtree rootedatontains> 2 - (2°M)~1 _ 1) 4 | = 2°) _ [internal
nodes. (Thet1 is for x itself.) m (claim)

Lemma
A red-black tree with: internal nodes has heigkt21g(n + 1).

Proof Let/ andb be the height and black-height of the root, respectivelyihgy
above two claims,

n>20_-1>2M2_1,

Adding 1 to both sides and then taking logs giveé&ilg- 1) > h/2, which implies
thath <2lg(n + 1). m (theorem)

Operations on red-black trees

The non-modifying binary-search-tree operationsndium, MAXIMUM , Suc-
CESSOR PREDECESSOR and SEARCH run in O(height time. Thus, they take
O(lgn) time on red-black trees.

Insertion and deletion are not so easy.
If we insert, what color to make the new node?

* Red? Might violate property 4.
* Black? Might violate property 5.

If we delete, thus removing a node, what color was the nodestha removed?

* Red? OK, since we won't have changed any black-heights, iibwe have
created two red nodes in a row. Also, cannot cause a violatigoroperty 2,
since if the removed node was red, it could not have been tite ro

* Black? Could cause there to be two reds in a row (violatingeny 4), and
can also cause a violation of property 5. Could also causelatidin of prop-
erty 2, if the removed node was the root and its child—whictobees the new
root—was red.

Rotations

* The basic tree-restructuring operation.
* Needed to maintain red-black trees as balanced binarylstrags.
* Changes the local pointer structure. (Only pointers aregbd.)

13-4 Lecture Notes for Chapter 13: Red-Black Trees

* Won't upset the binary-search-tree property.
* Have both left rotation and right rotation. They are invereéeach other.
* Arrotation takes a red-black-tree and a node within the tree.

LEFT RoTATE(T, X)

RIGHT-ROTATE(T, y)
a B B y
LEFT-ROTATE(T, x)
y = x.right /I sety
x.right = y.left /I turn y’s left subtree intox’s right subtree
if y.left # T.nil
y.leftp = x
y.p=x.p /I link x’s parent toy
if x.p=="T.nil
T.root = y
elseifx == x.p.left
x.p.left =y
elsex.p.right = y
y.left = x /I putx ony’s left
x.p=y

The pseudocode fordFT-ROTATE assumes that

* x.right # T.nil, and
* root’s parent i7" nil.

Pseudocode for BHT-ROTATE is symmetric: exchandeft andright everywhere.

Example

[Use to demonstrate that rotation maintains inorder ongeoif keys. Node colors
omitted.]

Lecture Notes for Chapter 13: Red-Black Trees 13-5

» Before rotation: keys at’s left subtree< 11 < keys ofy’s left subtree< 18 <
keys of y’s right subtree.

* Rotation makeg’s left subtree intox’s right subtree.

» After rotation: keys ofx’s left subtree< 11 < keys ofx’s right subtree< 18 <
keys of y’s right subtree.

Time
O(1) for both LEFT-ROTATE and RGHT-ROTATE, since a constant number of
pointers are modified.

Notes
* Rotation is a very basic operation, also used in AVL treessqhaly trees.
* Some books talk of rotating on an edge rather than on a node.

Insertion

Start by doing regular binary-search-tree insertion:

RB-INSERT(T, z)
y = T.nil
x = T.root
while x # T.nil
y =X
if z.key< x.key
x = x.left
elsex = x.right
zp=y
if y==T.nil
T.root = z
elseifz.key< y.key
y.left =z
elsey.right = z
z.left = T.nil
z.right = T.nil
z.color = RED
RB-INSERTFIXUP(T, z)

* RB-INSERTends by coloring the new nodered.
* Then it calls RB-NSERTFIXUP because we could have violated a red-black
property.

Which property might be violated?
1. OK.

13-6

Lecture Notes for Chapter 13: Red-Black Trees

N

If z is the root, then there’s a violation. Otherwise, OK.
OK.

If z.pis red, there’s a violation: bothandz.p are red.

5. OK.

o

Remove the violation by calling RBNSERFFIXUP:

RB-INSERFFIXUP(T, z)

while z.p.color == RED
if z.p==2z.p.p.left

y = z.p.p.right
if y.color==RED
z.p.color = BLACK /I case 1
y.color = BLACK /I casel
z.p.p.color = RED /l case 1
Z=2z.p.p /I casel
else ifz == z.p.right
z=2z.p /l case 2
LEFT-ROTATE(T, z) /I case 2
z.p.color = BLACK /I case 3
Z.p.p.color = RED /I case 3
RIGHT-ROTATE(T, z.p.p) /I case 3

else(same ashen clause with “right” and “left” exchanged)
T.root.color = BLACK

Loop invariant:
At the start of each iteration of thehile loop,
a. z is red.
b. There is at most one red-black violation:

* Property 2:z is a red root, or

* Property 4:z andz.p are both red.

[The book has a third part of the loop invariant, but we omiioitlecture.]

Initialization: We've already seen why the loop invariant holds initially.

Termination: The loop terminates becausep is black. Hence, property 4 is OK.
Only property 2 might be violated, and the last line fixes it.

Maintenance: We drop out when is the root (since thep.pis the sentinef’.nil,
which is black). When we start the loop body, the only vialatis of property 4.

There are 6 cases, 3 of which are symmetric to the other 3. a$escare not
mutually exclusive. We'll consider cases in whiglp is a left child.

Let y bez’s uncle ¢.p’s sibling).

Lecture Notes for Chapter 13: Red-Black Trees 13-7

Case 1: y isred

If zis a left child
* z.p.p(z's grandparent) must be black, sincandz.p are both red and
there are no other violations of property 4.

* Makez.pandy black= nowz andz.p are not both red. But property 5
might now be violated.

* Makez.p.p red= restores property 5.
* The next iteration has.p.p as the new (i.e.,z moves up 2 levels).
Case 2: y is black,z is a right child

Case 2 Case 3

» Left rotate around;.p = now z is a left child, and botly andz.p are
red.

* Takes us immediately to case 3.
Case 3: y is black,z is a left child

* Makez.pblack andz.p.pred.

* Then right rotate on.p.p.

* No longer have 2 reds in a row.

* z.pis now black= no more iterations.

Analysis

O(lgn) time to get through RBNSERT up to the call of RB-NSERTFFIXUP.

13-8

Lecture Notes for Chapter 13: Red-Black Trees

Within RB-INSERTFFIXUP:

* Each iteration take®(1) time.

* Each iteration is either the last one or it moyesp 2 levels.
* O(lgn) levels= O(lgn) time.

* Also note that there are at most 2 rotations overall.

Thus, insertion into a red-black tree tak@dg n) time.

Deletion

[Because deletion from a binary search tree changed in tte eblition, so did
deletion from a red-black tree. As with deletion from a bjnaearch tree, the
nodez deleted from a red-black tree is always the nadeassed to the deletion
procedure.]

Based on the REe-DELETE procedure for binary search trees:

RB-DELETE(T, 2)

y=2z
y-original-color = y.color
if z.left == T.nil

x = z.right

RB-TRANSPLANT(T, z, z.right)
elseifz.right == T.nil
x = z.left
RB-TRANSPLANT(T, z, z.left)
elsey = TREE-MINIMUM (z.right)
y-original-color = y.color
x = y.right
if y.p==z2
X.p=y
elseRB-TRANSPLANT(T, y, y.right)
y.right = z.right

y.right.p =y
RB-TRANSPLANT(T, z, y)
y.left = z.left
y.leftp=y

y.color = z.color
if y-original-color == BLACK
RB-DELETE-FIXUP(T, x)

RB-DELETE calls a special version of FRANSPLANT (used in deletion from binary
search trees), customized for red-black trees:

Lecture Notes for Chapter 13: Red-Black Trees 13-9

RB-TRANSPLANT(T, u, v)

if u.p=="T.nil
T.root = v
elseifu == u.p.left
u.p.left =v
elseu.p.right = v
V.p=u.p

Differences between RBRANSPLANT and TRANSPLANT:

* RB-TRANSPLANT references the sentin@lnil instead ofNIL.

* Assignment to. p occurs even ib points to the sentinel. In fact, we exploit the
ability to assign ta. p whenv points to the sentinel.

RB-DELETE has almost twice as many lines arae-DELETE, but you can find
each line of REE-DELETE within RB-DELETE (with NIL replaced by nil and
calls to TRANSPLANT replaced by calls to RB-AANSPLANT).

Differences between RB-ELETE and TREE-DELETE:

* y is the node either removed from the tree (whelmas fewer thar2 children)
or moved within the tree (whenhas2 children).

* Need to save’s original color (iny-original-color) to test it at the end, because
if it's black, then removing or moving could cause red-black properties to be
violated.

* x is the node that moves intgs original position. It's either’s only child, or
T.nil if y has no children.

* Setsx.p to point to the original position of’s parent, even ifc = T.nil. x.p
is set in one of two ways:
» If zisnoty’s original parentx.pis set in the last line of RB-AANSPLANT.

* If z is y’s original parent, thery will move up to takez’'s position in the
tree. The assignment.p = y makesx.p point to the original position of
y’s parent, even ik is T.nil.

* If y’s original color was black, the changes to the tree strectnight cause
red-black properties to be violated, and we call RBtBTE-FIXuP at the end
to resolve the violations.

If y was originally black, what violations of red-black propestcould arise?

1. No violation.

If y is the root andk is red, then the root has become red.
No violation.

Violation if x.p andx are both red.

Any simple path containing now has 1 fewer black node.

a b~ N

« Correct by givingx an “extra black.”
* Add 1 to count of black nodes on paths containing
* Now property 5is OK, but property 1 is not.

13-10 Lecture Notes for Chapter 13: Red-Black Trees

* x Is eitherdoubly black(if x.color = BLACK) orred & black (if x.color =

RED).

* The attributex. color is still eitherRED or BLACK. No new values focolor
attribute.

* In other words, the extra blackness on a node is by virtuegainting to the
node.

Remove the violations by calling RBHRETE-FIXUP:

RB-DELETE-FIXUP(T, x)
while x # T.root andx.color == BLACK

if x ==x.p.left
w = x.p.right
if w.color == RED
w.color = BLACK /l case 1
x.p.color = RED /I casel
LEFT-ROTATE(T, x.p) /l casel
w = x.p.right /l casel
if w.left.color == BLACK andw.right.color == BLACK
w.color = RED /l case 2
X =x.p /l case 2
else ifw.right.color == BLACK
w.left.color = BLACK /I case 3
w.color = RED /I case 3
RIGHT-ROTATE(T, w) /I case 3
w = x.p.right /I case 3
w.color = x.p.color /Il case 4
x.p.color = BLACK /I case 4
w.right.color = BLACK /I case 4
LEFT-ROTATE(T, x.p) /I case 4
x = T.root /I case 4

else(same ashen clause with “right” and “left” exchanged)
x.color = BLACK

Idea
Move the extra black up the tree until
* X points to a red & black node> turn it into a black node,

* Xx points to the root> just remove the extra black, or
* we can do certain rotations and recolorings and finish.

Within thewhile loop:

* x always points to a nonroot doubly black node.
* wisx’s sibling.
* w cannot beT. nil, since that would violate property 5 atp.

There are 8 cases, 4 of which are symmetric to the other 4. fsimsertion, the
cases are not mutually exclusive. We'll look at cases in tvhids a left child.

Lecture Notes for Chapter 13: Red-Black Trees 13-11

Case 1: wisred

* w must have black children.

* Makew black andx.p red.

* Then left rotate onx.p.

* New sibling ofx was a child ofw before rotation= must be black.
* Go immediately to case 2, 3, or 4.

Case 2: w is black and both ofv’s children are black

[Node with gray outline is of unknown color, denoteddy

* Take 1 black offx (= singly black) and offw (= red).
* Move that black tor.p.
* Do the next iteration withx.p as the new.

* If entered this case from case 1, themp was red= newx is red & black
= color attribute of newr is RED = loop terminates. Then newis made
black in the last line.

Case 3: w is black,w’s left child is red, andv’s right child is black

* Makew red andw'’s left child black.
* Then right rotate om.
* New siblingw of x is black with a red right child= case 4.

13-12 Lecture Notes for Chapter 13: Red-Black Trees

Case 4: w is black,w’s left child is black, andwv’s right child is red

o newx = T.root

[Now there are two nodes of unknown colors, denoted bBydc'.]

* Makew bex.p's color (c).
* Makex.p black andw’s right child black.
* Then left rotate onx.p.

* Remove the extra black an (= x is now singly black) without violating
any red-black properties.

« All done. Settingx to root causes the loop to terminate.

Analysis

O(lgn) time to get through RB-BLETE up to the call of RB-[ELETE-FIXUP.
Within RB-DELETE-FIXUP:

* Case 2is the only case in which more iterations occur.

* x moves up 1 level.
* Hence,O(lg n) iterations.

* Each of cases 1, 3, and 4 has 1 rotation< 3 rotations in all.
* Hence,O(Ign) time.

[In Chapter 14, we'll see a theorem that relies on red-blagg operations causing
at most a constant number of rotations. This is where reckbii@ees enjoy an
advantage over AVL trees: in the worst case, an operatiomanreode AVL tree
causef2(lg n) rotations.]

Solutions for Chapter 13:
Red-Black Trees

Solution to Exercise 13.1-3

If we color the root of a relaxed red-black tree black but ma&eother changes,
the resulting tree is a red-black tree. Not even any bladfkhte change.

Solution to Exercise 13.1-4
This solution is also posted publicly

After absorbing each red node into its black parent, theaegf each node black
node is

» 2, if both children were already black,
« 3, if one child was black and one was red, or
* 4, if both children were red.

All leaves of the resulting tree have the same depth.

Solution to Exercise 13.1-5
This solution is also posted publicly

In the longest path, at least every other node is black. Irstioetest path, at most
every node is black. Since the two paths contain equal nusydfdrlack nodes, the
length of the longest path is at most twice the length of tloetelst path.

We can say this more precisely, as follows:

Since every path contains bh black nodes, even the shortest path freno a
descendant leaf has length at least)h By definition, the longest path from
to a descendant leaf has length height Since the longest path has(ish black
nodes and at least half the nodes on the longest path are (pgkoperty 4),
bh(x) > heightx)/2, so

length of longest patk= heighi(x) < 2 - bh(x) < twice length of shortest path

13-14 Solutions for Chapter 13: Red-Black Trees

Solution to Exercise 13.2-4

Since the exercise asks about binary search trees ratimethénanore specific red-
black trees, we assume here that leaves are full-fledgedsnadd we ignore the
sentinels.

Taking the book’s hint, we start by showing that with at most 1 right rotations,
we can convert any binary search tree into one that is jugfd-going chain.

The idea is simple. Let us define thght spineas the root and all descendants of
the root that are reachable by following omight pointers from the root. A binary
search tree that is just a right-going chain has albdes in the right spine.

As long as the tree is not just a right spine, repeatedly fimdesaodey on the
right spine that has a non-leaf left chitdand then perform a right rotation gn

RIGHT-ROTATE(T, Y)

a B B y

(In the above figure, note that any®f 5, andy can be an empty subtree.)

Observe that this right rotation addgo the right spine, and no other nodes leave
the right spine. Thus, this right rotation increases the memof nodes in the right
spine byl. Any binary search tree starts out with at least one node-rebe—in
the right spine. Moreover, if there are any nodes not on tiie gpine, then at least
one such node has a parent on the right spine. Thus, atrmedtright rotations
are needed to put all nodes in the right spine, so that thectresists of a single
right-going chain.

If we knew the sequence of right rotations that transformarhitrary binary search
tree T to a single right-going chaiff’”’, then we could perform this sequence in
reverse—turning each right rotation into its inverse letation—to transforni¥™’
back intoT .

Therefore, here is how we can transform any binary seardh Kreinto any
other binary search tre&,. Let T’ be the unique right-going chain consist-
ing of the nodes off; (which is the same as the nodes Bf). Letr =
(r1, 72, ..., rr) be a sequence of right rotations that transfoffpgo 77, and let

r’ = (r{, 3, ..., 1) be a sequence of right rotations that transforfado 7.
We know that there exist sequenoeandr’ with k,k” < n — 1. For each right
rotationr;, let /! be the corresponding inverse left rotation. Then the sempien
(risras om0y 1L 1) transformsT to T, inat most2n — 2 rotations.

Solution to Exercise 13.3-3
This solution is also posted publicly

In Figure 13.5, noded, B, and D have black-heighkt + 1 in all cases, because
each of their subtrees has black-heighand a black root. Nod€ has black-

Solutions for Chapter 13: Red-Black Trees 13-15

heightk + 1 on the left (because its red children have black-height 1) and
black-heightt + 2 on the right (because its black children have black-hetght).

In Figure 13.6, noded, B, andC have black-height + 1 in all cases. At left and
in the middle, each ofi’s and B’s subtrees has black-heightand a black root,
while C has one such subtree and a red child with black-hdightl. At the right,
each of4’s and C’s subtrees has black-heightand a black root, while3’s red
children each have black-height+ 1.

Case 2 Case 3

Property 5 is preserved by the transformations. We have staiove that the
black-height is well-defined within the subtrees pictusaproperty 5 is preserved
within those subtrees. Property 5 is preserved for the ae&ming the subtrees
pictured, because every path through these subtrees tiocatdgabutesk + 2 black
nodes.

Solution to Exercise 13.3-4

Colors are set to red only in cases 1 and 3, and in both sihsatibisz.p.p that

is reddened. It.p.p is the sentinel, then.p is the root. By part (b) of the loop
invariant and line 1 of RBNSERTFFIXUP, if z.pis the root, then we have dropped
out of the loop. The only subtlety is in case 2, where wezset z.p before
coloring z.p.p red. Because we rotate before the recoloring, the identity mp

is the same before and after case 2, so there’s no problem.

13-16 Solutions for Chapter 13: Red-Black Trees

Solution to Exercise 13.4-6

Case 1 occurs only if’s sibling w is red. Ifx.p were red, then there would be two
reds in a row, namely. p (which is alsow.p) andw, and we would have had these
two reds in a row even before calling RBEDETE.

Solution to Exercise 13.4-7

No, the red-black tree will not necessarily be the same. ldesgwo examples:
one in which the tree’s shape changes, and one in which thee gleanains the
same but the node colors change.

@/o insert 1 e delete 1 e\@
....................... e ERTETEEET TR EY PRI RTETH 1
delete 1 a
....................... e

3 insert 1

Solution to Problem 13-1
This solution is also posted publicly

a. When inserting key, all nodes on the path from the root to the added node
(a new leaf) must change, since the need for a new child pgintpagates up
from the new node to all of its ancestors.

When deleting a node, let be the node actually removed ande the node
given to the delete procedure.

* If z has at most one child, it will be spliced out, so that all aterssofz will
be changed. (As with insertion, the need for a new child poiptopagates
up from the removed node.)

* If z has two children, then its successpowill be spliced out and moved
to z's position. Therefore all ancestors of bathand y must be changed.
Becausg is an ancestor of, we can just say that all ancestorsyofust be
changed.

In either casey’s children (if any) are unchanged, because we have assumed
that there is no parent attribute.

Solutions for Chapter 13: Red-Black Trees 13-17

b. We assume that we can call two procedures:

* MAKE-NEwW-NODE(k) creates a new node whokeyattribute has valué
and withleft andright attributesNiL, and it returns a pointer to the new node.

* CopPY-NODE(x) creates a new node whosey, left, andright attributes have
the same values as those of nodend it returns a pointer to the new node.

Here are two ways to write ERSISTENFTREE-INSERT. The first is a version

of TREE-INSERT, modified to create new nodes along the path to where the
new node will go, and to not use parent attributes. It rettliesoot of the new
tree.

PERSISTENFTREE-INSERT(T, k)

z = MAKE-NEW-NODE(k)
newroot = CoPY-NODE(T.root)

y = NIL

X = newroot

while x # NIL
y =X

if z.key< x.key
x = CoOPY-NODE(x.left)
y.left = x
elsex = CoPY-NODE(x.right)
y.right = x
if y==NIL
newroot = z
elseifz.key < y.key
y.left =z
elsey.right = z
return newroot

The second is a rather elegant recursive procedure. Thed icall should have
T.root as its first argument. It returns the root of the new tree.

PERSISTENFTREE-INSERT(r, k)
if r ==NIL
x = MAKE-NEW-NODE(k)
elsex = CopPY-NODE(r)
if k < r.key
x.left = PERSISTENFTREE-INSERT(r.left, k)
elsex.right = PERSISTENFTREE-INSERT(r.right, k)
return x

c. Like TREE-INSERT, PERSISTENFTREE-INSERT does a constant amount of
work at each node along the path from the root to the new nodece $She
length of the path is at most it takesO (h) time.

Since it allocates a new node (a constant amount of spaceafir ancestor of
the inserted node, it also nee@h) space.

13-18

Solutions for Chapter 13: Red-Black Trees

d.

If there were parent attributes, then because of the new egety node of the
tree would have to be copied when a new node is inserted. Twisg@bserve
that the children of the root would change to point to the newt,rthen their
children would change to point to them, and so on. Since texe nodes, this
change would cause insertion to cre@f@:) new nodes and to take(n) time.

From parts (a) and (c), we know that insertion into a pensidenary search
tree of heightz, like insertion into an ordinary binary search tree, takessiv
case time0(h). Ared-black tree has = O(lgn), so insertion into an ordinary
red-black tree take®(lg n) time. We need to show that if the red-black tree is
persistent, insertion can still be doned(lg ») time. To do this, we will need
to show two things:

* How to still find the parent pointers we needdn(1) time without using a
parent attribute. We cannot use a parent attribute becapsesistent tree
with parent attributes us€z(n) time for insertion (by part (d)).

* That the additional node changes made during red-blaclopertions (by
rotation and recoloring) don’'t cause more th@qg ») additional nodes to
change.

Each parent pointer needed during insertion can be foudt(1n time without
having a parent attribute as follows:

To insert into a red-black tree, we call RBI9ERT, which in turn calls RB-
INSERFFIXUP. Make the same changes to RBSERTas we made to REE-
INSERT for persistence. Additionally, as RB¢$ERT walks down the tree to
find the place to insert the new node, have it build a stack efibdes it tra-
verses and pass this stack to RBSERFFIXUP. RB-INSERFFIXUP needs
parent pointers to walk back up the same path, and at any givenit needs
parent pointers only to find the parent and grandparent aidle it is working
on. As RB-NserRTFFIXurP moves up the stack of parents, it needs only parent
pointers that are at known locations a constant distancg swthae stack. Thus,
the parent information can be found @ (1) time, just as if it were stored in a
parent attribute.

Rotation and recoloring change nodes as follows:

* RB-INSERTFFIXUP performs at most 2 rotations, and each rotation changes
the child pointers in 3 nodes (the node around which we rotht# node’s
parent, and one of the children of the node around which veteptThus, at
most 6 nodes are directly modified by rotation during REBs#RTFIXUP. In
a persistent tree, all ancestors of a changed node are ¢cgpi&B-NSERT
Fixup’s rotations takeO(lgn) time to change nodes due to rotation. (Ac-
tually, the changed nodes in this case share a si@glg n)-length path of
ancestors.)

* RB-INSERTFIXUP recolors some of the inserted node’s ancestors, which
are being changed anyway in persistent insertion, and sbiftren of an-
cestors (the “uncles” referred to in the algorithm des@ipt There are
at mostO(lgn) ancestors, hence at mo@tlg »n) color changes of uncles.
Recoloring uncles doesn’t cause any additional node clsatige to persis-
tence, because the ancestors of the uncles are the same(andestors of

Solutions for Chapter 13: Red-Black Trees 13-19

the inserted node) that are being changed anyway due teigerse. Thus,
recoloring does not affect th@(lg ») running time, even with persistence.

We could show similarly that deletion in a persistent trese ahkes worst-case
time O(h).

* We already saw in part (a) thét(#) nodes change.

* We could write a persistent RBHYETE procedure that runs i@ (k) time,
analogous to the changes we made for persistence in imseBid to do so
without using parent pointers we need to walk down the tréledmode to be
deleted, to build up a stack of parents as discussed abowsstation. This
is a little tricky if the set’s keys are not distinct, becaus®rder to find the
path to the node to delete—a particular node with a given keg-have to
make some changes to how we store things in the tree, so thlatate keys
can be distinguished. The easiest way is to have each kewts#eond part
that is unique, and to use this second part as a tiebreaker edraparing
keys.

Then the problem of showing that deletion needs @nlig ») time in a persis-
tent red-black tree is the same as for insertion.

* As for insertion, we can show that the parents needed by RBEDE-
Fixup can be found irO(1) time (using the same technique as for insertion).

* Also, RB-DELETE-FIxup performs at most 3 rotations, which as discussed
above for insertion require@(Ig n) time to change nodes due to persistence.
It also does0(Ig n) color changes, which (as for insertion) take ofl{lg n)
time to change ancestors due to persistence, because thnaftopied
nodes isO(Ign).

Lecture Notes for Chapter 14
Augmenting Data Structures

Chapter 14 overview

We'll be looking at methods fodesigningalgorithms. In some cases, the design
will be intermixed with analysis. In other cases, the arialys easy, and it’s the
design that’s harder.

Augmenting data structures

* It's unusual to have to design an all-new data structure soratch.

* It's more common to take a data structure that you know anet stdditional
information in it.

* With the new information, the data structure can support operations.
* But you have to figure out how tmorrectly maintainthe new informatiorwith-
out loss of efficiency

We'll look at a couple of situations in which we augment rddek trees.

Dynamic order statistics

We want to support the usual dynamic-set operations fromtReds, plus:

* OS-FELECT(x,i): return pointer to node containing ti smallest key of the
subtree rooted at.

* OS-RaNK(T,x): return the rank ofx in the linear order determined by an
inorder walk ofT'.

Augmentby storing in each node:

x.Size= # of nodes in subtree rooted.at

* Includesx itself.
* Does not include leaves (sentinels).

Define for sentinel. nil. size= 0.
Thenx.size= x.left.size+ x.right.size+ 1.

14-2

Lecture Notes for Chapter 14: Augmenting Data Strstur

i=5
M B =6
8
i
=2 R| C P |B
5 2
- - L -
A g F|B 2 Q| R
1 3 1
i=1
D IR H IR =1
1 1

[Example above:lgnore colors, but legal coloring shown with “R” and “B” neta
tions. Values of andr are for the example below.]

Note: OK for keys to not be distinct. Rank is defined with respectdsifon in
inorder walk. So if we changed D to C, rank of original C is Z)ka&f D changed
toCis 3.

OS-FLECT(x,i)
r = x.left.size+ 1

if i ==r
return x
elseifi < r

return OS-SELECT(x.left, i)
else return OS-SELECT(x.right, i — r)

Initial call: OS-SELECT(T.root, i)

Try OS-SELECT(T.ro0t, 5). [Values shown in figure above. Returns node whose
key is H.]

Correctness
r = rank ofx within subtree rooted at.

* If i = r,then we wank.

* If i < r,thenith smallest element is in’s left subtree, and we want th¢h
smallest element in the subtree.

* If i > r, thenith smallest element is ir’s right subtree, but subtract off the
elements inv’s subtree that precede thosexiis right subtree.

* Like the randomized &_.ECT algorithm.

Analysis

Each recursive call goes down one level. Since R-B treethésn) levels, have
O(lgn) calls= O(lgn) time.

Lecture Notes for Chapter 14: Augmenting Data Structures -314

OS-RaNK (T, x)
r = x.left.size+ 1
y=x
while y # T.root

if y == y.p.right
r =r+ y.p.left.size+ 1

y=y.p
return r
Demo: Node D.
Why does this work?

Loop invariant: At start of each iteration oihile loop, r = rank ofx.key
in subtree rooted at.
Initialization: Initially, r = rank ofx.keyin subtree rooted at, andy = x.

Termination: Loop terminates whem = T.root = subtree rooted at is entire
tree. Therefore; = rank of x.keyin entire tree.

Maintenance: At end of each iteration, set = y.p. So, show that it = rank
of x.keyin subtree rooted at at start of loop body, then = rank of x.keyin
subtree rooted at. p at end of loop body.

/N

[r = # of nodes in subtree rootedyaprecedingyx in inorder walk]
Must add nodes in’s sibling’s subtree.

* If y is a left child, its sibling’s subtree follows all nodes yr's subtree=
don’t changer.

« If y isaright child, all nodes iy’s sibling’s subtree precede all nodesyils
subtree= add size ofy’s sibling’s subtree, plus 1 foy.p, into r.

y.p @

”7{\ >\

y goes up one level in each iteratien O(Ign) time.

14-4

Lecture Notes for Chapter 14: Augmenting Data Strstur

Maintaining subtree sizes

Need to maintairsizeattributes during insert and delete operations.

Need to maintain them efficiently. Otherwise, might havedcompute them
all, at a cost of2(n).

Will see how to maintain without increasin@(lg ») time for insert and delete.

Insert

During pass downward, we know that the new node will be a delud of
each node we visit, and only of these nodes. Therefore,nmemésizeattribute
of each node visited.

Then there’s the fixup pass:

* Goes up the tree.
* Changes color®(lg n) times.
* Performs< 2 rotations.

Color changes don't affect subtree sizes.
Rotations do!
But we can determine new sizes based on old sizes and sizbi#dvén.

C | x y | F
5 LEFT-ROTATE(T, X) 5
Fly x | C H
3 3 1
D H A D
1 1 1 1
y.size = x.size
x.size = x.left.size+ x.right.size+ 1

Similar for right rotation.

Therefore, can update i@ (1) time per rotation= O(1) time spent updating
sizeattributes during fixup.

Therefore,0O(Ign) to insert.

Delete

Also 2 phases:

1. Splice out some node.
2. Fixup.

Lecture Notes for Chapter 14: Augmenting Data Structures -514

After splicing outy, traverse a patlhr — root, decrementingizein each node on
path. O(Ign) time.

During fixup, like insertion, only color changes and rotatio

* < 3rotations= O(1) time spent updatingizeattributes during fixup.
* Therefore,0(Ign) to delete.

Done!

Methodology for augmenting a data structure

1. Choose an underlying data structure.
2. Determine additional information to maintain.

3. Verify that we can maintain additional information foriging data structure
operations.

4. Develop new operations.

Don't need to do these steps in strict order! Usually do ke lif each, in parallel.
How did we do them for OS trees?

1. R-Btree.

2. x.size

3. Showed how to maintaisizeduring insert and delete.
4. Developed OS-8.EcT and OS-RNK.

Red-black trees are particularly amenable to augmentation

Theorem

Augment a R-B tree with attribut¢’, wherex.f depends only on information in
x, x.left, andx.right (including x.left.f andx.right.f). Then can maintain values
of £ in all nodes during insert and delete without affectibgg »n) performance.

Proof Sincex.f depends only orx and its children, when we alter information
in x, changes propagate only upward i@, x.p.p, x.p.p.p, ..., root).

Height =0(lgn) = O(lgn) updates, a(1) each.

Insertion

Insert a node as child of existing node. Even if can’t updaten way down, can
go up from inserted node to updafe During fixup, only changes come from color
changes (no effect o) and rotations. Each rotation affectsof < 3 nodes &,y,
and parent), and can recompute eacl®ii) time. Then, if necessary, propagate
changes up the tree. Therefo@(lg») time per rotation. Sinces 2 rotations,
O(lgn) time to updatef during fixup.

14-6

Lecture Notes for Chapter 14: Augmenting Data Strstur

Delete

Same idea. After splicing out a node, go up from there to wdat-ixup has< 3
rotations.O(lg n) per rotation= O(lgr) to updatef during fixup. = (theorem)

For some attributes, can get away wi#i1) per rotation. Examplesizeattribute.

Interval trees

Maintain a set of intervals. For instance, time intervals.

lowfi] = 7 highi] = 10
N iE[7,10] 7
710
11 17119
418 15! 118 21— 23

[leave on board]

Operations

* INTERVAL-INSERT(T, x): x.int already filled in.
* INTERVAL-DELETE(T, x)

* INTERVAL-SEARCH(T,i): return pointer to a node in 7" such that.int over-
laps intervali. Any overlapping node ir¥" is OK. Return pointer to sen-
tinel T.nil if no overlapping node if".

Intervali hasi.low, i.high.

i andj overlap if and only if
i.low < j.highand;.low < i.high.

(Go through examples of proper inclusion, overlap withawtper inclusion, no
overlap.)

Another way:i and;j don't overlap if and only if
i.low > j.highor j.low > i.high.
[leave this on board]

Recall the 4-part methodology.

For interval trees

1. Use R-B trees.

* Each nodex contains intervak.int.
* Key is low endpoint £.int.low).
* Inorder walk would list intervals sorted by low endpoint.

Lecture Notes for Chapter 14: Augmenting Data Structures -714

2. Each node contains
x.max= max endpoint value in subtree rootedxat

[17,19]] < int
23 <— Mmax
[5,11] [21,23]
18 23
[4.8] [15,18]
8 18
[7,10]
10
[leave on board]
x.int.high,
X.max= maxs x.left. max,
x.right.max

Could x.left. max> x.right.maxX? Sure. Position in tree is determined only by
low endpoints, not high endpoints.

3. Maintaining the information.

* This is easy—. maxdepends only on:
* information inx: x.int.high
* information inx.left: x.left. max
* information inx.right: x.right. max
* Apply the theorem.

* In fact, can updatenaxon way down during insertion, and ifi(1) time per
rotation.

4. Developing new operations.

INTERVAL-SEARCH(T, 1)

x = T.root
while x # T.nil andi does not overlap.int
if x.left # T.nil andx.left. max> i.low
x = x.left
elsex = x.right
return x

Examples
Search fof{14, 16] and[12, 14].

Time
O(lgn).

14-8

Lecture Notes for Chapter 14: Augmenting Data Strstur

Correctness
Key idea: need check only 1 of node’s 2 children.

Theorem
If search goes right, then either:

* There is an overlap in right subtree, or
* There is no overlap in either subtree.

If search goes left, then either:

* There is an overlap in left subtree, or
* There is no overlap in either subtree.
Proof If search goes right:

» Ifthere is an overlap in right subtree, done.

* If there is no overlap in right, show there is no overlap irt.lefWent right

because
* x.left = T.nil = no overlap in left.

OR
» x.left max< i.low = no overlap in left.

/

x.left.max= highest endpoint in left

If search goes left:

» Ifthere is an overlap in left subtree, done.

» Ifthere is no overlap in left, show there is no overlap in tigh

* Went left because:

i.low < x.left. max

= j.highfor some; in left subtree

* Since there is no overlap in leftand j don't overlap.
» Refer back to: no overlap if

i.low > j.highor j.low > i.high.
* Sincei.low < j.high, must havej.low > i.high.
* Now conside@nyintervalk in right subtree.
* Because keys are low endpoint,

inleft inright
* Thereforej.high < j.low < k.low.

* Thereforej.high < k.low.
* Therefore; andk do not overlap.

m (theorem)

Solutions for Chapter 14:
Augmenting Data Structures

Solution to Exercise 14.1-5

Given an element in ann-node order-statistic treE and a natural number the
following procedure retrieves theh successor af in the linear order of":

OS-SJUCCESSORT, x,i)

r = OS-RaNK (T, x)
s =r+i
return OS-SELECT(T.root, s)

Since OS-RNK and OS-&LECT each takeO(Ign) time, so does the procedure
OS-3UCCESSOR

Solution to Exercise 14.1-6

When inserting node, we search down the tree for the proper placezfor~or
each nodex on this path, add to x.rank if z is inserted withinx’s left subtree,
and leavex.rank unchanged ifz is inserted withinx’s right subtree. Similarly
when deleting, subtradt from x.rank whenever the spliced-out node had been in
x’s left subtree.

We also need to handle the rotations that occur during the fixacedures for in-

sertion and deletion. Consider a left rotation on nadevhere the pre-rotation
right child of x is y (so thatx becomesy’s left child after the left rotation).

We leavex.rank unchanged, and letting = y.rank before the rotation, we set
y.rank = r + x.rank. Right rotations are handled in an analogous manner.

Solution to Exercise 14.1-7
This solution is also posted publicly

Let A[1..n] be the array of distinct numbers.

One way to count the inversions is to add up, for each elerttemjumber of larger
elements that precede it in the array:

14-10 Solutions for Chapter 14: Augmenting Data Structures

of inversions= Z|Inv(j)| :
j=1
wherelnv(j) = {i : i < j andAl[i] > A[j]}.

Note that|Inv(j)| is related toA[j]'s rank in the subarray[l1.. j] because the
elements idnv(j) are the reason that[;] is not positioned according to its rank.
Letr(j) be the rank ofd[j] in A[l..j]. Thenj = r(j) + |Inv(j)|, SO we can
compute

Il =7 —=r()

by insertingA[1], ..., A[n] into an order-statistic tree and using O3~ to find
the rank of eact[j] in the tree immediately after it is inserted into the treehi§T
OS-RaNK value isr(j).)

Insertion and OS-RNK each takeO(lgn) time, and so the total time for ele-
ments isO(n lg n).

Solution to Exercise 14.2-2
This solution is also posted publicly

Yes, we can maintain black-heights as attributes in the aofl@ red-black tree
without affecting the asymptotic performance of the reakkltree operations. We
appeal to Theorem 14.1, because the black-height of a nedeeceomputed from
the information at the node and its two children. Actualhe black-height can
be computed from just one child’s information: the blackgheé of a node is the
black-height of a red child, or the black height of a blackidthilus one. The
second child does not need to be checked because of propefrted-black trees.

Within the RB-INSERFFIXUP and RB-DELETE-FIXUP procedures are color
changes, each of which potentially cau8¢lgn) black-height changes. Let us
show that the color changes of the fixup procedures causdardl black-height
changes and thus are constant-time operations. Assuméhéhatack-height of
each noder is kept in the attributer. bh.

For RB-INSERTFIXUP, there are 3 cases to examine.

Solutions for Chapter 14: Augmenting Data Structures 14-11

Case 1: z's uncle is red.

» Before color changes, suppose that all subteees y, §, ¢ have the same
black-heightk with a black root, so that nodes, B, C, and D have black-
heights ofk + 1.

» After color changes, the only node whose black-height cedng nodeC'.
To fix that, addz. p.p.bh = z.p.p.bh+ 1 after line 7 in RB-NSERTFFIXUP.

* Since the number of black nodes betweep.p and z remains the same,
nodes above.p.p are not affected by the color change.

Case 2: z’s uncley is black, and; is a right child.
Case 3: z"’s uncley is black, and; is a left child.

Case 2

* With subtrees, 8, y, 8, ¢ of black-heightk, we see that even with color
changes and rotations, the black-heights of nodle8, andC remain the
samek + 1).

Thus, RB-NSERFFIXUP maintains its originalD(Ig n) time.
For RB-DELETE-FIXUP, there are 4 cases to examine.

14-12 Solutions for Chapter 14: Augmenting Data Structures

Case 1: x’s sibling w is red.

* Even though case 1 changes colors of nodes and does a rptaliai-
heights are not changed.

* Case 1 changes the structure of the tree, but waits for cassahd 4 to
deal with the “extra black” orx.

Case 2: x’s sibling w is black, and both ofv’s children are black.

* w is colored red, and’s “extra” black is moved up ta.p.

* Now we can add:.p.bh = x.bhafter line 10 in RB-IELETE-FIXUP.

* This is a constant-time update. Then, keep looping to detl thie extra
black onx.p.

Case 3: x’s sibling w is black,w’s left child is red, andv’s right child is black.

* Regardless of the color changes and rotation of this casd)l#itk-heights
don’t change.
* Case 3just sets up the structure of the tree, so it can fakkciy into case 4.

Case 4: x’s sibling w is black, andw’s right child is red.

newx = root[T]

Solutions for Chapter 14: Augmenting Data Structures 14-13

* NodesA, C, and E keep the same subtrees, so their black-heights don't
change.

* Add these two constant-time assignments in RB:BreE-FIXup after
line 20:

x.p.bh = x.bh+1
x.p.p.bh = x.p.bh+ 1

* The extra black is taken care of. Loop terminates.

Thus, RB-DELETE-FIXUP maintains its originalD (Ig n) time.

Therefore, we conclude that black-heights of nodes can ltanged as attributes
in red-black trees without affecting the asymptotic parfance of red-black tree
operations.

For the second part of the question, no, we cannot maintaile depths without
affecting the asymptotic performance of red-black treeaajpens. The depth of a
node depends on the depth of its parent. When the depth ofacdi@mhges, the
depths of all nodes below it in the tree must be updated. lpgighe root node
causes: — 1 other nodes to be updated, which would mean that operatiotiseo
tree that change node depths might not ru®im Ig n) time.

Solution to Exercise 14.3-3

As it travels down the treeNITERVAL-SEARCH first checks whether current node
overlaps the query intervaland, if it does not, goes down to either the left or right
child. If node x overlapsi, and some node in the right subtree overlapbut

no node in the left subtree overlapsthen because the keys are low endpoints,
this order of checking (first, then one child) will return the overlapping interval
with the minimum low endpoint. On the other hand, if there nsirterval that
overlapsi in the left subtree of, then checkinge before the left subtree might
cause the procedure to return an interval whose low endmoirat the minimum

of those that overlap. Therefore, if there is a possibility that the left subtreigim
contain an interval that overlapswe need to check the left subtree first. If there is
no overlap in the left subtree but nod@verlaps, then we returnc. We check the
right subtree under the same conditions asNimHRVAL-SEARCH: the left subtree
cannot contain an interval that overlapsand nodex does not overlap, either.

Because we might search the left subtree first, it is easigrite the pseudocode to
use a recursive procedureiVtINTERVAL-SEARCH-FROM(T, x, i), which returns
the node overlappingywith the minimum low endpoint in the subtree rootedcat
or T.nil if there is no such node.

MIN-INTERVAL-SEARCH(T, 1)
return MIN-INTERVAL-SEARCH-FROM(T, T.root, i)

14-14 Solutions for Chapter 14: Augmenting Data Structures

MIN-INTERVAL-SEARCH-FROM(T, x, i)

if x.left # T.nil andx.left. max> i.low
y = MIN-INTERVAL-SEARCH-FROM(T, x.left, i)
if y #£ T.nil
return y
elseifi overlapsx.int
return x
else return T.nil
elseifi overlapsx.int
return x
else return MIN-INTERVAL-SEARCH-FROM(T, x.right, i)

The call MIN-INTERVAL-SEARCH(T, i) takesO(Ign) time, since each recursive
call of MIN-INTERVAL-SEARCH-FROM goes one node lower in the tree, and the
height of the tree i©(Ign).

Solution to Exercise 14.3-6

1. Underlying data structure:
A red-black tree in which the numbers in the set are storeglgias the keys
of the nodes.

SEARCHi s then just the ordinary REE-SEARCH for binary search trees, which
runs inO(lg n) time on red-black trees.

2. Additional information:
The red-black tree is augmented by the following attribitesach nodex:

* x.mingap contains the minimum gap in the subtree rooted .att has the
magnitude of the difference of the two closest numbers irsthiree rooted
atx. If x is a leaf (its children are aff . nil), let x. mingap = oc.

* x.minval contains the minimum value (key) in the subtree rooted. at

* x.maxval contains the maximum value (key) in the subtree rooted at

3. Maintaining the information:
The three attributes added to the tree can each be compotedrfformation
in the node and its children. Hence by Theorem 14.1, they eamdintained
during insertion and deletion without affecting ttlg ») running time:

x.left. minrval if there is a left subtree

x.minrval = .
x.key otherwise,

{ x.right. maxval if there is a right subtree
x.maxval =

x.key otherwise,
x.left. min-gap (co If O left subtree),
x.right. min-gap (co if nO right subtree)

.mirrgap= min
x.mirgap x.key— x.left. maxval (oo if no left subtree)

x.right.minval — x.key (oo if no right subtree)

Solutions for Chapter 14: Augmenting Data Structures 14-15

In fact, the reason for defining tlmein-val andmaxval attributes is to make it
possible to computein-gapfrom information at the node and its children.

4. New operation:
MIN-GAP simply returns themin-gap stored at the tree root. Thus, its running
time isO(1).
Note that in addition (not asked for in the exercise), it isgble to find the
two closest numbers i®(Ig n) time. Starting from the root, look for where the
minimum gap (the one stored at the root) came from. At eaclke npdimulate
the computation ok.min-gapto figure out wherer. min-gap came from. If it
came from a subtreemmin-gap attribute, continue the search in that subtree. If
it came from a computation with's key, thenx and that other number are the
closest numbers.

Solution to Exercise 14.3-7
This solution is also posted publicly

General idea: Move a sweep line from left to right, while ntaining the set of
rectangles currently intersected by the line in an intetke. The interval tree
will organize all rectangles whose interval includes the current position of the
sweep line, and it will be based on theintervals of the rectangles, so that any
overlappingy intervals in the interval tree correspond to overlappirgaegles.

Details:
1. Sort the rectangles by theircoordinates. (Actually, each rectangle must ap-

pear twice in the sorted list—once for its leficoordinate and once for its right

x-coordinate.)

2. Scan the sorted list (from lowest to highe@stoordinate).

* When anx-coordinate of a left edge is found, check whether the rebtés
y-coordinate interval overlaps an interval in the tree, ansebit the rectangle
(keyed on itsy-coordinate interval) into the tree.

* When anx-coordinate of a right edge is found, delete the rectangie fihe
interval tree.

The interval tree always contains the set of “open” rectesgitersected by the
sweep line. If an overlap is ever found in the interval trbéeré are overlapping
rectangles.

Time: O(nlgn)

* O(nlgn) to sort the rectangles (we can use merge sort or heap sort).

* O(nlgn) for interval-tree operations (insert, delete, and checloferlap).

Solution to Problem 14-1

a. Assume for the purpose of contradiction that there is no tpoirmaximum
overlap in an endpoint of a segment. The maximum overlaptpois in the

14-16 Solutions for Chapter 14: Augmenting Data Structures

interior of m segments. Actuallyp is in the interior of the intersection of those
m segments. Now look at one of the endpoiptsf the intersection of the:
segments. Point’ has the same overlap asecause it is in the same intersec-
tion of m segments, and s is also a point of maximum overlap. Moreovef,

is in the endpoint of a segment (otherwise the intersectionldnot end there),
which contradicts our assumption that there is no point ofimam overlap in
an endpoint of a segment. Thus, there is always a point ofrmanxi overlap
which is an endpoint of one of the segments.

b. Keep a balanced binary search tree of the endpoints. Thett issert an in-
terval, we insert its endpoints separately. With each lefippinte, associate
a valuep(e) = +1 (increasing the overlap by 1). With each right endpeint
associate a valup(e) = —1 (decreasing the overlap by 1). When multiple end-
points have the same value, insert all the left endpointh thiat value before
inserting any of the right endpoints with that value.

Here’s some intuition. Let,, e,, ..., e, be the sorted sequence of endpoints
corresponding to our intervals. Leti, j) denote the sunp(e;) + p(ei11) +
-+ p(ej)forl <i < j <n. We wish to find an maximizings(1,i).

For each node in the tree, let(x) andr(x) be the indices in the sorted order
of the leftmost and rightmost endpoints, respectivelyhangubtree rooted at
Then the subtree rooted atcontains the endpoints), €;(x)+1, - - - » €r(x)-

Each nodex stores three new attributes. We stare = s(/(x), r(x)), the
sum of the values of all nodes in the subtree rooted.atWe also store
x.m, the maximum value obtained by the expresssdh(x),i) for anyi in
{I(x),I(x)+1,...,r(x)}. Finally, we storex.o as the value of for which
x.machieves its maximum. For the sentinel, we definal.v = 7.nil.m = 0.

We can compute these attributes in a bottom-up fashion isfis#tie require-
ments of Theorem 14.1:

x.v = x.leftv + p(x) + x.right.v |

x.left.m (max is inx’s left subtree),
x.m = max{ x.left.v + p(x) (max is atx) ,
x.left.v 4+ p(x) 4+ x.right.m (max is inx’s right subtree)

Computingx.v is straightforward. Computing.m bears further explanation.
Recall that it is the maximum value of the sum of thevalues for the nodes
in the subtree rooted at, starting at the node fax;(,), which is the leftmost
endpoint inx’s subtree, and ending at any node fgrin x’s subtree. The
endpointe; that maximizes this sum—Ilet’s call ét-—corresponds to either a
node inx’s left subtreeyx itself, or a node inx’s right subtree. 1&;+« corresponds
to a node inx’s left subtree, then.left. mrepresents a sum starting at the node
for e;) and ending at a node in’'s left subtree, and hencem = x.left. m.

If e;« corresponds ta itself, thenx.m represents the sum of gll values in
x’s left subtree, plugp(x), so thatx.m = x.leftv + p(x). Finally, if ¢;»
corresponds to a node iis right subtree, thew. mrepresents the sum of gl
values inx’s left subtree, plup(x), plus the sum of some subsetpi/alues in
x’s right subtree. Moreover, the values taken freia right subtree must start
from the leftmost endpoint stored in the right subtree. Taimé&e this sum,

Solutions for Chapter 14: Augmenting Data Structures 14-17

we need to maximize the sum from the right subtree, and thae Vs precisely
x.right.m. Hence, in this case;,.m = x.left.v + p(x) + x.right.m.

Once we understand how to computen, it is straightforward to compute.o
from the information inx and its two children. Thus, we can implement the
operations as follows:

* INTERVAL-INSERT. insert two nodes, one for each endpoint of the interval.
* FIND-POM: return the interval whose endpoint is represented.byot. o.
(Note that because we are building a binary search tree tfea#ndpoints and
then determining.root. o, we have no need to delete any nodes from the tree.)

Because of how we have defined the new attributes, Theoreinsi¥s that
each operation runs i@(Ig n) time. In fact, REND-POM takes onlyO(1) time.

Solution to Problem 14-2

a. We use a circular list in which each element has two attriyleyandnext At
the beginning, we initialize the list to contain the kdy{, ..., in that order.
This initialization takesO(n) time, since there is only a constant amount of
work per element (i.e., setting ikeyand itsnextattributes). We make the list
circular by letting thenextattribute of the last element point to the first element.

We then start scanning the list from the beginning. We ousimat then delete
everymth element, until the list becomes empty. The output sequénthe
(n,m)-Josephus permutation. This process taRés) time per element, for a
total time of O(mn). Sincem is a constant, we ga?(mn) = O(n) time, as
required.

b. We can use an order-statistic tree, straight out of Sectioh. Why? Suppose
that we are at a particular spot in the permutation, anddagsthat it's thejth
largest remaining person. Suppose that theré are: people remaining. Then
we will remove persory, decremenk to reflect having removed this person,
and then go on to thegf +m — 1)th largest remaining person (subtract 1 because
we have just removed thih largest). But that assumes thiat- m < k. If not,
then we use a little modular arithmetic, as shown below.

In detail, we use an order-statistic trée and we call the procedures OS-
INSERT, OS-DeELETE, OS-RaNK, and OS-&LECT:

14-18 Solutions for Chapter 14: Augmenting Data Structures

JOSEPHUSn,m)

initialize T to be empty

for j = 1ton
create a node with x.key==j
OS-INSERT(T,, x)

k=n

j=m

while k > 2
x = OS-FELECT(T.root, j)
print x. key
OS-DELETE(T, x)
k=k-—1

Jj = ({(j +m—2)modk) + 1
print OS-FLECT(T.root, 1).key

The above procedure is easier to understand. Here’s a $itmedraersion:

JOSEPHUSn, m)

initialize T to be empty

for j = 1ton
create a node with x.key== j
OS-INSERT(T, x)

Jj=1

for k = n downto 1
j = ((j+m-2) modk) + 1
x = OS-&LECT(T.root, j)
print x.key
OS-DeLETE(T, x)

Either way, it takesO(n Ign) time to build up the order-statistic treée, and
then we makeD(n) calls to the order-statistic-tree procedures, each of whic
takesO(lg n) time. Thus, the total time i® (n Ig n).

Lecture Notes for Chapter 15:
Dynamic Programming

Dynamic Programming

* Not a specific algorithm, but a technique (like divide-amahquer).

» Developed back in the day when “programming” meant “taboiathod” (like
linear programming). Doesn’t really refer to computer pesgming.

* Used for optimization problems:

* Finda solution withthe optimal value.
* Minimization or maximization. (We’ll see both.)

Four-step method

Characterize the structure of an optimal solution.

Recursively define the value of an optimal solution.

Compute the value of an optimal solution, typically in d@tbom-up fashion.
Construct an optimal solution from computed information

A owbdpR

Rod cutting

[New in the third edition of the book.]

How to cut steel rods into pieces in order to maximize the mageyou can get?
Each cut is free. Rod lengths are always an integral numbiecbés.

Input: A lengthr and table of priceg;, fori = 1,2,...,n.

Output: The maximum revenue obtainable for rods whose lengths sunmciom-
puted as the sum of the prices for the individual rods.

If p, is large enough, an optimal solution might require no cus, just leave the
rod asn inches long.

15-2

Lecture Notes for Chapter 15: Dynamic Programming

Example: [Using the first8 values from the example in the book.]

lengthi [1 2 3 4 5 6 7 8
pricep; [1 5 8 9 10 17 17 20

Can cut up arod in"~! different ways, because can choose to cut or not cut after
each of the first — 1 inches.

Here are alB ways to cut a rod of length, with the costs from the example:

— 0 OO0 OO0 o0

0000 0000 OO0 0000

The best way is to cut it into twd-inch pieces, getting a revenue pf + p, =
5+5=10.

Let r; be the maximum revenue for a rod of lengthCan express a solution as a
sum of individual rod lengths.

Can determine optimal revenuesfor the example, by inspection:

17 6 (no cuts)
18 1+60r24+2+4+3
22 2+6

i Fi optimal solution
1 1 1 (no cuts)

2 5 2 (no cuts)

3 8 3 (no cuts)

4 10 242

5 13 243

6

7

8

Can determine optimal revenug by taking the maximum of
* p.: the price we get by not making a cut,
* ri+r,—:: the maximum revenue from a rod bfnch and arod ofi — 1 inches,

* 1, + r,_»:. the maximum revenue from a rod dfinches and a rod of — 2
inches, ...

¢ Iyt

That is,

Fn = MaX(pp, 11+ Fu—1, 2+ Tnay oo Pt +11)

Optimal substructure: To solve the original problem of size solve subproblems
on smaller sizes. After making a cut, we have two subprobleifise optimal
solution to the original problem incorporates optimal siolus to the subproblems.
We may solve the subproblems independently.

Example:Forn = 7, one of the optimal solutions makes a cuBanches, giving
two subproblems, of lengtfssand4. We need to solve both of them optimally. The

optimal solution for the problem of length cutting into 2 pieces, each of length
is used in the optimal solution to the original problem wihdth7.

Lecture Notes for Chapter 15: Dynamic Programming 15-3

A simpler way to decompose the probler&very optimal solution has a leftmost
cut. In other words, there’s some cut that gives a first piédergthi cut off the
left end, and a remaining piece of length- i on the right.

* Need to divide only the remainder, not the first piece.

* Leaves only one subproblem to solve, rather than two sulgmsh

* Say that the solution with no cuts has first piece gize n with revenuep,,,
and remainder sizé with revenuer, = 0.

* Gives a simpler version of the equation fQr

I'n = max(pi + I"n—i) .
1<i<n

Recursive top-down solution

Direct implementation of the simpler equation fqr
The call QT-ROD(p, n) returns the optimal revenug:

CuT-RoD(p,n)
if n==
return O
q = —00
fori = 1ton
g = max(gq, p[i] + CuT-ROD(p.n —i))
return ¢

This procedure works, but it is terribipefficient If you code it up and run it, it
could take more than an hour fer= 40. Running time almost doubles each time
n increases by.

Why so inefficient?; CuT-RoD calls itself repeatedly, even on subproblems it has
already solved. Here’s a tree of recursive callsifoe 4. Inside each node is the
value ofn for the call represented by the node:

Lots of repeated subproblems. Solve the subproblem forXstmdce, for sizel
four times, and for sizé eight times.

Exponential growthlet T'(n) equal the number of calls tou@-RoD with second
parameter equal te. Then

15-4

Lecture Notes for Chapter 15: Dynamic Programming

1 ifn=0,

n—1
L+ > T() ifn>1.

Jj=0

Tn) =

Summation counts calls where second parametgr=sn —i.
Solution to recurrence ig(n) = 2".

Dynamic-programming solution

Instead of solving the same subproblems repeatedly, artmgolve each sub-
problem just once.

Save the solution to a subproblem in a table, and refer battiettable whenever
we revisit the subproblem.

“Store, don’t recompute®> time-memory trade-off.

Can turn an exponential-time solution into a polynomiaidisolution.

Two basic approaches: top-down with memoization, and bretip.

Top-down with memoization

Solve recursively, but store each result in a table.

To find the solution to a subproblem, first look in the tablethd# answer is there,
use it. Otherwise, compute the solution to the subprobledtlaen store the solu-
tion in the table for future use.

Memoizingis remembering what we have computed previously.

Memoized version of the recursive solution, storing theisoh to the subproblem
of lengthi in array entryr[i]:

MEMOIZED-CUT-ROD(p, n)

letr[0..n] be a new array
fori =0ton
rli] = —o0
return MEMOIZED-CUT-ROD-AUX (p,n,r)

MEMOIZED-CUT-ROD-AUX (p,n,r)

if r[n] >0

return r{n]
if n==

q=0
elseq = —x

fori = 1ton

q = max(y, p[i] + MEMOIZED-CUT-ROD-AUX (p,n —i,r))

rln] =q
return ¢

Lecture Notes for Chapter 15: Dynamic Programming 15-5

Bottom-up

Sort the subproblems by size and solve the smaller ones fiitsat way, when
solving a subproblem, have already solved the smaller sbigms we need.

BoTTOM-UP-CUT-ROD(p, n)
letr[0..n] be a new array
r[0] =0
for j = 1ton
q =—
fori =1toj
g = maxXg, pli] +r[j —i])
rljl=4q
return rin]

Running time

Both the top-down and bottom-up versions rurifn?) time.

* Bottom-up: Doubly nested loops. Number of iterations ofinfor loop forms
an arithmetic series.

* Top-down: MemMoIZED-CUT-ROD solves each subproblem just once, and it
solves subproblems for sizésl, ..., n. To solve a subproblem of size the
for loop iterates: times=- over all recursive calls, total number of iterations
forms an arithmetic series[Actually using aggregate analysis, which Chap-
ter 17 covers.]

Subproblem graphs

How to understand the subproblems involved and how theyrdkpe each other.
Directed graph:

* One vertex for each distinct subproblem.

* Has a directed edgex, y) if computing an optimal solution to subproblem
directly requires knowing an optimal solution to subproblem

Example: For rod-cutting problem witlh = 4:

15-6

Lecture Notes for Chapter 15: Dynamic Programming

Can think of the subproblem graph as a collapsed versioneofrée of recursive
calls, where all nodes for the same subproblem are collaipsea single vertex,
and all edges go from parent to child.

Subproblem graph can help determine running time. Becaessole each sub-

problem just once, running time is sum of times needed tcesehch subproblem.

* Time to compute solution to a subproblem is typically lingathe out-degree
(number of outgoing edges) of its vertex.

* Number of subproblems equals number of vertices.

When these conditions hold, running time is linear in nundfeertices and edges.

Reconstructing a solution

So far, have focused on computing tr@ueof an optimal solution, rather than the
choicesthat produced an optimal solution.

Extend the bottom-up approach to record not just optimalesl but optimal
choices. Save the optimal choices in a separate table. Téwm@ geparate pro-
cedure to print the optimal choices.

EXTENDED-BOTTOM-UP-CUT-ROD(p, 1)
letr[0..n] ands[0..n] be new arrays

r[0] =0
for j = 1ton
q = —00
fori =1toj
if g < pli]l+r[j—1i]
q = plil +r[j—i]
s[j] =i
rlj] = ¢

return r ands

Saves the first cut made in an optimal solution for a problesizai in s[i].
To print out the cuts made in an optimal solution:

PRINT-CUT-ROD-SOLUTION (p, 1)
(r,s) = EXTENDED-BOTTOM-UP-CUT-ROD(p, 1)
whilen > 0
print s[n]
n =n—sn|

Example: For the example, ETENDED-BOTTOM-UP-CUT-ROD returns

i |01 23 4 5 6 7 8
ri][0 1 5 8 10 13 17 18 22
siljjo 123 2 2 6 1 2

A call to PRINT-CUT-ROD-SOLUTION(p, 8) calls EXTENDED-BOTTOM-UP-
CuT-RoD to compute the above ands tables. Then it print®, setsn to 6,
prints 6, and finishes (becausebecomey)).

Lecture Notes for Chapter 15: Dynamic Programming 15-7

Longest common subsequence

Problem: Given 2 sequencesX = (xi,..., X,) andY = (y,..., y,). Find
a subsequence common to both whose length is longest. Acudrsee doesn't
have to be consecutive, but it has to be in order.

[To come up with examples of longest common subsequencas;hsthe dictio-
nary for all words that contain the word you are looking foilaasubsequence. On
a UNIX system, for example, to find all the words wjthne as a subsequence,
use the commangrep ' .*p.*i.*n.+e.*" dict, wheredi ct is your lo-
cal dictionary. Then check if that word is actually a longestmon subsequence.
Working C code for finding a longest common subsequence obtririgs appears
at http.//www.cs.dartmouth.edu/thc/code/Ics.c]

Examples

[The examples are of different types of trees.]
sr/i/nyime ho\rsebac/k
pioneer snowf |l ake
ma/el\st7m heroic/al/l/y

becal m schol arly

Brute-force algorithm:

For every subsequence &f, check whether it's a subsequenceYof
Time: ®(n2™).

* 2™ subsequences o to check.

* Each subsequence tak®sn) time to check: scai for first letter, from there
scan for second, and so on.

Optimal substructure

Notation:
X; = prefix(xg,...,x;)
Y, = prefix(y,...,y)
Theorem

LetZ = (z4,...,2,) beany LCS ofX andY .

1. If x,, = ya, thenzy = x,, = y, andZ,_, is an LCS ofX,,_, andY,,_;.
2. If x,, # yn, thenzy # x,, = Z isan LCS ofX,,_, andY.

3. If x,, # yn, thenz, # y, = Z isan LCS ofX andY,_,.

15-8 Lecture Notes for Chapter 15: Dynamic Programming

Proof

1. First show that, = x,, = y,. Suppose not. Then make a subsequence
Z' = (21, ..., Zk, Xm). I's @a common subsequence &f and Y and has
lengthk + 1 = Z’ is a longer common subsequence tl¥ars contradictsZ
being an LCS.

Now showZ,_, is an LCS ofX,,_; andY,_,. Clearly, it's a common subse-
gquence. Now suppose there exists a common subsequénée(,,_, andY,_,
that’s longer tharZ,_, = length of W > k. Make subsequenc®#’ by ap-
pendingx,, to W. W’is common subsequence ¥fandY, has length> k + 1
= contradictsZ being an LCS.

2. If zx # x,, thenZ is a common subsequence Xf,_; andY. Suppose there
exists a subsequené® of X,,_; andY with length> k. ThenW is a common
subsequence of andY = contradictsZ being an LCS.

3. Symmetric t@. m (theorem)

Therefore, an LCS of two sequences contains as a prefix an EQ@fixes of the
sequences.

Recursive formulation
Definec(i, j] = length of LCS ofX; andY;. We wantc[m, n].

0 ifi=00rj =0,
cli,jl=qcli—1,7j—1]+1 if i,j >0andx; =y, ,

max(c[i — 1, jl.cli,j —1]) ifi,j >0andx; # y; .
Again, we could write a recursive algorithm based on thisnidation.
Try with bozo, bat.

* Lots of repeated subproblems.
* Instead of recomputing, store in a table.

Lecture Notes for Chapter 15: Dynamic Programming 15-9

Compute length of optimal solution

LCS-LENGTH(X,Y,m,n)
lethb[1..m,1..n]andc[0..m,o..n] be new tables
fori = 1tom

c[i,0] =0
for j =0ton
cl0,j]1=0

fori =1tom
for j = 1ton

if Xi ==Y;
cli,jl=cli—1,j—1]+1
bli,j] ="*N\"
elseifc[i — 1, j] > c[i,j — 1]
cli,jl =cli—1,J]
Bli, j] ="+
elsec[i, j] = c[i,j —1]
bli j] ="
return ¢ andb
PRINT-LCS(b, X, i, j)
ifi==00rj =0
return
if bli, j]=="\"
PRINT-LCS(b, X,i — 1,7 — 1)
printxi

elseifp[i, j]1 ==“1"
PRINT-LCS(b, X,i — 1,)
elsePRINT-LCS(b, X,i,j — 1)

* Initial call is PRINT-LCS(b, X, m, n).

* bli, j] points to table entry whose subproblem we used in solving bC%;
andY;.

* Whenbli, j] =\, we have extended LCS by one character. So longest com-
mon subsequence entries with~_in them.

Demonstration
What dospanki ng andanput at i on have in common?Show onlycli, j].]

15-10 Lecture Notes for Chapter 15: Dynamic Programming

Answer:pai n.

Time
®@mn)

Optimal binary search trees

[Added in the second edition.]

* Given sequenc& = (ky, k,, ..., k,) of n distinct keys, sortedk(< k, <
e < k).

* Want to build a binary search tree from the keys.

* Fork;, have probabilityp; that a search is fak;.

* Want BST with minimum expected search cost.

* Actual cost= # of items examined.

For keyk;, cost= depth.(k;) + 1, where depth(k;) = depth ofk; in BSTT.
E [search cost i)

=) (depthy(k) +1)- pi

i=1

= Zdepthr(ki) “pi + ZP;‘
i=1 i=1
= 1+) depth-(k)- p: (since probabilities sumto 1) |
i=1

[Keep equation (*) on board.]

Lecture Notes for Chapter 15: Dynamic Programming 15-11

[Similar to optimal BST problem in the book, but simplifiedréewe assume that
all searches are successful. Book has probabilities otBearbetween keys in
tree.]

Example

i |1 2 3 4 5
pi| 25 2 05 2 3

N\
aN

depth-(k;) depth-(k;) - pi
1 .25
0 0
2 A
1
2

2
.6
1.15

b OWODN |~

Therefore, Hsearch co$t= 2.15.

kl/kz\ks
/

Ky
k3
i depthe(k;) depth.(k;)- p;
1 1 .25
2 0 0
3 3 .15
4 2 4
5 1 3
1.10

Therefore, Hsearch co$t= 2.10, which turns out to be optimal.

Observations
* Optimal BST might not have smallest height.
* Optimal BST might not have highest-probability key at root.

Build by exhaustive checking?

15-12 Lecture Notes for Chapter 15: Dynamic Programming

* Construct each-node BST.

* For each, put in keys.

* Then compute expected search cost.

 But there are(4" /n>?) different BSTs withn nodes.

Optimal substructure

Consider any subtree of a BST. It contains keys in a contigwangek;, ..., k;
forsomel <i < j <n.

If T is an optimal BST and” contains subtre@”’ with keysk;, ..., k;, thenT’
must be an optimal BST for keys, ..., k;.

Proof Cut and paste. [

Use optimal substructure to construct an optimal solutiothé problem from op-
timal solutions to subproblems:

« Given keysk;, ..., k; (the problem).

* One of themk,, wherei <r < j, must be the root.

* Left subtree o, containsk;, ..., k,_;.

* Right subtree ok, containsk,1,...,k;.

K k1t K K
e f
* we examine all candidate roats, fori <r < j, and
* we determine all optimal BSTs containing,...,k,_; and containing
kr+l,---,kj,

then we're guaranteed to find an optimal BST kgr. . ., k;.

Lecture Notes for Chapter 15: Dynamic Programming 15-13

Recursive solution

Subproblem domain:

* Find optimal BST fork;,....k;, wherei > 1,j <n,j >i—1.
* Whenj =i — 1, the tree is empty.

Defineeli, j] = expected search cost of optimal BST for. .., k;.
If j =i —1,theneli, j] =0.

Ifj >,

* Selectarook,, forsome <r < j.

* Make an optimal BST witlt;, . .., k,_, as the left subtree.

* Make an optimal BST witlk,,, ..., k; as the right subtree.

* Note: whenr = i, left subtree is;,...,k;_;; whenr = j, right subtree is
kjti,....kj.

When a subtree becomes a subtree of a node:

* Depth of every node in subtree goes up by 1.
* Expected search cost increases by

J
w@i,j) = Y p (refer to equation()) .
1=

If k, is the root of an optimal BST fak;, ... k;:

eli,j]=p, + (e[i.,r =11+ w@,r —1)+(e[r+1,j]+wr+1,))).
Butw(@,j) =w(,r—1)+ p, +w(r +1,j).

Thereforeeli, j] =e[i,r — 1] +e[r + 1, j] + w(i, j).

This equation assumes that we already know which key.is

We don't.
Try all candidates, and pick the best one:
o 0 if j=i—1,
eli.j]= min {e[i,r —1]+elr+1,j]+w@,j)} ifi<j.
I1Sr=<j

Could write a recursive algorithm. ..

Computing an optimal solution

As “usual,” we’'ll store the values in a table:

e[l..n+1, 0..n]
—— N —

can store can store
e[n+ 1,n] e[l,0]

* Will use only entries[i, j], wherej >i — 1.

15-14 Lecture Notes for Chapter 15: Dynamic Programming

* Will also compute
root[i, j] = root of subtree with keys,,... . k;,forl <i <j <n.

One other table: don’t recompute(i, j) from scratch every time we need it.
(Would take®(j — i) additions.)

Instead:

* Tablew[l..n + 1,0..n]
* wli,i—1]=0forl1 <i<n
© wli,jl=wli.j—1]+pforl<i<j<n

Can compute alb(n?) values inO(1) time each.

OPTIMAL-BST(p,q,n)

lete[l1..n +1,0..n],w[l..n 4+ 1,0..n], androot[1..n,1..n] be new tables
fori =1ton+1
eli,i—1] =0
wli,i =11 =0
forl = 1ton
fori =1ton—1+1
jJ=i+1-1
eli,j] = o0

forr =itoj
t =eli,r—1]+e[r+1,j]+ wli, j]
ift <eli,j]
eli.jl=1
root(i, j] = r

returne androot
Firstfor loop initializese, w entries for subtrees witt keys.
Main for loop:

* lteration for/ works on subtrees withkeys.
* |dea: compute in order of subtree sizes, smalldtey) to larger f keys).

For example at beginning:

0 1 2 3 4 5
.65 8 125 210
1.35

o b WN PO

Lecture Notes for Chapter 15: Dynamic Programming 15-15

w
11 0 25 45 5 7 10
2 0 2 25 45 .75

.3 0 .05 .25 .55

I 4 o 2 5
5 0o 3
6 0

i

root 3 4 5
111 1 1 2 2
2 2 2 2 4

i 3 3 4 5
4 4 5
5 5

Time

O(n?): for loops nested deep, each loop index takes enn values. Can also
showQ(n?). Therefore ®(n?).

Construct an optimal solution

CONSTRUCTFOPTIMAL-BST(root)

r = root[1, n]

print “k”, “is the root”
CONSTRUCFOPT-SUBTREE(L, r — 1, 1, “left” , root)
CONSTRUCFOPT-SUBTREE(r + 1,n,r, “right” , root)

CONSTRUCTFOPT-SUBTREE(I, J, r, dir, root)
ifi <j
t = root[i, j]
print “k”, “is” dir “child of k",
CONSTRUCFOPT-SUBTREE(i,t — 1,t, “left” , root)
CONSTRUCFOPT-SUBTREE(? + 1, j, ¢, “right” , root)

Elements of dynamic programming

Mentioned already:

* optimal substructure
» overlapping subproblems

Optimal substructure

* Show that a solution to a problem consists of making a chaeitéch leaves
one or subproblems to solve.

15-16

Lecture Notes for Chapter 15: Dynamic Programming

» Suppose that you are given this last choice that leads to timaipsolution.
[We find that students often have trouble understanding éfseionship be-
tween optimal substructure and determining which choiaaasle in an opti-
mal solution. One way that helps them understand optimastaudture is to
imagine that the dynamic-programming gods tell you what thadast choice
made in an optimal solution.]

* Given this choice, determine which subproblems arise amdtba@haracterize
the resulting space of subproblems.

» Show that the solutions to the subproblems used within thienap solution
must themselves be optimal. Usually use cut-and-paste:

* Suppose that one of the subproblem solutions is not optimal.
« Cutit out.
» Pastein an optimal solution.

* Get a better solution to the original problem. ContradigtSmality of prob-
lem solution.

That was optimal substructure.

Need to ensure that you consider a wide enough range of charu# subprob-
lems that you get them al[The dynamic-programming gods are too busy to tell
you what that last choice really was:Jry all the choices, solve all the subprob-
lems resulting from each choice, and pick the choice whokgisn, along with
subproblem solutions, is best.

How to characterize the space of subproblems?

* Keep the space as simple as possible.
* Expand it as necessary.

Examples

Rod cutting
* Space of subproblems was rods of length i, for1 <i <n.
* No need to try a more general space of subproblems.

Optimal binary search trees
* Suppose we had tried to constrain space of subproblems toesshbwith
keyski, ks, ... k;j.
* An optimal BST would have rodt,, for somel <r < j.
* Getsubproblems;, ... k. andk,;,,....k;.

* Unless we could guarantee that&= j, so that subproblem witk, 4, k;
is empty, then this subproblemnst of the formk;, k,. k;.

* Thus, needed to allow the subproblems to vary at “both ends,” allow
bothi and; to vary.

Optimal substructure varies across problem domains:

1. How many subproblenmare used in an optimal solution.
2. How many choicem determining which subproblem(s) to use.

Lecture Notes for Chapter 15: Dynamic Programming 15-17

* Rod cutting:

* 1 subproblem (of size —i)
* n choices

+ Longest common subsequence:

* 1 subproblem
* Either
* 1choice (ifx; = y;, LCS of X;_, andY,_,), or
* 2choices (ifx; # y;, LCS of X;_; andY, and LCS ofX andY,_,)

* Optimal binary search tree:

* 2 subproblemsk(, ... k,—; andk, 11, ..., k;)
* j—i+ 1choices for, ink;, ..., k;. Once we determine optimal solutions
to subproblems, we choose from among jhe i + 1 candidates fok,.

Informally, running time depends on (# of subproblems oVjesa(# of choices).

* Rod cutting:®(n) subproblemsg n choices for each
= O(n?) running time.
* Longest common subsequenég(mn) subproblemsg 2 choices for each
= ®(mn) running time.
« Optimal binary search tre@(n?) subproblems((n) choices for each
= O(n®) running time.
Can use the subproblem graph to get the same analysis: teumitber of edges.

* Each vertex corresponds to a subproblem.
* Choices for a subproblem are vertices that the subproblenedges going to.

* Forrod cutting, subproblem graph hasertices and< n edges per vertex
= O(n?) running time.
In fact, can get an exact count of the edges: ifoe 0,1,...,n, vertex for
subproblem sizé has out-degree = # of edges= Y _/_,i = n(n + 1)/2.

* Subproblem graph for matrix-chain multiplication would/ea# (n2) vertices,
each with degreec n — 1
= O(n®) running time.

Dynamic programming uses optimal substructioogtom up

* First find optimal solutions to subproblems.

* Thenchoose which to use in optimal solution to the problem.

When we look at greedy algorithms, we’ll see that they wogkdown first make
a choice that looks beghensolve the resulting subproblem.

Don't be fooled into thinking optimal substructure appliesll optimization prob-
lems. It doesn't.

Here are two problems that look similar. In both, we're giveamunweighted,
directed graphG = (V, E).

15-18

Lecture Notes for Chapter 15: Dynamic Programming

* V is a set ofvertices
* FEis asetofdges

And we ask about finding path (sequence of connected edges) from vetidg
vertexv.

* Shortest path find pathu ~» v with fewest edges. Must @mple(no cycles,
since removing a cycle from a path gives a path with fewer gdge

* Longest simple pathfind simplepathu ~» v with most edges. If didn’t require
simple, could repeatedly traverse a cycle to make an arbyttang path.

Shortest path has optimal substructure.

pl P2

(D (W)

Rf—/
p
* Supposep is shortest pathy ~ v.
* Letw be any vertex omp.
* Let p, be the portion ofp goingu ~» w.
* Thenp, is a shortest path ~ w.

Proof Suppose there exists a shorter pattgoingu ~ w. Cut outp,, replace it

with p!, get pathu <> w £3 v with fewer edges thap. n

Therefore, can find shortest path-» v by considering all intermediate vertices
then finding shortest paths~ w andw ~» v.

Same argument applies jg.
Does longest path have optimal substructure?

* |t seems like it should.
* |t doesnot

(a) (o)

Considerg — r — t = longest patly ~ ¢. Are its subpaths longest paths?
No!

* Subpathy ~ risg — r.
* Longestsimple path ~ risqg - s >t —r.
* Subpathr ~ tisr —t.
* Longest simple path~ tisr — g — s — .

Lecture Notes for Chapter 15: Dynamic Programming 15-19

Not only isn’t there optimal substructure, but we can’t eassemble a legal solu-
tion from solutions to subproblems.

Combine longest simple paths:
q—>S8S—>t—>r—>qg—>s—>t

Not simple!

In fact, this problem is NP-complete (so it probably has ntino@l substructure to
find.)

What's the big difference between shortest path and lorpthkt?

* Shortest path haadependensubproblems.

» Solution to one subproblem does not affect solution to artatibproblem of
the same problem.

* Longest simple path: subproblems a independent.
* Consider subproblems of longest simple paths r andr ~» ¢.
* Longest simple path ~» r usess andz.

* Cannot use andr to solve longest simple path~» ¢, since if we do, the path
isn't simple.
* But wehaveto user to find longest simple path~» ¢!

* Using resources (vertices) to solve one subproblem retilaens unavailable to
solve the other subproblem.

[For shortest paths, if we look at a shortest path> w X3 v, no vertex other
thanw can appear ip, andp,. Otherwise, we have a cycle.]

Independent subproblems in our examples:

* Rod cutting and longest common subsequence
* 1 subproblem= automatically independent.

* Optimal binary search tree

* kik,—yandk,,,...,k; = independent.

Overlapping subproblems

These occur when a recursive algorithm revisits the samagroover and over.

Good divide-and-conquer algorithms usually generate scnaw problem at each
stage of recursion.

Example: merge sort

1.8
1..4/ \5..8
1.2 3.4 5.6 7.8
/" \ /" \ / N\ / \
1.1 2.2 33 a4 55 6.6 7.7 8.8

15-20

Lecture Notes for Chapter 15: Dynamic Programming

Won't go through exercise of showing repeated subproblems.
Book has a good example for matrix-chain multiplication.
Alternative approach to dynamic programmimgemoization

» “Store, don't recompute.”
+ Make atable indexed by subproblem.
* When solving a subproblem:

* Lookup in table.

* |If answer is there, use it.
* Else, compute answer, then store it.

* In bottom-up dynamic programming, we go one step further.détermine in
what order we’'d want to access the table, and fill it in that.way

Solutions for Chapter 15:
Dynamic Programming

Solution to Exercise 15.1-1

We can verify thaf"(n) = 2" is a solution to the given recurrence by the substitu-
tion method. We note that for = 0, the formula is true sinc2® = 1. Forn > 0,
substituting into the recurrence and using the formula fonmming a geometric

series yields
n—1
T() = 1+ 2/
Jj=0
= 14+2"-1
= 2",

Solution to Exercise 15.1-2

Here is a counterexample for the “greedy” strategy:

lengthi |1 2 3 4
pricep; |1 20 33 36
p/i |1 10 11 1

Let the given rod length be 4. According to a greedy strategyfirst cut out a rod
of length 3 for a price of 33, which leaves us with a rod of léngtof price 1. The
total price for the rod is 34. The optimal way is to cut it intectrods of length 2
each fetching us 40 dollars.

15-22

Solutions for Chapter 15: Dynamic Programming

Solution to Exercise 15.1-3

MoDIFIED-CUT-ROD(p, 1, c)

let7[0..n] be a new array
r[0] =0
for j = 1ton
q = plJ]
fori =1toj—1
g = maxg. plil +rlj —i]—¢)
rljl =4
return r{n]

The major modification required is in the body of the infar loop, which now
readsg = maxy, p[i] + r[j — i] — ¢). This change reflects the fixed cost of
making the cut, which is deducted from the revenue. We alse tmhandle the
case in which we make no cuts (wheequals;j); the total revenue in this case is
simply p[j]. Thus, we modify the inndor loop to run fromi to j — 1 instead of
toj. The assignment = p[j]takes care of the case of no cuts. If we did not make
these modifications, then even in the case of no cuts, we vibeudigéductinge from

the total revenue.

Solution to Exercise 15.1-4

MEMOIZED-CUT-ROD(p, n)

let 7[0..n] ands[0. . n] be new arrays
fori =0ton
rli] = —o0
(val,s) = MEMOIZED-CUT-ROD-AUX (p,n,r,s)
print “The optimal value is 'val “ and the cuts are at

j=n
while j > 0
prints[;]

J=1J—=sll

Solutions for Chapter 15: Dynamic Programming 15-23

MEMOIZED-CUT-ROD-AUX (p,n,r,s)

if rin] >0
return rin]
if n ==
q =20
elseqg = —oc0
fori = 1ton
(val,s) = MEMOIZED-CUT-ROD-AUX (p,n —i,r,s)
if g < pli] + val
g = pli] +val
sln] =i
rln] =¢q

return (q,s)

PRINT-CuT-ROD-SOLUTION constructs the actual lengths where a cut should hap-
pen. Array entrys[i] contains the valug indicating that an optimal cut for a rod
of lengthi is j inches. The next cut is given BYi — j], and so on.

Solution to Exercise 15.1-5

FIBONACCI(n)

let fib[0. . n] be a new array
fib[0] = fib[1] = 1
fori =2ton

fib[i] = fib[i — 1] + fib[i — 2]
return fib[n]

FiIBONAccI directly implements the recurrence relation of the Fibahaequence.
Each number in the sequence is the sum of the two previous ensnii the se-
quence. The running time is cleanty(n).

The subproblem graph consists of+ 1 vertices, vy, vy,...,v,. Fori =
2,3,...,n, vertexv; has two leaving edges: to vertex_; and to vertexy;_,.
No edges leave verticeg or v;. Thus, the subproblem graph has — 2 edges.

Solution to Exercise 15.2-4

The vertices of the subproblem graph are the ordered pairsvherei < j. If

i = j, then there are no edges outigf. If i < j, then for everyk such that
i <k < j,the subproblem graph contains edgegs, v;x) and(v;;, vi+1,;). These
edges indicate that to solve the subproblem of optimallgmiesizing the product
A;--- Aj, we need to solve subproblems of optimally parenthesizumegoroducts
A;--- A andAgy, -+ A;. The number of vertices is

G _n(n+1)
22 =5

i=1 j=i

15-24 Solutions for Chapter 15: Dynamic Programming

and the number of edges is

Y G-

n n—i

ZZ[(substitutingt = j — i)

i=1 j=i i=11=0
. i(n—i)(n—i—l—l)
= 5 .
i=1

Substitutingr = n — i and reversing the order of summation, we obtain

S (n—i)n—i+1)
2

n—1
= % Xj(r2 +r)
r=0
_ 1 ((n —1Hn@2n—1) N (n— l)n)
2 6 2
(n—Dnn+1)
5 .
Thus, the subproblem graph h@gn?) vertices andd(n>) edges.

(by equations (A.3) and (A.1))

Solution to Exercise 15.2-5
This solution is also posted publicly

Each time thé-loop executes, theloop executes — [+ 1 times. Each time the
i-loop executes, the-loop executeg —i = [— 1 times, each time referencing
m twice. Thus the total number of times that an entrysofs referenced while
computing other entries i5.;_,(n — I + 1)(I — 1)2. Thus,

n n

Y3 RGj) = Y (—1+DI—-1)2

i=1 j=i =2

- ZnX_:(n — i
=1

n—1 n—1
= 2> nl-2) 1
I=1 I=1

nn—1)n B 2(}1 —Dn@2n—1)

= 2
2 6
_ n3_n2_2n3—3n2+n
3
n3—n

Solutions for Chapter 15: Dynamic Programming 15-25

Solution to Exercise 15.3-1
This solution is also posted publicly

Running RECURSIVEMATRIX-CHAIN is asymptotically more efficient than enu-
merating all the ways of parenthesizing the product and cdimg the number of
multiplications for each.

Consider the treatment of subproblems by the two approaches

* For each possible place to split the matrix chain, the enatioer approach
finds all ways to parenthesize the left half, finds all ways doepthesize the
right half, and looks at all possible combinations of the keflf with the right
half. The amount of work to look at each combination of leftdaight-half
subproblem results is thus the product of the number of wags the left half
and the number of ways to do the right half.

* For each possible place to split the matrix chaiBCRRSIVEMATRIX -CHAIN
finds the best way to parenthesize the left half, finds thevoagto parenthesize
the right half, and combines just those two results. Thustheunt of work to
combine the left- and right-half subproblem result®id).

Section 15.2 argued that the running time for enumerati§(# /n>/2). We will
show that the running time for B2URSIVEMATRIX-CHAIN is O(n3""1!).

To get an upper bound on the running time &dRSIVEMATRIX-CHAIN, we'll
use the same approach used in Section 15.2 to get a lower:bDende a recur-
rence of the forml"(n) < ... and solve it by substitution. For the lower-bound
recurrence, the book assumed that the execution of linesaidB—7 each take at
least unit time. For the upper-bound recurrence, we’ll assthose pairs of lines
each take at most constant timeThus, we have the recurrence

¢ ifn=1,
T(l’l)f C+Z(T(k)+T(n_k)+c) if n >2.
k=1

This is just like the book’s> recurrence except that it hasnstead of 1, and so we
can be rewrite it as

n—1
T(n)<2) T(i)+cn.

i=1
We shall prove thaf'(n) = O(n3""!) using the substitution method. (Note: Any
upper bound o' (n) that iso (4" /n3/?) will suffice. You might prefer to prove one
that is easier to think up, such &@n) = 0(3.5").) Specifically, we shall show
that7'(n) < cn3" ! foralln > 1. The basis is easy, sindg1) <c =c-1-3'"1,
Inductively, forn > 2 we have

15-26 Solutions for Chapter 15: Dynamic Programming

n—1

T(n) < 2ZT(i)+cn
i=1
n—1
< 2) ¢i¥ ' ten
i=1
n—1
< c~<2zz’3"—1+n)
i=1
n3r1 1-3"
= -12- see below
c((3—1+(3—1)2)+”) ()
n—1 (1_3")
= c¢n3 +c- +n
2
= cn3"_1+%(2n+1—3”)
< cen3" tforale>0,n>1.

Running RECURSIVEMATRIX-CHAIN takesO(n3"~!) time, and enumerating alll
parenthesizations také€¥4” /n*?) time, and so RCURSIVE-MATRIX-CHAIN is
more efficient than enumeration.

Note: The above substitution uses the following fact:
nil: iy nx"! N 1 —x"

X = .
P x—1 (x—1)2

This equation can be derived from equation (A.5) by takireggdérivative. Let

n—1 n_
j‘()C)zX:)c":)C l—1.
i=1

x—1

Then

n—1

nil:' 2 () nx n I—x
ix'7 = fi(x)= .
P x—=1 (x-=1)7?

n

Solution to Exercise 15.3-5

We say that a problem exhibits the optimal substructure gntgpwvhen optimal
solutions to a problem incorporate optimal solutions tated subproblemsyhich

we may solve independentliye., they do not share resources). When we impose
a limit /; on the number of pieces of sizghat we are permitted to produce, the
subproblems can no longer be sohiadependently For example, consider a rod
of length 4 with the following prices and limits:

lengthi | 1 2 3 4
pricep;, | 15 20 33 36
limt, | 2 1 1 1

This instance has only three solutions that do not violagdithits: length 4 with
price 36; lengths 1 and 3 with price 48; and lengths 1, 1, andtt2 price 50. The

Solutions for Chapter 15: Dynamic Programming 15-27

optimal solution, therefore is to cut into lengths 1, 1, and\then we look at the
subproblem for length 2, it has two solutions that do notatekhe limits: length 2
with price 20, and lengths 1 and 1 with price 30. The optiméltsan for length 2,

therefore, is to cut into lengths 1 and 1. But we cannot usedpiimal solution for
the subproblem in the optimal solution for the original pgesh, because it would
result in using four rods of length 1 to solve the original geon, violating the

limit of two length-1 rods.

Solution to Exercise 15.3-6

Any solution must add the additional assumption that noeray can be repeated
in a sequence of trades. Without this assumption; i 1/r;; for some currencies
i andj, we could repeatedly exchange—~ j — i — j — --- and make an

unbounded profit.

To see that this problem has optimal substructure whes: 0 for all k£, observe
that the problem of exchanging currencyor currencyb is equivalent to finding a
sequence of currenciés, k,, . .., k,, such thatt;, = «, k,, = b, and the product
TyksThoks *** Theypy 1y 1S Maximized.

We use the usual cut-and-paste argument. Suppose thatiarabgblution con-
tains a sequence;, k41, ..., k;) of currencies, and suppose that there exists a
sequencek;. ki, kj), such thak; = k;, kj = k;, andry; -~ re,_ i >
Tkikiyr """ Tk;_1k;- Then we could substitute the sequekicgk;,, k;) for the
sequencék;.k;11,...,k;) inthe optimal solution to create an even better solution.
We show that optimal substructure does not hold wher:there arbitrary values
by means of an example. Suppose we have four currencies thétfollowing
exchange rates:
J
rij | 1 2 3 4
1|1 2 52 6
3
3

2 112 1 32
i 31|25 23 1
4 (16 13 13 1

Letc; = 2 ande, = ¢3 = 3. Note that this example is not too badly contrived, in
thatrji = l/r,-j for all i andj.
To see how this example does not exhibit optimal substractet's examine an

optimal solution for exchanging currency 1 for currency #efie are five possible
exchange sequences, with the following costs:

(1,4) L 62 = 4,
(1,2,4) : 2.3-3 = 3,
(1,3,4) : 5/2:3-3 = 9/2,
(1,2,3,4) : 2.3/2.3-3 = 6

(1,3,2,4) : 5/2-2/3-3-3 = 2
The optimal exchange sequen¢g,2, 3, 4), appears in boldface.

15-28 Solutions for Chapter 15: Dynamic Programming

Let's examine the subproblem of exchanging currency 1 foreticy 3. Allow-
ing currency 4 to be part of the exchange sequence, theregane five possible
exchange sequences with the following costs and the optineln boldface:

(1,3) . 5/2-2 = 1/2
(1,2,3) & 2-3/2-3 = 0
(1,4,3) : 6-1/3-3 = -1
(1,2,4,3) : 2-3.1/3-3 = -1
(1,4,2,3) : 6-1/3-3/2=3 = 0

We see that the solution to the original problem includesstigproblem of ex-
changing currency 1 for currency 3, yet the solutidn2, 3) to the subproblem
used in the optimal solution to the original problem is netdiptimal solution(1, 3)
to the subproblem on its own.

Solution to Exercise 15.4-4
This solution is also posted publicly

When computing a particular row of thetable, no rows before the previous row
are needed. Thus only two row2—Y.lengthentries—need to be kept in memory
atatime. (Note: Each row efactually has'.length+ 1 entries, but we don’t need
to store the column of 0's—instead we can make the prograrowKrhat those
entries are 0.) With this idea, we need ofllymin(m, n) entries if we always call
LCS-LENGTH with the shorter sequence as thieargument.

We can thus do away with thetable as follows:

* Use two arrays of length mim, n), previousrow andcurrentrow, to hold the
appropriate rows of.

* Initialize previousrow to all 0 and computeurrentrow from left to right.

* When currentrow is filled, if there are still more rows to compute, copy
currentrow into previousrow and compute the nesurrentrow.

Actually only a little more than one row’s worth efentries—mirgm, n) + 1 en-
tries—are needed during the computation. The only entresied in the table
when it is time to compute([i, j] arec[i, k] for k < j — 1 (i.e., earlier entries in
the current row, which will be needed to compute the next ramiic[i — 1, k] for

k > j —1 (i.e., entries in the previous row that are still needed toate the rest

of the current row). This is one entry for eaklfrom 1 to min(m,n) except that
there are two entries with = j — 1, hence the additional entry needed besides the
one row’s worth of entries.

We can thus do away with thetable as follows:

* Use an array: of length mir(mm, n) + 1 to hold the appropriate entries of At
the timec(i, j] is to be computed; will hold the following entries:

* alk]l =cli,k]for1 <k < j —1 (i.e., earlier entries in the current “row”),
* alk]l=cli — 1,k]fork = j —1 (i.e., entries in the previous “row”),

Solutions for Chapter 15: Dynamic Programming 15-29

* al0] = c[i,j — 1] (i.e., the previous entry computed, which couldn’t be put
into the “right” place ina without erasing the still-neededi — 1, j — 1]).

* Initialize a to all 0 and compute the entries from left to right.
* Note that the 3 values needed to comptjte j] for j > 1 are ina[0] =
cli,j—1),alj—1]=cli—1,j —1],anda[j] = c[i — 1, j].

* Whencli, j] has been computed, movwg0] (c[i, j — 1]) to its “correct”
placea[j — 1], and putc[i, j] in a[0].

Solution to Problem 15-1

We will make use of the optimal substructure property of Estgpaths iracyclic
graphs. Let: be some vertex of the graph.uf= ¢, then the longest path from
to ¢t has zero weight. it # ¢, let p be a longest path from to . Pathp has at
least two vertices. Let be the second vertex on the path. lggtbe the subpath
of p from v to ¢ (p’ might be a zero-length path). That is, the pathtooks like

u—v «p/; t.
We claim thatp’ is a longest path from to ¢.

To prove the claim, we use a cut-and-paste argumenp’ Were not a longest
path, then there exists a longer pathfrom v to z. We could cut oufp’ and paste

in p” to produce a path — v 23 t which is longer tharp, thus contradicting the
assumption thap is a longest path from to ¢.

It is important to note that the graph &yclic Because the graph is acyclic,
path p” cannot include the vertex, for otherwise there would be a cycle of the
formu — v ~ u in the graph. Thus, we can indeed yséto construct a longer
path. The acyclicity requirement ensures that by pastingai p”, the overall
path is still asimplepath (there is no cycle in the path). This difference between
the cyclic and the acyclic case allows us to use dynamic progring to solve the
acyclic case.

Letdist[u] denote the weight of a longest path franto . The optimal substructure
property allows us to write a recurrence flistju] as

ifu=t,

ax dist otherwise.
Jmax {w(u,v) + dist[v]} rwise

distiu] =

This recurrence allows us to construct the following praced

15-30 Solutions for Chapter 15: Dynamic Programming

LONGESTFPATH-AUX (G, u, t, dist, nex)
if u==t
distiu] = 0
return (dist, nexp
elseifnexf{u] > 0
return (dist, nexp
elsenex{u] = 0
for each vertew € G.Adj[u]
(dist, next)y = LONGESFPATH-AUX (G, v, 1, dist, nex)
if w(u,v) + dist[v] > distfu]
distiu] = w(u,v) + dist[v]
nexfu] = v
return (dist, nexy

(See Section 22.1 for an explanation of the notatioAdju].)

LONGESTFPATH-AUX is a memoized, recursive procedure, which returns the tuple
(dist, nexp. The arraydist is the memoized array that holds the solution to sub-
problems. That is, after the procedure returtisi[u] will hold the weight of a
longest path fromx to . The arraynextserves two purposes:

» It holds information necessary for printing out an actuahp&pecifically, ifu
is a vertex on the longest path that the procedure found,ribefu] is the next
vertex on the path.

* The value innex{u] is used to check whether the current subproblem has been
solved earlier. A value of at least zero indicates that thispsoblem has been
solved earlier.

The firstif condition checks for the base cage= ¢. The secondf condition
checks whether the current subproblem has already beeadsolVhefor loop
iterates over each adjacent edgev) and updates the longest distancelist]u].

What is the running time of bNGESFPATH-AUX? Each subproblem represented
by a vertexu is solved at most once due to the memoization. For each veviex
examine its adjacent edges. Thus, each edge is examinedsabnmue, and the
overall running time iD(E). (Section 22.1 discusses how we achi@gr) time

by representing the graph with adjacency lists.)

The RRINT-PATH procedure prints out the path using information stored émtxt
array:

PRINT-PATH (s, £, next)
u==:
print u
while u # ¢
print “—" nex{u]
u = nexfu]

The LONGESFPATH-MAIN procedure is the main driver. It creates and initializes
thedist and thenextarrays. It then calls ONGESFPATH-AUX to find a path and
PRINT-PATH to print out the actual path.

Solutions for Chapter 15: Dynamic Programming 15-31

LONGESTFPATH-MAIN (G, s,t)

n = |G.V|
letdist[1..n] andnex{l ..n] be new arrays
fori =1ton
dist[i] = —o0
nexfi] = —1
(dist, nex)y = LONGESFPATH-AUX(G, s, t, dist, nex
if dist[s] == —o0

print “No path exists”
elseprint “The weight of the longest path isdist[s]
PRINT-PATH (s, ¢, next)

Initializating thedist and nextarrays takeg) (V') time. Thus the overall running
time of LONGESFPATH-MAIN is O(V + E).

Alternative solution

We can also solve the problem using a bottom-up aproach. Teodave need
to ensure that we solve “smaller” subproblems before weesarger” ones. In
our case, we can usetapological sort(see Section 22.4) to obtain a bottom-up
procedure, imposing the required ordering on the vertic&3(l” + E) time.

LONGESTFPATH2(G, s,1)

letdist[1..n] andnex{l ..n] be new arrays
topologically sort the vertices a@
fori = 1t0|G.V|
distfi] = —o0
dist[s] = 0
for eachu in topological order, starting from
for each edgéu, v) € G.Adju]
if distlu] + w(u,v) > dist[v]
distlv] = distlu] + w(u,v)
nexfu] = v
print “The longest distance isdist[¢]
PRINT-PATH (s, ¢, next

The running time of IONGESFPATH2 iIsO(V + E).

Solution to Problem 15-2

We solve the longest palindrome subsequence (LPS) prollemmianner similar
to how we compute the longest common subsequence in Se&ién 1

Step 1: Characterizing a longest palindrome subsequence

The LPS problem has an optimal-substructure property, evttez subproblems
correspond to pairs of indices, starting and ending, ofripeti sequence.

15-32 Solutions for Chapter 15: Dynamic Programming

For a sequenc& = (x,x,,...,Xx,), we denote the subsequence starting and
ending ath by X,’j = (x,~,x,-+1, c ,Xj).

Theorem (Optimal substructure of an LPS)

Let X = (xq, xa, ..., x,) be the input sequence, and t= (z,,25,...,2,) be
any LPS ofX.

1. Ifn =1, thenm =1andz;, = x;.

2. Ifn =2andx; = x,,thenm =2 andz; =z, = x; = x,.

3. Ifn = 2 andx, # x,, thenm = 1 andz, is equal to either, or x,.

4. Ifn >2andx; = x,, thenm > 2,z, = z,, = x; = x,,, andZ, ,,,_; is an LPS
of X5,—1.

If n > 2 andx; # x,, thenz, # x, implies thatZ, ,, is an LPS ofX, ,.

6. If n > 2andx, # x,, thenz,, # x,, implies thatZ, ,, is an LPS ofX, ,_;.

o1

Proof Properties (1), (2), and (3) follow trivially from the defiiain of LPS.

(4) If n > 2andx; = x,, then we can choose, andx, as the ends o and
at least one more element &f as part ofZ. Thus, it follows thatn > 2. If
Z1 # x1, then we could append, = x, to the ends o¥ to obtain a palindrome
subsequence oX with lengthm + 2, contradicting the supposition that is a
longestpalindrome subsequence Xt Thus, we must have, = x; (= x, = Z).
Now, Z, ,,— is a lengthém — 2) palindrome subsequence &% ,_;. We wish to
show that it is an LPS. Suppose for the purpose of contradidtiat there exists
a palindrome subsequend® of X, ,_; with length greater tham — 2. Then,
appendingx; = x, to the ends oW produces a palindrome subsequenceXof
whose length is greater than which is a contradiction.

(5) If z; # x;, thenZ is a palindrome subsequence ¥f ,. If there were a
palindrome subsequené® of X, , with length greater tham, thenW would also
be a palindrome subsequenceXofcontradicting the assumption thatis an LPS
of X.

(6) The proof is symmetric to (2). [

The way that the theorem characterizes longest palindrarfnseguences tells us
that an LPS of a sequence contains within it an LPS of a sulbsegquof the se-
guence. Thus, the LPS problem has an optimal-substructapeiy.

Step 2: A recursive solution

The theorem implies that we should examine either one or tlspr®blems when
finding an LPS ofX = (x;, x,,..., x,,), depending on whether;, = x,,.

Let us definep(i, j] to be the length of an LPS of the subsequekge If i = j,

the LPS has length 1. Jf = i + 1, then the LPS has length either 1 or 2, depending
on whetherx; = x;. The optimal substructure of the LPS problem gives the
following recursive formula:

Solutions for Chapter 15: Dynamic Programming 15-33

1 ifi=j,

2 if j =i+ 1andx; =x;,
pli,jl= (1 if j =i+ 1andx; #x;,

pli+1,j—-1]+2 if j >i+1landx; =x;,

max(pli,j — 1], pli +1.j]) if j >i 4+ 1andx; # x; .

Step 3: Computing the length of an LPS

Procedure DNGESFPALINDROME takes a sequenc¥ = (x;, x,, ..., X,) as
input. The procedure fills cellg[i, i], wherel < i < n, andp[i,i + 1], where

1 <i <n—1, asthe base cases. Itthen starts filling celis j], wherej > i + 1.
The procedure fills the table row by row, starting with row — 2 and moving to-
ward row 1. (Rows: — 1 andrn are already filled as part of the base cases.) Within
each row, the procedure fills the entries from left to righte procedure also main-
tains the tablé[1..n, 1..n] to help us construct an optimal solution. Intuitively,
b[i, j] points to the table entry corresponding to the optimal soiflerm solution
chosen when computingl[i, j]. The procedure returns tiheand p tables;p[1, n]
contains the length of an LPS &f. The running time of ONGESFPALINDROME

is clearly®(n?).

LONGESTFPALINDROME (X)
n = X.length
lethb[1..n,1..n]andp[0..n,0..n] be new tables
fori =1ton—1
pli,i] =1
J=i+1
if X; == X;
pli.jl1=2
bli,jl ="»"
elsepli,j] =1
bli,jl ="}
pln.n] =1
fori = n—2downto 1
forj =i+2ton
if Xi == X;
pli.jl=pli+1,j—1]+2
bli.j] ="
elseifpli + 1, j] = pli,j — 1]
pli.jl = pli+1,/]

b[i,j] — “\L"
elsepli, j] = pli.j — 1]
b[ln,j] — “671

return p andb

15-34 Solutions for Chapter 15: Dynamic Programming

Step 4: Constructing an LPS

The b table returned by ONGESFPALINDROME enables us to quickly construct
an LPS ofX = (x, x5, ..., x,»). We simply begin ab[l1, n] and trace through
the table by following the arrows. Whenever we encounteyd in entry b[i, j],

it implies thatx; = y; are the first and last elements of the LPS thaNiGEST
PaLINDROME found. The following recursive procedure returns a segeérihat
contains an LPS ok'. The initial call is GENERATE-LPS(b, X, 1, X.length ()),
where() denotes an empty sequence. Within the procedure, the syrdeniotes
concatenation of a symbol and a sequence.

GENERATE-LPS(b, X,1, j, S)
ifi>j
return S
elseifi == j
return S|| x;
elseifp[i, j1==" /"
return x; || GENERATELPS(, X,i + 1,7 — 1, 8) || x;
elseifp[i, j]=="]"
return GENERATE-LPS(b, X,i + 1, /,5)
else return GENERATE-LPS(b, X,i,j — 1,5)

Solution to Problem 15-3

Taking the book’s hint, we sort the points lycoordinate, left to right, irD (n Ig n)
time. Let the sorted points be, left to rightp,, p2, ps. ..., pn). Therefore,p, is
the leftmost point, angh, is the rightmost.

We define as our subproblems paths of the following form, tvie call bitonic
paths. Abitonic path P; ;, wherei < j, includes all pointspy, p,,..., p;; it
starts at some poirg;, goes strictly left to poinp,, and then goes strictly right to
point p;. By “going strictly left,” we mean that each point in the patws a lowern -
coordinate than the previous point. Looked at another va@jridices of the sorted
points form a strictly decreasing sequence. Likewise,rfgatrictly right” means
that the indices of the sorted points form a strictly incregsequence. Moreover,
P; ; contains all the pointg,, p,, ps...., p;. Note thatp; is the rightmost point
in P; ; and is on the rightgoing subpath. The leftgoing subpath neayegenerate,
consisting of jusip;.
Let us denote the euclidean distance between any two ppjirdad p; by |p; p;|.
And let us denote by[i, j], for 1 <i < j < n, the length of the shortest bitonic
path P; ;. Since the leftgoing subpath may be degenerate, we cary easilpute
all valuesb[1, j]. The only value ob[i, 7] that we will need i$[n, n], which is the
length of the shortest bitonic tour. We have the followingralation ofb[i, ;] for
1<i<j<n

b[1,2] = |pipal,

bli.jl = bli.j—1+|pj-1p;| fori<j—1,

blj =141 = min {blk.j =11+ |pepsl} -

Solutions for Chapter 15: Dynamic Programming 15-35

Why are these formulas correct? Any bitonic path ending,dtasp, as its right-
most point, so it consists only gf; and p,. Its length, therefore, i, p»|.

Now consider a shortest bitonic path ;. The pointp;_, is somewhere on this
path. If it is on the rightgoing subpath, then it immediatpleceedsp; on this
subpath. Otherwise, it is on the leftgoing subpath, and istnme the rightmost
point on this subpath, so= j — 1. In the first case, the subpath froppto p;_;
must be a shortest bitonic path ;_;, for otherwise we could use a cut-and-paste
argument to come up with a shorter bitonic path ti®an. (This is part of our opti-
mal substructure.) The length 8&f ;, therefore, is given by[i, j — 1] + |p;—1 p;|.

In the second casgy; has an immediate predecesgqr, wherek < j — 1, on
the rightgoing subpath. Optimal substructure again appliee subpath fronp;

to p;_; must be a shortest bitonic path ;_;, for otherwise we could use cut-and-
paste to come up with a shorter bitonic path tiap. (We have implicitly relied
on paths having the same length regardless of which diregt®traverse them.)
The length ofP; ;, therefore, is given by mink< ;1 {b[k, j — 1] + | pk p;|}-

We need to computg[n, n]. In an optimal bitonic tour, one of the points adjacent
to p, must bep,_,, and so we have

b[n,n] = b[l’l - l’n] + |pn—1pn| .

To reconstruct the points on the shortest bitonic tour, wiende [i, j] to be the
index of the immediate predecessornpgfon the shortest bitonic path ;. Because
the immediate predecessor pf on Py, is p;, we know thatr[1,2] must bel.

The pseudocode below shows how we comgte;] andr[i, j]. It fills in only

entriesh[i, jJwherel <i <mn—1landi +1 < j <n,orwherel = j =n, and
only entriesr[i, j]wherel <i <n—2andi +2 < j <n.

EUCLIDEAN-TSP(p)

sort the points so thdip;, p», ps,. .., p,) are in order of increasing-coordinate
lethb[1..n,2..n]andr[l..n —2,3..n] be new arrays

b[1,2] = [p1pal

for j =3ton

fori =1toj —2
bli,j]l = bli,j — 1]+ |pj-1p,l
rli,jl=j—-1

blj —1,j] =00

fork =1toj—2
q = blk,j — 1]+ | p pj|

if g <b[j—1,]]
blj—1.j1=¢
rlj—-1jl=k

bln,n] = bn —1,n] + | pu—1Pnl
return b andr

We print out the tour we found by starting g}, then a leftgoing subpath that
includesp,,_,, from right to left, until we hitp,. Then we print right-to-left the re-
maining subpath, which does notinclugg_,. For the example in Figure 15.11(b)
on page 405, we wish to print the sequepeeps, p4, P3, P1, P2, Ps- Our code is
recursive. The right-to-left subpath is printed as we ggdednto the recursion,
and the left-to-right subpath is printed as we back out.

15-36 Solutions for Chapter 15: Dynamic Programming

PRINT-TOUR(r, n)

print p,

print Pn—1

k =rn—1,n]
PRINT-PATH(r, k,n — 1)
print py

PRINT-PATH (7,1, j)
ifi<j
k =rlij]
ifk #i
print py
if k> 1
PRINT-PATH(r, i, k)
elsek = r[j,i]
if k> 1
PRINT-PATH(r, k, j)
print py

The relative values of the parametérand j in each call of RINT-PATH indicate
which subpath we’re working on. If < j, we're on the right-to-left subpath, and
if i > j, we're on the left-to-right subpath. The test for£ i prevents us from
printing p; an extra time, which could occur when we calliRT-PATH (r, 1, 2).

The time to run BEICLIDEAN-TSP isO(n?) since the outer loop op iterates: —2
times and the inner loops drandk each run at most — 2 times. The sorting step
at the beginning take®(n Ig n) time, which the loop times dominate. The time to
run PRINT-TOUR is O(n), since each point is printed just once.

Solution to Problem 15-4
This solution is also posted publicly

Note: We assume that no word is longer than will fit into a line,, /; < M for
alli.

First, we'll make some definitions so that we can state thblpro more uniformly.
Special cases about the last line and worries about whetezueence of words fits
in a line will be handled in these definitions, so that we cagdbabout them when
framing our overall strategy.

* Defineextragi, j] =M — j +i — Z,’c':i I to be the number of extra spaces
at the end of a line containing wordsthrough j. Note thatextrasmay be
negative.

* Now define the cost of including a line containing wordlrough; in the sum
we want to minimize:
00 if extragi, j] < 0 (i.e., wordsi, ..., j don't fit) ,
Ic[i, j]={0 if j = n andextradi, j] > 0 (last line costs 0)
(extragi, j])* otherwise.

Solutions for Chapter 15: Dynamic Programming 15-37

By making the line cost infinite when the words don't fit on ig wrevent such
an arrangement from being part of a minimal sum, and by makiegost O for
the last line (if the words fit), we prevent the arrangemertheflast line from
influencing the sum being minimized.

We want to minimize the sum & over all lines of the paragraph.

Our subproblems are how to optimally arrange woids.., j, where j =
1,...,n.

Consider an optimal arrangement of worlds. ., j. Suppose we know that the
last line, which ends in worgl, begins with word . The preceding lines, therefore,
contain wordsl, ...,i — 1. In fact, they must contain an optimal arrangement of
wordsl,...,i — 1. (The usual type of cut-and-paste argument applies.)

Letc[/] be the cost of an optimal arrangement of wotds. ., j. If we know that
the last line contains words. . ., j, thenc[j] = c[i — 1] +Ic[i, j]. As a base case,
when we’re computing[1], we need:[0]. If we setc[0] = 0, thenc[1] = Ic[1, 1],
which is what we want.

But of course we have to figure out which word begins the |last for the sub-
problem of wordsl, ..., j. So we try all possibilities for word, and we pick the
one that gives the lowest cost. Hereanges froml to j. Thus, we can defingj]
recursively by

cljl= min (c[i = 1] +Icfi. j]) if j >0.
<i=J

Note that the way we defindd ensures that

» all choices made will fit on the line (since an arrangement Wit= co cannot
be chosen as the minimum), and

* the cost of putting words . .., j on the last line will not be 0 unless this really
is the last line of the paragraph & ») or words:i ... j fill the entire line.

We can compute a table ofvalues from left to right, since each value depends
only on earlier values.

To keep track of what words go on what lines, we can keep alphyatable that
points to where each value came from. Whea[;] is computed, ik[/] is based
on the value ot[k — 1], setp[j] = k. Then afterc[n] is computed, we can trace
the pointers to see where to break the lines. The last limessthword p[n] and
goes through word. The previous line starts at wor p[n]] and goes through
word p[n] — 1, etc.

In pseudocode, here’s how we construct the tables:

15-38

Solutions for Chapter 15: Dynamic Programming

PRINT-NEATLY (I,n, M)

letextragl..n,1..n],Ic[1..n,1..n],andc[0..n] be new arrays
/I Computeextradi, j]for1 <i < j <n.
fori =1ton
extragi,i] = M — [,
forj =i+ 1ton
extradi, j] = extradi, j — 1] -1, — 1
/I Computelc[i, j]for1 <i < j <n.
fori =1ton
for j =iton
if extragi, j] <0

Ic[i, j] = oo
elseif j ==n andextragi, j] > 0
Ic[i, j] =0

elselc[i, j] = (extradi, j])?
/I Computec[j] andp[j]forl < j <n.

c[0] =0

for j = 1ton
c[j] = o0
fori =1toj

if c[li —1]+Ic[i, j] < c[j]
clj] = cli — 1]+ IcJi, j]
plil=i
return ¢ andp

Quite clearly, both the time and space &ré:?).

In fact, we can do a bit better: we can get both the time andesgawn to® (n M).
The key observation is that at mgs¥//2] words can fit on a line. (Each word is
at least one character long, and there’s a space betwees.\v&idce a line with
wordsi, ..., j containsj —i + 1 words, ifj —i + 1 > [M/2] then we know
thatlc[i, j] = oo. We need only compute and stoegtragi, j] andlcli, j] for
j—i4+1<[M/2]. And the innerfor loop header in the computation of;]
andp[j] can run frommakl, j — [M/2] + 1) to .

We can reduce the space even furthe®it). We do so by not storing thie
andextrastables, and instead computing the valudoff, /| as needed in the last
loop. The idea is that we could computdi, j] in O(1) time if we knew the
value ofextragi, j]. And if we scan for the minimum value idescendingrder
of i, we can compute that axtragi, j] = extradi + 1, j] —/; — 1. (Initially,
extragj, j] = M —1;.) This improvement reduces the spacet@), since now
the only tables we store aveand p.

Here’s how we print which words are on which line. The printaaput of

GIVE-LINES(p, j) is a sequence of tripla%, i, j), indicating that words, ..., j
are printed on lin&. The return value is the line numbker

Solutions for Chapter 15: Dynamic Programming 15-39

GIVE-LINES(p, j)

i = pljl
ifi ==1

k=1

elsek = GIVE-LINES(p,i — 1) + 1
print (k. i, j)
return k

The initial call is GVE-LINES(p, n). Since the value of decreases in each recur-
sive call, GVE-LINES takes a total oD (n) time.

Solution to Problem 15-5

a. Dynamic programming is the ticket. This problem is slightiynilar to the
longest-common-subsequence problem. In fact, we'll defiaeotational con-
veniencesX; andY; in the similar manner as we did for the LCS problem:
Our subproblems will be determining an optimal sequencepefations that
convertsX; to Y;, for0 <i <mand0 < j < n. We’'ll call this the “X; — Y;
problem.” The original problem is th¥,, — Y,, problem.

Let's suppose for the moment that we know what was the lagatipa used to

convertX; to Y;. There are six possibilities. We denotediy, j] the cost of an
optimal solution to theX; — Y, problem.

If the last operation was a copy, then we must havexjgld= y[j]. The sub-
problem that remains is convertirig_, to Y;_,. And an optimal solution to
the X; — Y; problem must include an optimal solution to the_ ; — Y;_,
problem. The cut-and-paste argument applies. Thus, asguimat the last
operation was a copy, we hawf, j] = c[i — 1, j — 1] 4+ cos{copy).

If it was a replace, then we must have hdd] # y[j]. (Here, we assume
that we cannot replace a character with itself. It is a stitfoegward mod-
ification if we allow replacement of a character with itseliVe have the
same optimal substructure argument as for copy, and asgutmanhthe last
operation was a replace, we hayje, j] = c[i — 1, j — 1] + cosireplacg.

If it was a twiddle, then we must have had both] = y[j — 1] and

x[i — 1] = y[j], along with the implicit assumption that; > 2. Now

our subproblem is(;_, — Y;_, and, assuming that the last operation was a
twiddle, we haver[i, j] = c[i — 2, j — 2] + cos{twiddle).

If it was a delete, then we have no restrictionsxoor y. Since we can view
delete as removing a character frofp and leavingY; alone, our subprob-
lem is X;—; — Y;. Assuming that the last operation was a delete, we have
cli,j] =cli — 1, j] + costdelets.

If it was an insert, then we have no restrictionsxoor y. Our subproblem

is X; — Y;—;. Assuming that the last operation was an insert, we have
cli, j] = cli, j — 1] + cos{inser).

15-40

Solutions for Chapter 15: Dynamic Programming

» If it was a kill, then we had to have completed convertiXig to Y,,, so that
the current problem must be thg, — Y, problem. In other words, we must
havei = m andj = n. If we think of a kill as a multiple delete, we can get
any X; — Y,, where0 < i < m, as a subproblem. We pick the best one,
and so assuming that the last operation was a kill, we have

c[m,n] = Og}an {c[i,n]} + costkill) .

We have not handled the base cases, in which 0 or j = 0. These are
easy. X, andY, are the empty strings. We convert an empty string jtdy

a sequence of inserts, so that[0, j] = j - costinser). Similarly, we convert
X; into Y, by a sequence afdeletes, so that[i,0] = i - cost{deletg. When

i = j = 0, either formula gives ug[0,0] = 0, which makes sense, since
there’s no cost to convert the empty string to the emptygtrin

Fori, j > 0, our recursive formulation fat[i, j| applies the above formulas in
the situations in which they hold:

cli —1,j — 1] 4+ cos{(copy) if x[i] =y[j],
cli —1,j — 1] + cos(replace if x[i] # y[j],
cli —2,j — 2] + costtwiddle) ifi,j>2,
cli, j] = min il =yl =1l

’ andx[i — 1] = y[j] .
cli — 1, j] + cos(deletg always,
cli, j] = cli, j — 1] 4+ cos{inser) always,
0r<r}i<nm {c[i,n]} + cosikill) ifi=mandj =n.

Like we did for LCS, our pseudocode fills in the table in rowjonarder, i.e.,
row-by-row from top to bottom, and left to right within eacow. Column-
major order (column-by-column from left to right, and topkottom within
each column) would also work. Along with tle§, j] table, we fill in the table
op[i, j], holding which operation was used.

Solutions for Chapter 15: Dynamic Programming 15-41

EDIT-DISTANCE(x, y,m, n)

letc[0..m,0..n] andop[0..m,0..n] be new arrays
fori =0tom
c[i,0] = i - cos(deletg
op[i,0] = DELETE
for j =0ton
c[0, j] = j - cosiinser
op[0, j] = INSERT
fori =1tom
for j =1ton
cli,j] = o0
if x[i] == y[j]
cli,j] = cli —1,j — 1] 4+ cost{copy)
opli, j] = copy
if x[i] # y[jlandc[i — 1, — 1] + cos{replace < cJi, j]
cli,j] = cli —1,j — 1] 4+ cos{replace
opli. j] = REPLACEDby y[/])
if i >2andj >2andx[i]==y[j — 1] and
x[i —1]==y[/]and
cli —2,j —2] + cositwiddle) < cJi, j]
cli,j] = cl[i —2,j — 2] + cositwiddle)
opli, j] = TWIDDLE
if c[i —1, j] + cos{deletg < c[i, j]
cli,j] = c[i — 1, j] + cos{(deletg
op[i, j] = DELETE
if c[i, j — 1] 4 costinser) < c[i, j]
cli, j] = cli, j — 1] + cos{inser)
opli. j] = INSERT(y[/])
fori =0tom—1
if c[i,n] + costkill) < c[m,n]
c[m,n] = c[i,n] + costkill)
op[m,n] = KILL i
return ¢ andop

The time and space are ba#{mn). If we store aKILL operation inop[m, n],
we also include the indek after which we killed, to help us reconstruct the

optimal sequence of operations. (We don'’t need to stfifin the op table for
replace or insert operations.)

To reconstruct this sequence, we usedpéable returned by BIT-DISTANCE.
The procedure ® SEQUENCE(Op, i, j) reconstructs the optimal operation se-
quence that we found to transfordd; into Y;. The base case is when
i = j = 0. The first call is @-SEQUENCE(0Op, m,).

15-42 Solutions for Chapter 15: Dynamic Programming

OP-SEQUENCEOp, i, j)
ifi==0andj =0
return
if opi, j] == coPYorop[i, j] = REPLACE
i"'=1i-1

Jjr=Jj-1
elseifop[i, j] == TWIDDLE

i"'=1i-2

Jj'=J-2

elseifop|i, j] == DELETE
i'=i-1

J'=
elseifop[i, j] == INSERT /I don’t care yet what character is inserted
i"'=i
Jr=0-l
else /I must bekiLL , and must havé = m andj = n
letopl[i, j] ==KILL k
i"'=k
J'=1
OP-SEQUENCE(op, ', j')
print op[i,]

This procedure determines which subproblem we used, exorsit, and then
prints its own last operation.

b. The DNA-alignment problem is just the edit-distance problevith

cosicopy) = -1,
cosfreplacg = +1,
cos(deletg = +2,
cosfinsery = +2,

and the twiddle and kill operations are not permitted.

The score that we are trying to maximize in the DNA-alignmperdblem is
precisely the negative of the cost we are trying to minimizéhie edit-distance
problem. The negative cost of copy is not an impediment,esime can only
apply the copy operation when the characters are equal.

Solution to Problem 15-8

a. Let us set up a recurrence for the number of valid seams asctidurof m.
Suppose we are in the process of carving out a seam row by tanting from
the first row. Let the last pixel carved out H¢i, j]. How many choices do we
have for the pixel in row + 1 such that the pixel continues the seam? If the last
pixel A[i, j] were on the column boundary & 1 ori = n), then there would
be two choices for the next pixel. For example, whiea 1, the two choices
for the next pixel ared[i + 1, j] andA[i + 1, j + 1]. Otherwise, there would

Solutions for Chapter 15: Dynamic Programming 15-43

be three choices for the next pixel{i + 1, j — 1], A[i + 1, j], A[i +1,j +1].
Thus, for a general pixell[i, j], there are at least two possible choices for a
pixel p in the next row such thagt continues a seam ending i, j]. LetT (i)
denote the number of possible seams from row 1 toirowhen, fori = 1, we
haveT (i) = n, and fori > 1,

T@)=>2T@G—1).
It is easy to guess th&f(i) > n2'~!, which we verify by direct substitution.
Fori = 1,we haveT' (1) =n > n-2° Fori > 1, we have
T() 2T — 1)
2.n272
= n2'7t.
Thus, the total numbeF (m) of seams is at least2™~!. We conclude that the
number of seams grows at least exponentially:in

=
=

b. As proved in the previous part, it is infeasible to systenadly check every
seam, since the number of possible seams grows expongntiall

The structure of the problem allows us to build the solutiow by row. Con-
sider a pixelA[i, j]. We ask the question: “If were the first row of the
picture, what is the minimum disruptive measure of seamisdtaat with the
pixel A[i, j]?”

Let S* be a seam of minimum disruptive measure among all seamst#rat s
with pixel A[i, j]. Let A[i + 1, p], wherep € {j — 1, j, j + 1}, be the pixel
of $* in the next row. LetS’ be the sub-seam ¢f* that starts withA[i + 1, p].
We claim thatS’ has the minimum disruptive measure among seams that start
with A[i + 1, p]. Why? Suppose there exists another sefifithat starts
with A[i + 1, p] and has disruptive measure less than that' oBy usingS” as
the sub-seam instead §f, we can obtain another seam that starts with ;|
and has a disruptive measure which is less than th&tofThus, we obtain a
contradiction to our assumption thét is a seam of minimum disruptive mea-
sure.

Letdisr[i, j] be the value of the minimum disruptive measure among all seam
that start with pixeld[i, j]. For rowm, the seam with the minimum disruptive
measure consists of just one point. We can now state a recerferdisr[i, j|

as follows. In the base casdisr|m, j| = d[m, j]for j = 1,2,...,n. Inthe
recursive case, fof = 1,2,...,n,

disrli, j1 =dJ[i, j] +]rcnillg{disr[i +i,j +k]} .,
€
where the seK of index offsets is
{0, 1} ifj=1,
K={{-1,0,1} ifl<j<m,
{—1,0} if j=n.

Since every seam has to start with a pixel of the first row, wephi find the
minimumdisr[1, j] for pixels in the first row to obtain the minimum disruptive
measure.

15-44 Solutions for Chapter 15: Dynamic Programming

COMPRESSIMAGE (d)

m = d.rows
n = d.columns
letdisr[l1..m,1..n]andnex{l..m,1..n] be new tables
for j = 1ton
disr[m, j] = d[m, j]
for i = m —1downto 1
for j = 1ton
low = max(—1,1— j)
high = min(1,n — j)
disr[i, j] = o©
for k = lowto high
if disr[i + 1, j + k] < disr[i, j]
disr[i, j] = disr[i + 1, j + k]
nex{i,jl = j +k
disr[i, j] = disr[i, j] + d[i, j]
val = oo
start = 1
for j = 1ton
if disr[1, j] < val
val = disr[l, j]
start = j
print “The minimum value of the disruptive measure isdl
fori = 1tom
print “cut point at " (i, start)
start = nex{i, start|

The procedure GMPRESSIMAGE is simply an implementation of this recur-
rence in a bottom-up fashion.

We first carry out the initialization of the base cases, whishthe cases when
row i = m. The minimum disruptive measure for the base cases is sim-
ply d[m., j].

The nextfor loop runs down fromn — 1 to 1. Thus,disr[i + 1, j] is already
available before computingjsr][i, j] for pixels of rowi.

The assignments tlww and high allow the index offsetc to range over the
correct setk from above. We sdbwto 0 when;j = 1 and to—1 when; > 1,
and we sehighto 0 whenj = n and tol when; < n. The innermostor loop
setsdisr[i, j] to the minimum value oflisr[i 4+ 1, j + k] for all k € K, and the
line that follows this loop adds id[i, j].

We use thenexttable to reconstruct the actual seam. For a given pixelcands
which pixel was used as the next pixel. Specifically, for aepiA[i, j], if
nex{i, j] = p, wherep € {j — 1, j,j + 1}, then the next pixel of the seam
is A[i + 1, p].

The last line of thdor loop adds the disruptive measure of the current pixel to
the disruptive measure of the seam.

The nextfor loop finds the minimum disruptive measure of pixels in the firs
row. We print the minimum disruptive measure as the answer.

Solutions for Chapter 15: Dynamic Programming 15-45

The rest of the code reconstructs the actual seam, usingftireniation stored
in the nextarray.

Noting that the innermodbr loop runs over at most three valueskgfwe see

that the running time of GMPRESSIMAGE is O(mn). The space requirement

is alsoO(mn). We can improve upon the space requirement by observing that
row i of the disr table depends on only row+ 1. Therefore, we can store
just two rows at any time. Thus, we can improve the space reaeint of
COMPRESSIMAGE to O(n).

Solution to Problem 15-9

Our first step will be to identify the subproblems that satisfie optimal-
substructure property. Before we frame the subproblem, alentwo simplifying
modifications to the input:

* We sortL so that the indices ik are in ascending order.
* We prepend the indeXto the beginning of. and appena to the end off..

Let L[i .. j] denote a subarray df that starts from index and ends at index.
Define the subproblem denoted i j) as “What is the cheapest sequence of
breaks to break the substrif|f L[i] + 1..L[j]]?" Note that the first and last
elements of the subarrdy(i .. j] define the ends of the substring, and we have to
worry about only the indices of the subarrayi +1..; —1].

For example, lel. = (20, 17, 14, 11, 25) andn = 30. First, we sortl.. Then, we
prependd and append as explained to get = (0, 11, 14, 17, 20, 25, 30). Now,
what is the subprobler2, 6)? We obtain a substring by breakisgafter character
L[2] = 11 and charactel.[6] = 25. We ask “What is the cheapest sequence of
breaks to break the substrigg12 . . 25]?” We have to worry about only indices in
the subarray.[3..5] = (14, 17, 20), since the other indices are not present in the
substring.

At this point, the problem looks similar to matrix-chain riplication (see Sec-
tion 15.2). We can make the first break at any elemedt[of+ 1..j — 1].

Suppose that an optimal sequence of breat@ subproblenti, j) makes the first
break atL[k], wherei < k < j. This break gives rise to two subproblems:

* The “prefix” subproblenti, k), covering the subarrak[i + 1..k — 1],
* The “suffix” subproblem, j), covering the subarra¥[k + 1..j —1].

The overall cost can be expressed as the sum of the lengtte agutbstring, the
prefix cost, and the suffix cost.

We show optimal substructure by claiming that the sequehbeeaks inc for the
prefix subproblen{i, k) must be an optimal one. Why? If there were a less costly
way to break the substrin§j[L[i]+1 .. L[k]] represented by the subproblgmk),
then substituting that sequence of breaks wwould produce another sequence of
breaks whose cost is lower than thawgofwhich would be a contradiction. A sim-
ilar observation holds for the sequence of breaks for thiixssiibproblem(k, j):

it must be an optimal sequence of breaks.

15-46 Solutions for Chapter 15: Dynamic Programming

Let costi, j] denote the cost of the cheapest solution to subprolgiery). We
write the recurrence relation faostas

o 0 if j—i<l,
cosfi, j] = min {cos[i,k] + costk, j] + (L[j] - L[i])} if j—i>1.
i<k<j

Thus, our approach to solving the subprobléiyy) will be to try to split the re-
spective substring at all possible valueskaind then choosing a break that results
in the minimum cost. We need to be careful to solve smallepmidems before
we solve larger subproblems. In particular, we solve suilpros in increasing
order of the lengtly —i.

BREAK-STRING(n, L)

prepend to the start ofl. and append to the end of.
m = L.length
sort L into increasing order
letcos{l..m,1..m] andbreal{1..m,1..m] be new tables
fori =1tom—1
cosfi,i] = cos{i,i + 1] = 0
cosim,m] = 0
for len = 3tom
fori = 1tom—len+1
j=i+len—1
cosii, j] = o0
fork =i+ 1toj —1
if cosfi, k] + cosfk, j] < cosfi, j]
cosii, j] = cosfi, k] + costk, j]
breali, j] = k
cosfi, j] = cosli, j] + L[j] — L[i]
print “The minimum cost of breaking the string i<bds{1, m]
PRINT-BREAKS(L, break 1,m)

After sorting L, we initialize the base cases, inwhick= j or j =i + 1.

The nestedor loops represent the main computation. The outerfopdbop runs
for len = 3 tom, which means that we need to consider subarrayswith length
at least3, since the first and the last element define the substringwandeed at
least one more element to specify a break. The increasingvallenalso ensures
that we solve subproblems with smaller length before weesslibproblems with
greater length.

The innerfor loop oni runs from1 tom —len+ 1. The upper bound ofi —len+ 1
is the largest value that the start indegan take such that+ len— 1 < m.

In the innermosfor loop, we try each possible locatidnas the place to make the
first break for subprobleri, j). The first such place i&[i + 1], and notL[i], since
L[i] represents the start of the substring (and thus not a vadickpor a break).
Similarly, the last valid place i4.[j — 1], becausd.[j] represents the end of the
substring.

The if condition tests whethek is the best place for a break found so far, and
it updates the best value oosf{i, j] if so. We usebreaki, j] to record that the

Solutions for Chapter 15: Dynamic Programming 15-47

best place for the first break ks Specifically, ifbreaKi, j] = k, then an optimal
sequence of breaks f¢#, j) makes the first break dt[k].

Finally, we add the length of the substridg ;] — L[i] to cos{i, j] because, irre-
spective of what we choose as the first break, it costs us a egual to the length
of the substring to make a break.

The lowest cost for the original problem ends up@s{1, m]. By our initialization,
L[1] = 0 andL[m] = n. Thus,cos{1, m] will hold the optimum price of cutting
the substring fronl.[1] + 1 = 1 to L[m] = n, which is the entire string.

The running time i$9(m?), and it is dictated by the three nestied loops. They
fill in the entries above the main diagonal of the two tablesept for entries in
which j = i + 1. That is, they fill in rowsi = 1,2,...,m — 2, entriesj =

i +2,i+3,...,m. When filling in entry[i, j], we check values ot running
fromi 4+ 1toj —1,0r j —i — 1 entries. Thus, the total number of iterations of the
innermostfor loop is

—2m —

X G-i-n = > d d=j—i—1)

i=1j=i+2 i=1 d

3

IS

_ 3 O((m —i)*) (equation (A.2))

S ~

= O(h?) (h=m—1)
h=2
= O(m?) (equation (A.3)) .
Since each iteration of the innermdst loop takes constant time, the total running

time is®(m?). Note in particular that the running time is independenteflength
of the stringn.

PRINT-BREAKS(L, break i, j)
if j—i>2
k = breakli, j]
print “Break at " L[k]
PRINT-BREAKS(L, break i, k)
PRINT-BREAKS(L, break k, j)

PRINT-BREAKS uses the information stored break to print out the actual se-
quence of breaks.

Solution to Problem 15-11

We state the subprobleli, s) as “What is the cheapest way to satisfy all the de-
mands of months, ..., n when we start with a surplus efoefore thecth month?”

A plan for the subproblentk, s) would specify the number of machines to manu-
facture for each month, . . ., n such that demands are satisfied.

In some optimal planP to (k,s), let f* machines be maufactured in morith
Thus, the surplus’ in monthk + 1iss + f* — d,. Let P’ be the part of the

15-48

Solutions for Chapter 15: Dynamic Programming

plan P for monthsk + 1,...,n. We claim thatP’ is an optimal plan for the
subproblem(k + 1,s"). Why? SupposeP’ were not an optimal plan and Iét”
be an optimal plan fofk + 1,s’). If we modify plan P by cutting outP’ and
pasting inP” (i.e., by using planP” for monthsk + 1,...,n), we obtain another
plan for (k,s) which is cheaper than plaf. Thus, we obtain a contradiction to
the assumption that plah was optimal.

Let costk, s] denote the cost of an optimal plan fok, s), and let f denote the
number of machines that can be manufactured in ménthhe bounds forf are
as follows:

* Atleast the number of machines so that (along with surpidisere are enough
machines to satisfy the current month’s demand. Let us dehist lower bound
by L(k,s). We have

L(k,s) = max(dy — s,0) .

* At most the number of machines such that there are enoughimescto sat-
isfy the demands of all the following months. Let us denote tipper bound
by U(k,s). We have

Uk,s) = (idi) —5.
i=k

For the last month, we need only manufacture the minimumireduumber of
machines, given by.(n, s). For other months, we examine the costs of manufac-
turing all feasible numbers of machines and see which chgies us the cheapest
plan. We can now write the recurrence tmstas the following:

c-max(L(n,s)—m,0)

+ h(s + L(n,s) —dy) ifk=n.
cosik, s] = < ; B
sl LGes)of 2UGhas) {cosl[k + Ls + f —di]

+c-maxf —m,0)
+h@+f—@ﬁ if0<k<n.

The recurrence suggests how to build an optimal plan in atettp fashion. We
now present the algorithm for constructing an optimal plan.

Solutions for Chapter 15: Dynamic Programming 15-49

INVENTORY-PLANNING (n,m, ¢, D,d, h)

letcos{l..n,0.. D] andmakél..n,0.. D] be new tables
/I Computecosin,0.. D] andmakén,0.. D].

fors =0to D
f = max(d, —s,0)
cosin,s] = c-max(f —m,0) + h(s+ f —d,)
makeén,s| = f
/I Computecos{l..n —1,0.. D] andmakél..n —1,0.. D].
U=d,
fork = n—1downtol
U=UH+d
fors =0to D

costk,s] = o
for f = max(dy —s,0)toU —s
val = coslk + 1,5 + f —dy]
+c-max(f —m,0) + h(s + f —di)
if val < costk, s]
costk, s] = val
makek,s] = f
print cos{1,0]
PRINT-PLAN (maken, d)

PRINT-PLAN (maken, d)
s =0
fork =1ton
print “For month "k “ manufacture "'makek, s] “ machines”
s = s + makék, s] — d

In INVENTORY-PLANNING, we build the solution month by month, starting from
monthzn, moving backward toward month First, we solve the subproblem for the
last month, for all surpluses. Then, for each month and fohearplus entering
that month, we calculate the cheapest way to satisfy denmarttidt month based
on the solved subproblems of the next month.

* f is the number of machines that we try to manufacture in ménth

* cosik, s] holds the cheapest way to satisfy demands of manths. , n, with a
net surplus of left over at the beginning of month

* makdk, s] holds the number of machines to manufacture in méntnd the
surpluss of an optimal plan. We will use this table to reconstruct tpé&noal
plan.

We first initialize the base cases, which are the cases fothmoustarting with

surpluss, fors = 0,...,D. If d, > s, it suffices to manufacture,, — s ma-

chines, since we need not keep any surplus after monthd,, < s, we need not
manufacture any machines at all.

We then calculate the total cost for monthas the sum of hiring extra labor
¢ -max(f — m,0) and the inventory costs for leftover surplu@ + f —d,), which
can be nonzero if we had started out with a large surplus.

15-50

Solutions for Chapter 15: Dynamic Programming

The outerfor loop of the next block of code runs down from montk 1 to 1, thus
ensuring that when we consider mo#wtiwe have already solved the subproblems
of monthk + 1.

The next inneffor loop iterates through all possible values 0fis described.

For every choice off for a given monthk, the total cost ofk, s) is given by the
cost of extra labor (if any) plus the cost of inventory (if theés a surplus) plus the
cost of the subproblertk + 1,s + f — di). This value is checked and updated.
Finally, the required answer is the answer to the subprolfer®), which ap-
pears incos{1,0]. That is, it is the cheapest way to satisfy all the demands of
monthsl, ..., n when we start with a surplus 6f

The running time of N'VENTORY-PLANNING is clearly O(nD?). The space re-
quirement isO(nD). We can improve upon the space requirement by noting that
we need only store the solution to subproblems of the nextimafith this obser-
vation, we can construct an algorithm that usgs + D) space.

Solution to Problem 15-12

Let p.costdenote the cost ang.vorp denote the VORP of playey. We shall
assume that all dollar amounts are expressed in units of 200

Since the order of choosing players for the positions dod¢smaiter, we may
assume that we make our decisions starting from positiono¥jrmg toward posi-
tion N. For each position, we decide to either sign one player ar s@gplayers.
Suppose we decide to sign playgrwho plays position 1. Then, we are left with
an amount ofY — p.costdollars to sign players at positio@s. .., N. This obser-
vation guides us in how to frame the subproblems.

We define the cost and VORP ofsatof players as the sum of costs and the sum
of VORPs of all players in that set. Lét, x) denote the following subproblem:
“Suppose we consider only positions + 1,..., N and we can spend at most
dollars. What set of players (with at most one player for gaasition under con-
sideration) has the maximum VORP?"valid set of players foi(i, x) is one in
which each player in the set plays one of the positions- 1, . .., n, each position
has at most one player, and the cost of the players in the aéni®stx dollars.

An optimal set of players foi(i, x) is a valid set with the maximum VORP. We
now show that the problem exhibits optimal substructure.

Theorem (Optimal substructure of the VORP maximization jmem)

Let L = {p1, p2,..., pr} be a set of players, possibly empty, with maximum

VORP for the subproblent, x).

1. If i = N, thenL has at most one player. If all players in positishhave cost
more thanx, then L has no players. Otherwisé, = {p,}, wherep, has the
maximum VORP among players for positidhwith cost at mosk.

2. If i < N andL includes playerp for positioni, thenL’ = L — {p} is an
optimal set for the subprobleid + 1, x — p.cos).

3. Ifi < N andL does not include a player for positionthen L is an optimal
set for the subprobleri + 1, x).

Solutions for Chapter 15: Dynamic Programming 15-51

Proof Property (1) follows trivially from the problem statement.

(2) Suppose that’ is not an optimal set for the subproblgin+ 1, x — p.cosb.
Then, there exists another valid set for (i + 1,x — p.cos) that has VORP
more thanL’. Let L” = L” U {p}. The cost ofL" is at mostx, sinceL” has a
cost at mostc — p.cost Moreover,L” has at most one player for each position
i,i+1,...,N.Thus,L"” is avalid set for(i, x). But L"” has VORP more thah,
thus contradicting the assumption tiahad the maximum VORP fai, x).

(3) Clearly, any valid set fofi + 1, x) is also a valid set fo(i, x). If L were not
an optimal set foi + 1, x), then there exists another valid detfor (i + 1, x)
with VORP more tharl.. The setl’ would also be a valid set fai, x), which
contradicts the assumption thathad the maximum VORP fdi, x). [

The theorem suggests that wher N, we examine two subproblems and choose
the better of the two. Let[i, x] denote the maximum VORP fdr, x). Let S(i, x)

be the set of players who play positierand cost at most. In the following
recurrence foo|[i, x], we assume that the max function returaso when invoked
over an empty set:

max .vor ifi =N,
PES(N,x) {p Y p} !
v[i,x] = { maxjv[i + 1,x],
max {p.vorp+v[i + 1,x — p.cosi} ¢ ifi <N .
peS(i,x)

This recurrence lends itself to implementation in a strdaytvard way. Letp;;
denote thejth player who plays position

15-52

Solutions for Chapter 15: Dynamic Programming

FREE-AGENT-VORP(p, N, P, X)

letv[l..N][0..X]andwhdl..N][0.. X] be new tables
forx =0to X
V[N, x] = —o0
whg N, x] = 0
fork =1to P
if pyk.cost< x andpyi.vorp > v[N, x]
V[N, x] = pwnk.vorp

whdnN, x] = k
fori = N —1downto1l
forx =0to X
v[i,x] = v[i +1,x]
whdi,x] = 0
fork =1to P

if pir.cost< x andv[i + 1,x — p;r.cosl + p;x.vorp > vl[i, x]
v[i,x] = v[i +1,x — pjg.cosi + p;r.vorp

whdi, x] = k
print “The maximum value of VORP is¥[1, X]
amt= X
fori =1to N
k = whdi, am{
if k#£0

print “sign player " p;x
amt = amt— p;;.cost
print “The total money spent isX — amt

The input to REE-AGENT-VORP s the list of playerp and N, P, and X, as
given in the problem. The table|i, x] holds the maximum VORP for the sub-
problem(i, x). The tablewhd]i, x] holds information necessary to reconstruct the
actual solution. Specificallywhdi, x] holds the index of player to sign for posi-
tion i, or 0 if no player should be signed for positian The first set of nestefibr
loops initializes the base cases, in whick= N. For every amount, the inner
loop simply picks the player with the highest VORP who plagsifion N and
whose cost is at most

The next set of three nestéat loops represents the main computation. The outer-
mostfor loop runs down from positio®w — 1 to 1. This order ensures that smaller
subproblems are solved before larger ones. We initialjzex] asv[i + 1, x]. This
way, we already take care of the case in which we decide nagtoasy player
who plays position. The innermosfor loop tries to sign each player (if we have
enough money) in turn, and it keeps track of the maximum VOB33iple.

The maximum VORP for the entire problem ends up|ih X]. The finalfor loop
uses the information imwhotable to print out which players to sign. The running
time of FREE-AGENT-VORP is clearly®(NPX), and it use® (N X) space.

Lecture Notes for Chapter 16:
Greedy Algorithms

Chapter 16 Introduction

Similar to dynamic programming.
Used for optimization problems.

Idea

When we have a choice to make, make the one that lookgigbstnow. Make a
locally optimal choican hope of getting alobally optimal solution

Greedy algorithms don’t always yield an optimal solutionut Bometimes they
do. We'll see a problem for which they do. Then we’ll look ars® general
characteristics of when greedy algorithms give optimaltsmhs.

[We do not cover Huffman codes or matroids in these notes.]

Activity selection

n activitiesrequireexclusiveuse of a common resource. For example, scheduling
the use of a classroom.

Set of activitiesS = {ay,...,a,}.

a; needs resource during perigg, f;), which is a half-open interval, whesg =
start time andf; = finish time.

Goal
Select the largest possible set of nonoverlappmgt(ally compatiblé activities.

Note
Could have many other objectives:

* Schedule room for longest time.
* Maximize income rental fees.

Assume that activities are sorted by finishtimg:< f, < f3<--- < fo_1 < fu.

16-2 Lecture Notes for Chapter 16: Greedy Algorithms

Example
S sorted by finish timefLeave on board]

i|]1 23456 7 8 9

;|1 241 5 8 9 11 13
fi13 5 7 8 9 10 11 14 16
J B
A
i R T T
| - SRS
| | | | | . | | . |

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16
Maximum-size mutually compatible s€tz,, as, as, as}.
Not unique: alsda,, as, as, as}.

Optimal substructure of activity selection

Sij = laxk €S : fi <sk < fu <55} [Leave on board]
activities that start after; finishes and finish before; starts.

Activities in S;; are compatible with

+ all activities that finish byf;, and

« all activities that start no earlier than.

Let A;; be a maximum-size set of mutually compatible activities;in

Leta, € A;; be some activity i4;;. Then we have two subproblems:

* Find mutually compatible activities ifi;; (activities that start aftet; finishes
and that finish before; starts).

* Find mutually compatible activities ifii; (activities that start aftar, finishes
and that finish before; starts).

Let
Air = Aij N Six = activities in4;; that finish beforez; starts,
Ar; = A;; N Sk; = activities in4;; that start afet finishes.

ThenA,'j = A;p U {ak} U Akj
= |Aij| = |Aix] + |Ax;| + 1.

Claim
Optimal solutionA;; must include optimal solutions for the two subproblems for
Six andSy;.

Lecture Notes for Chapter 16: Greedy Algorithms 16-3

Proof Use the usual cut-and-paste argument. Will show the clam$fg; proof
for S;x is symmetric.

Suppose we could find a sdf,; of mutually compatible activities i;;, where
|4};| > 14x;1. Then used; ; instead ofd,,; when solving the subproblem fs; .

Size of resulting set of mutually compatible activities Wble| A4, | + ‘Aij | +1>
|Aix| + |Akj| + 1 = |A|. Contradicts assumption that; is optimal. m (claim)

One recursive solution

Since optimal solutior;; must include optimal solutions to the subproblems for
Six and S, could solve by dynamic programming.

Letcl[i, j] = size of optimal solution fosS;;. Then

cli,jl=cli,k] +clk,j]+ 1.

But we don't know which activity; to choose, so we have to try them all:

. O If S” = @ El
cli,j1= max {c[i.k] + clk. j1+ 1} if S;; #0.
AR ESij

Could then develop a recursive algorithm and memoize it. @addccdevelop a
bottom-up algorithm and fill in table entries.

Instead, we will look at a greedy approach.

Making the greedy choice

Choose an activity to add to optimal solutitwefore solving subproblems. For
activity-selection problem, we can get away with consiugronly the greedy
choice: the activity that leaves the resource availableagomany other activities
as possible.

Question: Which activity leaves the resource availablétfermost other activities?
Answer: The first activity to finish. (If more than one actwhias earliest finish
time, can choose any such activity.)

Since activities are sorted by finish time, just choose #ytiy, .

That leaves only one subproblem to solve: finding a maximwe set of mutually
compatible activities that start aftef finishes. (Don’t have to worry about activ-
ities that finish before; starts, becausg < f; and no activitya; has finish time
fi < fi = no activitya; hasf; < s;.)

Since have only subproblem to solve, simplify notation:
Sy ={a; € S :s5; = fi} = activities that start aftey; finishes.

Making greedy choice of; = S, remains as only subproblem to solvilight
abuse of notation: referring), not only as a set of activities but as a subproblem
consisting of these activities.]

By optimal substructure, #, is in an optimal solution, then an optimal solution to
the original problem consists af plus all activities in an optimal solution t8.

But need to prove that; is always part of some optimal solution.

16-4

Lecture Notes for Chapter 16: Greedy Algorithms

Theorem

If Sk is nonempty and,, has the earliest finish time iy, thena,, is included in
some optimal solution.

Proof Let Ax be an optimal solution tS%, and leta; have the earliest finish time
of any activity inAy. If a; = a,,, done. Otherwise, let, = Ay —{a;} U {a,}
be A, but witha,, substituted foe;.

Claim
Activities in A;_are disjoint.

Proof Activities in Ax are disjoint, a; is first activity in Ax to finish, and

Im < [m (claim)
Since |A;| = |Ak|, conclude that4; is an optimal solution taS;, and it in-
cludesa,,. m (theorem)

So, don't need full power of dynamic programming. Don't néedvork bottom-
up.

Instead, can just repeatedly choose the activity that fsidirst, keep only the
activities that are compatible with that one, and repeat natactivities remain.

Can work top-down: make a choice, then solve a subproblem:tbave to solve
subproblems before making a choice.

Recursive greedy algorithm

Start and finish times are represented by arsagsd 1, where f is assumed to be
already sorted in monotonically increasing order.

To start, add fictitious activity, with f, = 0, so thatS, = S, the entire set of
activities.

Procedure RC-ACTIVITY-SELECTOR takes as parameters the arrayand f, in-
dexk of current subproblem, and numbenof activities in the original problem.

REC-ACTIVITY-SELECTOR(s, f, k,n)
m=k+1
while m < n ands[m] < f[k] /I find the first activity inS; to finish
m=m+1
ifm<n
return {a,} U REC-ACTIVITY-SELECTOR(s, f,m,n)
else return @

Initial call
REC-ACTIVITY-SELECTOR(s, f,0,n).

Lecture Notes for Chapter 16: Greedy Algorithms 16-5

Idea

Thewhile loop checksiy 11, ax45, ..., a, until it finds an activitya,, that is com-
patible witha, (needs,, > fi).

» If the loop terminates becausg is found n < n), then recursively solvé,,,
and return this solution, along with,,.

* If the loop never finds a compatiblg, (m > n), then just return empty set.

Go through example given earlier. Should ¢et, as, ae, as}.

Time
®(n)—each activity examined exactly once, assuming that deti/are already
sorted by finish times.

Iterative greedy algorithm

Can convert the recursive algorithm to an iterative ones dtready almost tail
recursive.

GREEDY-ACTIVITY-SELECTOR(s, f)

n = s.length

A = {ay}

k=1

form = 2ton

if sim] > f[k]

A= AU{a,}
k=m

return A4

Go through example given earlier. Should again{getas, as, as}-

Time
O(n), if activities are already sorted by finish times.

For both the recursive and iterative algorithms, éta Ig ») time if activities need
to be sorted.

Greedy strategy

The choice that seems best at the moment is the one we go with.
What did we do for activity selection?
1. Determine the optimal substructure.

2. Develop a recursive solution.
3. Show that if we make the greedy choice, only one subprobéenains.

16-6 Lecture Notes for Chapter 16: Greedy Algorithms

4. Prove that it’'s always safe to make the greedy choice.

5. Develop a recursive greedy algorithm.

6. Convert it to an iterative algorithm.

At first, it looked like dynamic programming. In the activigglection problem, we
started out by defining subproblerfis, where both' andj varied. But then found

that making the greedy choice allowed us to restrict the mddms to be of the
form S.

Could instead have gone straight for the greedy approachuuirfirst crack at
defining subproblems, use ti$%g form. Could then have proven that the greedy
choicea,, (the first activity to finish), combined with optimal solutido the re-
maining compatible activities,,, gives an optimal solution t§;.

Typically, we streamline these steps:
1. Cast the optimization problem as one in which we make acehaind are left
with one subproblem to solve.

2. Prove that there’s always an optimal solution that makegteedy choice, so
that the greedy choice is always safe.

3. Demonstrate optimal substructure by showing that, lgawrade the greedy
choice, combining an optimal solution to the remaining sabfem with the
greedy choice gives an optimal solution to the original pFob

No general way to tell whether a greedy algorithm is optirbat,two key ingredi-
ents are

1. greedy-choice property and
2. optimal substructure.

Greedy-choice property

Can assemble a globally optimal solution by making localbtirnal (greedy)
choices.

Dynamic programming
* Make a choice at each step.

* Choice depends on knowing optimal solutions to subprohleos/e subprob-
lemsfirst.

* Solvebottom-up

Greedy

+ Make a choice at each step.

* Make the choicdeforesolving the subproblems.
* Solvetop-down

Typically show the greedy-choice property by what we diddativity selection:

* Look at an optimal solution.

Lecture Notes for Chapter 16: Greedy Algorithms 16-7

» Ifitincludes the greedy choice, done.

* Otherwise, modify the optimal solution to include the greetioice, yielding
another solution that’s just as good.

Can get efficiency gains from greedy-choice property.

* Preprocess input to put it into greedy order.
* Or, if dynamic data, use a priority queue.

Optimal substructure

Just show that optimal solution to subproblem and greedicehe optimal solu-
tion to problem.

Greedy vs. dynamic programming

The knapsack problem is a good example of the difference.

0-1 knapsack problem

* nitems.

* Itemi is worth $;, weighsw; pounds.

* Find a most valuable subset of items with total weightV.

* Have to either take an item or not take it—can’t take part.of it

Fractional knapsack problem
Like the 0-1 knapsack problem, but can take fraction of am.ite
Both have optimal substructure.

But the fractional knapsack problem has the greedy-chaiopepty, and the 0-1
knapsack problem does not.

To solve the fractional problem, rank items by value/weight; /w;. Let
vi/w; > vy /w4 foralli. Take items in decreasing order of value/weight. Will
take all of the items with the greatest value/weight, andsibbg a fraction of the
next item.

FRACTIONAL-KNAPSACK(v, w, W)

load = 0

i =1

while load < W andi <n
if w; < W —load

take all of itemi

elsetake(W — load)/w; of itemi
add what was taken foad
i=i+1

16-8 Lecture Notes for Chapter 16: Greedy Algorithms

Time: O(nlgn) to sort,O(n) thereafter.

Greedy doesn’t work for the 0-1 knapsack problem. Might gepty space, which
lowers the average value per pound of the items taken.

i1 2 3

v; | 60 100 120

w; |10 20 30
vi/wi 6 5 4

W = 50.
Greedy solution:

* Take itemsl and2.
* value= 160, weight= 30.

Have20 pounds of capacity left over.
Optimal solution:

* Take item and3.
* value= 220, weight= 50.

No leftover capacity.

Solutions for Chapter 16:
Greedy Algorithms

Solution to Exercise 16.1-1

The tricky part is determining which activities are in the §g. If activity & is

in S;;, then we must have < k < j, which means thaf —i > 2, but we must
also have thaf; < s and f; <s;. If we startk at j — 1 and decremerit, we can
stop oncek reaches, but we can also stop once we find that< f;, since then
activitiesi + 1 throughk cannot be compatible with activity

We create two fictitious activitiesy, with f, = 0 anda,; with s,,; = oc.
We are interested in a maximum-size 4gt,; of mutually compatible activities
N So.n+1. We'll use tableg:[0..n + 1,0..n + 1], as in recurrence (16.2) (so that
cli,j] =|4;;]), andactf0..n + 1,0..n + 1], whereact[i, j] is the activityk that
we choose to put intd,; .

We fill the tables in according to increasing differerjce i, which we denote by
in the pseudocode. Sindg; = @ if j —i < 2, we initializec[i,i] = 0 for all i
andc[i,i + 1] = 0for0 <i <n. Asin RECURSIVEACTIVITY-SELECTOR and
GREEDY-ACTIVITY-SELECTOR, the start and finish times are given as arrays
and ', where we assume that the arrays already include the twiiditiactivities
and that the activities are sorted by monotonically indrepfinish time.

16-10

Solutions for Chapter 16: Greedy Algorithms

DYNAMIC-ACTIVITY-SELECTOR(s, f,n)

letc[0..n +1,0..n 4+ 1] andact{0..n + 1,0..n + 1] be new tables
fori =0ton
cli,i]=0
cli,i+1 =0
clmn+1,n+1 =0
for/ =2ton+1
fori =0ton—1+1

j=i+l
cli,j1=0
k=j—1

while f[i] < fk]
if fi] <slk]andf[k] <s[j]andc[i,k]+ clk,j]+ 1> cl[i, J]
cli,j] = cli,k] +clk, j] + 1
actli, j] = k
k=k—1
print “A maximum size set of mutually compatible activitieas size "c[0,n + 1]
print “The set contains ”
PRINT-ACTIVITIES(c,act, 0,n + 1)

PRINT-ACTIVITIES(c, act, i, j)
if c[i,j]>0
k = acti, j]
print k
PRINT-ACTIVITIES (¢, act, i, k)
PRINT-ACTIVITIES (c,act k, j)

The RRINT-ACTIVITIES procedure recursively prints the set of activities placed
into the optimal solutiord;;. It first prints the activityk that achieved the maxi-
mum value ot [i, j], and then it recurses to print the activitiesdn. andAx;. The
recursion bottoms out wherji, j] = 0, so that4,; = @.

Whereas @®EEDY-ACTIVITY-SELECTOR runs in ®(n) time, the DrNAMIC -
ACTIVITY-SELECTOR procedure runs i (n>) time.

Solution to Exercise 16.1-2

The proposed approach—selecting the last activity to 8tattis compatible with
all previously selected activities—is really the greedyaasithm but starting from
the end rather than the beginning.

Another way to look at it is as follows. We are given a Set& {a,as,...,a,}

of activities, wherez; = [s;, f;), and we propose to find an optimal solution by
selecting the last activity to start that is compatible wathpreviously selected
activities. Instead, let us create a $ét= {a).a5,...,a,}, wherea, = [f,s;).
That is,a; is a; in reverse. Clearly, a subset @f;,,a;,,....a; } € S is mutually
compatible if and only if the corresponding subet .a/,.....a, } < S is also

s Wiy

Solutions for Chapter 16: Greedy Algorithms 16-11

mutually compatible. Thus, an optimal solution f®maps directly to an optimal
solution forS” and vice versa.

The proposed approach of selecting the last activity ta gtat is compatible with

all previously selected activities, when run 6h gives the same answer as the
greedy algorithm from the text—selecting the first activifinish that is compat-
ible with all previously selected activities—when run 8h The solution that the
proposed approach finds fér corresponds to the solution that the text’'s greedy
algorithm finds forS’, and so it is optimal.

Solution to Exercise 16.1-3

* For the approach of selecting the activity of least durafiom those that are
compatible with previously selected activities:

i | 1 2 3
S 0 2 3
fi 3 4 6
duration| 3 2 3

This approach selects just,}, but the optimal solution selec{s, as}.

* For the approach of always selecting the compatible agtihit overlaps the
fewest other remaining activities:

i |1 2 3 45 6 7 8 9 10 11
S; 0 1 11 2 3 455 5 6
fi 2 33 3 45 6 77 7 8
of overlapping activites 3 4 4 4 4 2 4 4 4 4 3

This approach first selecig, and after that choice it can select only two other
activities (one oti1, a,, as, a4 and one otig, aq, a9, a1). An optimal solution
iS {al,a5,a7,a11}.

* For the approach of always selecting the compatible remgiactivity with
the earliest start time, just add one more activity with thienval [0, 14) to
the example in Section 16.1. It will be the first activity seé, and no other
activities are compatible with it.

Solution to Exercise 16.1-4
This solution is also posted publicly

Let S be the set ofi activities.

The “obvious” solution of using @EEDY-ACTIVITY-SELECTOR to find a maxi-
mum-size sef, of compatible activities fron$ for the first lecture hall, then using
it again to find a maximume-size s8f of compatible activities frony — S, for the
second hall, (and so on until all the activities are assipgnedjuires®(n?) time
in the worst case. Moreover, it can produce a result that oe®e lecture halls

16-12

Solutions for Chapter 16: Greedy Algorithms

than necessary. Consider activities with the interyfls4), [2,5),[6,7), [4,8)}.
GREEDY-ACTIVITY-SELECTOR would choose the activities with intervals, 4)
and [6, 7) for the first lecture hall, and then each of the activitieshwittervals
[2,5) and[4, 8) would have to go into its own hall, for a total of three halleds
An optimal solution would put the activities with intervdls 4) and[4, 8) into one
hall and the activities with intervalg, 5) and[6, 7) into another hall, for only two
halls used.

There is a correct algorithm, however, whose asymptoti@ timjust the time
needed to sort the activities by time3n Ign) time for arbitrary times, or pos-
sibly as fast a®)(n) if the times are small integers.

The general idea is to go through the activities in order aftdime, assigning
each to any hall that is available at that time. To do this, entbwough the set
of events consisting of activities starting and activifiegshing, in order of event
time. Maintain two lists of lecture halls: Halls that are Y& the current event-
time ¢ (because they have been assigned an activithat started at; < ¢ but
won't finish until /; >) and halls that are free at time (As in the activity-
selection problem in Section 16.1, we are assuming thatitgctime intervals are
half open—i.e., that if; > f;, then activitiess and j are compatible.) When
is the start time of some activity, assign that activity taeefhall and move the
hall from the free list to the busy list. Whenis the finish time of some activity,
move the activity's hall from the busy list to the free lisThe activity is certainly
in some hall, because the event times are processed in ardeh& activity must
have started before its finish timghence must have been assigned to a hall.)

To avoid using more halls than necessary, always pick a Inatlttas already had
an activity assigned to it, if possible, before picking aerewsed hall. (This can be
done by always working at the front of the free-halls list-#mg freed halls onto

the front of the list and taking halls from the front of thetdisso that a new hall

doesn’t come to the front and get chosen if there are prelyiased halls.)

This guarantees that the algorithm uses as few lecture dml®ssible: The algo-
rithm will terminate with a schedule requiring < n lecture halls. Let activity
be the first activity scheduled in lecture hall The reason that was put in the
mth lecture hall is that the first — 1 lecture halls were busy at timg. So at this
time there aren activities occurring simultaneously. Therefore any scihednust
use at least: lecture halls, so the schedule returned by the algorithrptisnal.

Run time:

» Sort the2n activity-starts/activity-ends events. (In the sortedepr@n activity-
ending event should precede an activity-starting eventshat the same time.)
O(n Ign) time for arbitrary times, possibl@ (n) if the times are restricted (e.qg.,
to small integers).

* Process the events i(n) time: Scan th@n events, doing) (1) work for each
(moving a hall from one list to the other and possibly asgsoajaan activity
with it).

Total: O(n + time to sorj

[The idea of this algorithm is related to the rectangle-amialgorithm in Exer-
cise 14.3-7.]

Solutions for Chapter 16: Greedy Algorithms 16-13

Solution to Exercise 16.1-5

We can no longer use the greedy algorithm to solve this pnobléowever, as we
show, the problem still has an optimal substructure whitdwel us to formulate a
dynamic programming solution. The analysis here follovesely the analysis of
Section 16.1 in the book. We define the value of a set of compativents as the
sum of values of events in that set. L%t be defined as in Section 16.1. Aptimal
solutionto S;; is a subset of mutually compatible eventsSpf that has maximum
value. Let4;; be an optimal solution t§;;. Supposed;; includes an event;. Let
Air andAy; be defined as in Section 16.1. Thus, we hdye= A, U {ax} U Ay,
and so the value of maximum-value s&t is equal to the value ofl;, plus the
value of Ax; plusvg.

The usual cut-and-paste argument shows that the optimatiaol4,; must also
include optimal solutions to the two subproblems $gr andS ;. If we could find

a setd; ; of mutually compatible activities ify; where the value off} ; is greater
than the value of4;, then we could uset; ;, rather thand,;, in a solution to
the subproblem fos;;. We would have constructed a set of mutually compatible
activities with greater value than that df;, which contradicts the assumption that
A;; is an optimal solution. A symmetric argument applies to ttievdies in S;x.

Let us denote the value of an optimal solution for theSgby val[i, j]. Then, we
would have the recurrence
valli, j] = valli, k] + vallk, j] + vi .

Of course, since we do not know that an optimal solution fergats;; includes
activity ax, we would have to examine all activities §); to find which one to
choose, so that

L 0 |f Sl‘j = @ s
valli, j] = max {valli, k] + vallk, /] + v} it S; #0.
ak€3ij

While implementing the recurrence, the tricky part is daieing which activities
are in the sef;;. If activity k is in S;;, then we must have < k < j, which means
that j —i > 2, but we must also have thgt < s and f; < s;. If we startk at

j — 1 and decrement, we can stop oncg reaches, but we can also stop once
we find that f;, < f;, since then activitie$ + 1 throughk cannot be compatible
with activity .

We create two fictitious activitiesy, with f, = 0 anda,; with s,,; = oc.
We are interested in a maximum-size 4gt,; of mutually compatible activities
in So.n+1. We'll use tablesvall0..n + 1,0..n + 1], as in the recurrence, and
acti0..n + 1,0..n + 1], whereact]i, j] is the activityk that we choose to put
into 4;;.

We fill the tables in according to increasing differerjce i, which we denote by

in the pseudocode. Sin&; = @if j —i < 2, we initializevalli,i] = 0 for all i
andvalli,i + 1] = 0for0 <i < n. Asin RECURSIVEACTIVITY-SELECTOR
and QREEDY-ACTIVITY-SELECTOR, the start and finish times are given as arrays
and ', where we assume that the arrays already include the twiiditiactivities

16-14 Solutions for Chapter 16: Greedy Algorithms

and that the activities are sorted by monotonically indrepginish time. The
arrayv specifies the value of each activity.

MAX-VALUE-ACTIVITY-SELECTOR(s, f,v,n)

letvall0..n + 1,0..n + 1] andacti0..n + 1,0..n + 1] be new tables
fori =0ton
valli,i] =0
valli,i +1] =0
valln+1,n+1] =0
for/ =2ton+1
fori =0ton—1+1
J=i+Il
valli,j] =0
k=j—1
while f[i] < f[k]
it f[i] < s[k]and f[k] < s[j] and
valli, k] + vallk, j] + v > valli, j]
valli, j] = val[i, k] + vallk, j] + vk

actli, j] = k
k=k—1
print “A maximum-value set of mutually compatible actiesi has value ”
val[0,n + 1]

print “The set contains ”
PRINT-ACTIVITIES (val,act, 0,n + 1)

PRINT-ACTIVITIES (val, act, i, j)
if valli, j] >0
k = act[i, j]
printk
PRINT-ACTIVITIES (val, act, i, k)
PRINT-ACTIVITIES (val,act, k, j)

The RRINT-ACTIVITIES procedure recursively prints the set of activities placed
into the optimal solutiord;;. It first prints the activityk that achieved the maxi-
mum value ofvalli, j], and then it recurses to print the activitiesAr, and Ay;.
The recursion bottoms out whesl[i, j] = 0, so that4,; = @.

Whereas ®EEDY-ACTIVITY-SELECTOR runs in®(n) time, the MAX-VALUE-
ACTIVITY-SELECTOR procedure runs i (n>) time.

Solution to Exercise 16.2-2
This solution is also posted publicly

The solution is based on the optimal-substructure obdervét the text: Leti
be the highest-numbered item in an optimal solutibfior W pounds and items
1,...,n. ThenS’ = S — {i} must be an optimal solution fd#’ — w; pounds
and itemsl, ...,i — 1, and the value of the solutiofi is v; plus the value of the
subproblem solutior’.

Solutions for Chapter 16: Greedy Algorithms 16-15

We can express this relationship in the following formulafiDec|i, w] to be the
value of the solution for items, . .. ,i and maximum weighiv. Then

0 ifi=0orw=0,
cli,w]= ¢ cli —1,w] if w; >w,
max(v; +cli — 1, w —w;],c[i —L,w]) ifi >0andw > w; .

The last case says that the value of a solutioni faems either includes item,

in which case it isv; plus a subproblem solution far— 1 items and the weight
excludingw;, or doesn'’t include item, in which case it is a subproblem solution
fori — 1 items and the same weight. That is, if the thief picks iterhe takes);
value, and he can choose from items..,i — 1 up to the weight limitw — w;,

and geftc[i — 1, w — w;] additional value. On the other hand, if he decides not to
take itemi, he can choose from itenis. .., i — 1 up to the weight limitw, and get

c[i — 1, w] value. The better of these two choices should be made.

The algorithm takes as inputs the maximum weightthe number of items, and
the two sequences = (v, v,, ..., v,) andw = (wy, w,, ..., w,). It stores the
cli, j] values in a table[0..n,0.. W] whose entries are computed in row-major
order. (That is, the first row af is filled in from left to right, then the second row,
and so on.) At the end of the computatietiz, W] contains the maximum value
the thief can take.

DYNAMIC -0-1-KNAPSACK(v, w,n, W)

letc[0..n,0.. W] be anew array
forw =0to W
c[0,w] =0
fori = 1ton
c[i,0] =0
forw =1toW
if w; <w
ifv, +cli —1,w—w;]>cli —1,w]
cli,w] =v; +cli = 1,w— w]
elsecli,w] = c[i — 1, w]
elsecli,w] = c[i — 1, w]

We can use the table to deduce the set of items to take by starting-atW] and
tracing where the optimal values came frome|[if, w] = c[i — 1, w], then itemy is
not part of the solution, and we continue tracing with— 1, w]. Otherwise itemi
is part of the solution, and we continue tracing wifh — 1, w — w;].

The above algorithm take’(n W) time total:

« OmW)tofillinthe c table: (n + 1) - (W + 1) entries, each requirin@(1) time
to compute.

* O(n) time to trace the solution (since it starts in ravof the table and moves
up one row at each step).

16-16

Solutions for Chapter 16: Greedy Algorithms

Solution to Exercise 16.2-4

The optimal strategy is the obvious greedy one. Startingp Wwith bottles full,
Professor Gekko should go to the westernmost place thatrmeeil his bottles
within m miles of Grand Forks. Fill up there. Then go to the westernmafgling
location he can get to withim miles of where he filled up, fill up there, and so on.

Looked at another way, at each refilling location, Profesgekko should check
whether he can make it to the next refilling location withaipping at this one.
If he can, skip this one. If he cannot, then fill up. Professekk® doesn't need to
know how much water he has or how far the next refilling loaatoto implement
this approach, since at each fillup, he can determine whitieisiext location at
which he’ll need to stop.

This problem has optimal substructure. Suppose there possible refilling loca-
tions. Consider an optimal solution withrefilling locations and whose first stop
is at thekth location. Then the rest of the optimal solution must be piinaal
solution to the subproblem of the remaining- k stations. Otherwise, if there
were a better solution to the subproblem, i.e., one with fdiens — 1 stops, we
could use it to come up with a solution with fewer thastops for the full problem,
contradicting our supposition of optimality.

This problem also has the greedy-choice property. Suppese trek refilling
locations beyond the start that are witlwnmiles of the start. The greedy solution
chooses théth location as its first stop. No station beyond &tk works as a first
stop, since Professor Gekko would run out of water first. Iblatsoon chooses a
locationj < k as its first stop, then Professor Gekko could choosétihéocation
instead, having at least as much water when he leavektthidcation as if he'd
chosen theth location. Therefore, he would get at least as far withdlingi up
again if he had chosen tligh location.

If there aren refilling locations on the map, Professor Gekko needs tceictspach
one just once. The running time (n).

Solution to Exercise 16.2-6

Use a linear-time median algorithm to calculate the mediaaf the v; /w; ra-
tios. Next, partition the items into three set& = {i :v;/w; > m}, E =

{i :v;/w; =m}, andL = {i :v;/w; < m}; this step takes linear time. Com-
puteWg =) ,cq w; andWg = >, w;, the total weight of the items in se€s
andE, respectively.

* If Wg > W, then do not yet take any items in $gt and instead recurse on the
set of itemsG and knapsack capacity'.

+ Otherwise W; < W), take all items in se€, and take as much of the items in

setE as will fit in the remaining capacity — Wg.

 If Wg + Wg > W (i.e., there is no capacity left after taking all the items in
setG and all the items in sef that fit in the remaining capacity’ — W), then
we are done.

Solutions for Chapter 16: Greedy Algorithms 16-17

* Otherwise (Vg + Wg < W), then after taking all the items in setsand E,
recurse on the set of itendisand knapsack capacityf — Wg — Wg.

To analyze this algorithm, note that each recursive caigdinear time, exclusive
of the time for a recursive call that it may make. When theeerecursive call, there
is just one, and it's for a problem of at most half the size. § lihe running time is
given by the recurrencé(n) < T'(n/2) + ©(n), whose solution i§"(n) = O(n).

Solution to Exercise 16.2-7
This solution is also posted publicly

Sort A4 and B into monotonically decreasing order.

Here’s a proof that this method yields an optimal solutioonglder any indices
and;j such thai < j, and consider the terms® anda;% . We want to show that
it is no worse to include these terms in the payoff than taidek;® anda;%, i.e.,
thata;%a;% > a;%a;%. SinceA and B are sorted into monotonically decreasing
order andi < j, we haveq; > a; andb; > b;. Sincea; anda; are positive
andb; — b; is nonnegative, we havg? =%/ > a;%=b; Multiplying both sides by

aibfajbf yieldsaibiajbf > aibfajbi.

Since the order of multiplication doesn’'t matter, sortidgand B into monotoni-
cally increasing order works as well.

Solution to Exercise 16.3-1

We are given that.freq < y.freqare the two lowest frequencies in order, and that
a.freq < b.freq. Now,

b.freq = x.freq
= a.freq < x.freq
= a.freq = x.freq (sincex.freqis the lowest frequency) ,
and sincey.freq < b.freq,
b.freq = x.freq
= y.freq < x.freq
= y.freq = x.freq (sincex.freqis the lowest frequency) .

Thus, if we assume that freq = b.freq, then we have that each affreq, b.freq,
andy.freqequalsx.freq, and saz.freq = b.freq = x.freq = y.freq.

Solution to Exercise 16.4-2

We need to show three things to prove th&t 1) is a matroid:

1. S is finite. That's becaus§ is the set of ofn columns of matrix7”.

16-18 Solutions for Chapter 16: Greedy Algorithms

2.

I is hereditary. That's becauseBf € I, then the columns i® are linearly in-
dependent. 14 C B, then the columns ofl must also be linearly independent,
andsod € 1.

(S, I) satisfies the exchange property. To see why, let us suppaisé,tB € 1
and|A| < |B|.

We will use the following properties of matrices:

* The rank of a matrix is the number of columns in a maximal sdinefrly
independent columns (see page 1223 of the text). The rarkdsqual to
the dimension of the column space of the matrix.

* If the column space of matri® is a subspace of the column space of ma-
trix A, then rankB) < rank(A).

Because the columns id are linearly independent, if we take just these
columns as a matrix, we have that rankd) = |A|. Similarly, if we take
the columns ofB as a matrixB, we have rankB) = | B|. Since|4| < | B|, we
have rank4) < rank(B).

We shall show that there is some columg B that is not a linear combination
of the columns iM4, and so4 U {b} is linearly independent. The proof proceeds
by contradiction. Assume that each columnBnis a linear combination of
the columns ofd. That means that any vector that is a linear combination
of the columns ofB is also a linear combination of the columns 4f and

so, treating the columns of and B as matrices, the column space Bfis a
subspace of the column space Af By the second property above, we have
rank(B) < rank(4). But we have already shown that rd@ < rank(B), a
contradiction. Therefore, some columnanis not a linear combination of the
columns of4, and(S, I) satisfies the exchange property.

Solution to Exercise 16.4-3

[This exercise defines what is commonly known as the dual oa&taw, and it
asks to prove that the dual of a matroid is itself a matroide liierature contains
simpler proofs of this fact, but they depend on other (edaenta definitions of
a matroid. The proof given here is more complicated, butlieseonly on the
definition given in the text.]

We need to show three things to prove th&t’) is a matroid:

1.
2.

S is finite. We are given that.

I’ is hereditary. Suppose th& € I’ andA’ € B’. SinceB’ € I’, there is
some maximal seB € I such thatB € § — B’. But A’ € B’ implies that
S—B CcS—-A,andsoB € § — B’ € S — A'. Thus, there exists a maximal
setB € I suchthatB C § — A’, proving that4’ € I’.

(S, I') satisfies the exchange property. We start with two prelimgirfacts
about sets. The proofs of these facts are omitted.

Factl: |[X —Y|=|X|—|XNY]

Solutions for Chapter 16: Greedy Algorithms 16-19

Fact 2: Let S be the universe of elements. Xf—Y € ZandZ € S —Y, then
IXNZ|=|X|—-|XNnY]|.

To show thai S, I’) satisfies the exchange property, let us assumetthati’,
B’ € I’, and that|A’| < |B’|. We need to show that there exists some
B’ — A’ such thatd’ U {x} € I’. Becaused’ € I’ andB’ € I’, there are
maximal sets4 € S — A’andB € S — B’ suchthatd € T andB < I.

Define the seiX = B’ — A’ — A, so thatX consists of elements iB’ but not
in A’ or A.

If X is nonempty, then let be any element ok'. By how we defined sek,

we know thatx € B’ andx ¢ A’, so thatx € B’ — A’. Sincex ¢ A, we also
havethatd € S — A" —{x} =S — (A" U {x}),and sod’ U {x} € I".

If X is empty, the situation is more complicated. Becgue< |B’|, we have
that B’ — A’ # @, and soX being empty means th&@' — A’ C A.

Claim
There is an element € B — A’ such thatA — B) U {y} e I.

Proof First, observe that becaude-B’ € A andA4 € I, we havethal—B’ €
I. Similarlyy, B— A" € BandB € I, and soB — A’ € I. If we show
that|A — B’| < |B — A’|, the assumption thatS, I) is a matroid proves the
existence ofy.

BecauseB’ — A’ € AandA C § — A’, we can apply Fact 2 to conclude
that|B’N A| = |B'| — |B’'N A’|. We claim that|jB N A’| < |A"— B’|. To
see why, observe that’ — B’ = A’ N (S — B’)andB € S — B’, and so
BNAC(S—-B)NA =A4AN(S—-B)=A— B Applying Fact 1, we
seethatd’ — B’'| = |A'|—|A'N B'| = |A'|—|B' N A’|,and hencéB N A’| <
|A’| — |B" N Al.

Now, we have

|[A'| < |B| (by assumption)
|[A'| —|B'NA'| < |B'|—|B'nA'| (subtracting same quantity)
IBNA| < |B|—|B'NA| (IBNA|<|A|-|B NA)|
[BNA| < |B'NA| (BN A|=|B'|—|B' NnA)
|B|—|BNA| > |A]=|B'NAl (4] =|B])
|B—A| > |A—B| (Fact 1) m (claim)

Now we know there is an elememnte B — A’ such thatA — B’) U {y} € I.
Moreover, we claim thay ¢ A. To see why, we know that by the exchange
property, we can, without loss of generality, chogsso thaty ¢ A — B’. In
order fory to be inA4, it would have to be i N B’. Buty € B, which means
thaty ¢ B’, and hence ¢ A N B’. Thereforey ¢ A.

Applying the exchange property, we add such an elememtB — A’ to A— B’,
maintaining that the set we get, séy, is in I. Then we keep applying the
exchange property, adding a new elememtin C to C, maintaining that_ is
in I, until |C| = |A|. Once|C| = |A]|, there must exist some elemenk A

16-20

Solutions for Chapter 16: Greedy Algorithms

that we have not added intd. We know that such an element exists because
the element that we first added int@ was not in4, and so some element

in A must be left over. Also, we must hawee B’ because all the elements
in A — B’ are initially in C. Therefore, we have € B’ — A'.

The setC so constructed is maximal, because it has the same catdiasli,
which is maximal, and” € I. All the elements but one if@' are also in4;
the one exception is i — A’, and soC contains no elements iA’. Because
we never added to C, we have thaC € S — A" —{x} = § — (4" U {x}).
Therefore, A’ U {x} € I’, as we needed to show.

Solution to Problem 16-1

Before we go into the various parts of this problem, let u$ fireve once and for
all that the coin-changing problem has optimal substrectur

Suppose we have an optimal solution for a problem of makiregngh forn cents,
and we know that this optimal solution uses a coin whose viglueents; let this
optimal solution usé& coins. We claim that this optimal solution for the problem
of n cents must contain within it an optimal solution for the gdewb ofn — ¢ cents.
We use the usual cut-and-paste argument. Clearly, therg aré coins in the
solution to then — ¢ cents problem used within our optimal solution to theents
problem. If we had a solution to the— ¢ cents problem that used fewer thiar- 1
coins, then we could use this solution to produce a solutidhdrn cents problem
that uses fewer thah coins, which contradicts the optimality of our solution.

a. A greedy algorithm to make change using quarters, dimekelsicand pennies
works as follows:

* Give g = |n/25] quarters. That leaves, = n mod25 cents to make

change.

* Thengived = |n,/10] dimes. That leaves, = n, mod 10 cents to make
change.

* Then givek = |n,/5] nickels. That leaves;, = n; mod5 cents to make
change.

* Finally, give p = n; pennies.

An equivalent formulation is the following. The problem wéstvto solve is
making change for cents. Ifn = 0, the optimal solution is to give no coins.
If n > 0, determine the largest coin whose value is less than or eéqual
Let this coin have value. Give one such coin, and then recursively solve the
subproblem of making change far— ¢ cents.

To prove that this algorithm yields an optimal solution, wstfneed to show
that the greedy-choice property holds, that is, that somgnap solution to
making change for cents includes one coin of valug wherec is the largest
coin value such that < n. Consider some optimal solution. If this optimal
solution includes a coin of valug then we are done. Otherwise, this optimal
solution does not include a coin of valueWe have four cases to consider:

Solutions for Chapter 16: Greedy Algorithms 16-21

* If 1 <n <5, thenc = 1. A solution may consist only of pennies, and so it
must contain the greedy choice.

* If 5 <n < 10, thenc = 5. By supposition, this optimal solution does not
contain a nickel, and so it consists of only pennies. Repiaegennies by
one nickel to give a solution with four fewer coins.

* If 10 <n < 25, thenc = 10. By supposition, this optimal solution does not
contain a dime, and so it contains only nickels and penniemeSsubset of
the nickels and pennies in this solution adds updaents, and so we can
replace these nickels and pennies by a dime to give a solwithr{between
1 and 9) fewer coins.

* If 25 < n, thenc = 25. By supposition, this optimal solution does not
contain a quarter, and so it contains only dimes, nickeld, @amnies. If
it contains three dimes, we can replace these three dimeggbartéer and
a nickel, giving a solution with one fewer coin. If it contaimat most two
dimes, then some subset of the dimes, nickels, and pennitssugdto25
cents, and so we can replace these coins by one quarter ta gokition
with fewer coins.

Thus, we have shown that there is always an optimal solutiahimncludes the
greedy choice, and that we can combine the greedy choiceawitiptimal solu-
tion to the remaining subproblem to produce an optimal swiub our original

problem. Therefore, the greedy algorithm produces an @btolution.

For the algorithm that chooses one coin at a time and thenseswn sub-
problems, the running time i®(k), wherek is the number of coins used in
an optimal solution. Sincé < n, the running time i0(n). For our first de-
scription of the algorithm, we perform a constant numberabé@ations (since
there are only 4 coin types), and the running timé@&id).

b. When the coin denominations ar& c', ..., c¥, the greedy algorithm to make
change forn cents works by finding the denominatied such that; =
max{0 <i <k : ¢’ <n}, giving one coin of denomination’/, and recurs-
ing on the subproblem of making change for ¢/ cents. (An equivalent,
but more efficient, algorithm is to given/c¥ | coins of denominatiorn* and
|(n modcit1)/c’| coins of denomination’ fori = 0,1,....k —1.)

To show that the greedy algorithm produces an optimal swmiutive start by
proving the following lemma:

Lemma

Fori = 0,1,...,k, leta; be the number of coins of denominatioh used
in an optimal solution to the problem of making changerfarents. Then for
i=0,1,....k—1, we havey; < c.

Proof If a; > ¢ forsomed <i < k, then we can improve the solution by using
one more coin of denominatiari™! andc fewer coins of denominatiof. The
amount for which we make change remains the same, but we usé > 0
fewer coins. m (lemma)

To show that the greedy solution is optimal, we show that amygreedy so-
lution is not optimal. As above, lgt = max{0 <i < k : ¢/ < n}, so that the

16-22 Solutions for Chapter 16: Greedy Algorithms

greedy solution uses at least one coin of denominatian Consider a non-
greedy solution, which must use no coins of denominatioar higher. Let the
non-greedy solution use coins of denominatior’, fori = 0,1,...,j —I;
thus we have) /Z; a;c’ = n. Sincen > ¢/, we have thab_/_, a;c’ > ¢’.
Now suppose that the non-greedy solution is optimal. By theva lemma,
a; <c—1fori =0,1,...,j — 1. Thus,

j—1
Zaici < Z(c —1)c!
i=0 -
= (c—1 Zci
i=0

< CJ ,
which contradicts our earlier assertion thaf_, a;c’ > ¢/. We conclude that
the non-greedy solution is not optimal.

Since any algorithm that does not produce the greedy saligits to be opti-
mal, only the greedy algorithm produces the optimal solutio

The problem did not ask for the running time, but for the mdfieient greedy-
algorithm formulation, it is easy to see that the runningetimO (k), since we
have to perform at mogt each of the division, floor, and mod operations.

c. With actual U.S. coins, we can use coins of denomination lafaf 25. When
n = 30 cents, the greedy solution gives one quarter and five perfoies total
of six coins. The non-greedy solution of three dimes is bette

The smallest integer numbers we can use are 1, 3, and 4. Whero cents,
the greedy solution gives one 4-cent coin and two 1-cents¢dor a total of
three coins. The non-greedy solution of two 3-cent coinetteb

d. Since we have optimal substructure, dynamic programmirghtvapply. And
indeed it does.

Let us define[j] to be the minimum number of coins we need to make change
for j cents. Let the coin denominations Be d,,...,d;. Since one of the
coins is a penny, there is a way to make change for any amoent.

Because of the optimal substructure, if we knew that an @dtsolution for
the problem of making change fgrcents used a coin of denominatign we
would havec[j] = 1 + ¢[j — d;]. As base cases, we have thff] = 0 for all

j =<0.
To develop a recursive formulation, we have to check all danations, giving
. 0 if j <0,
c[jl= - C_d i
1+ mlnk{c[] di]y ifj>1.
1<i<

We can compute the[j] values in order of increasing by using a table. The
following procedure does so, producing a tabjé. . n]. It avoids even exam-
ining c[j] for j < 0 by ensuring thay > d; before looking upc[j — d;]. The

Solutions for Chapter 16: Greedy Algorithms 16-23

procedure also produces a tadienonl . . n], wheredenoni/] is the denomi-
nation of a coin used in an optimal solution to the problem akimg change
for j cents.

COMPUTE-CHANGE(n,d, k)

letc[1..n] anddenonil .. n] be new arrays
for j = 1ton
c[j] = o0
fori =1tok
if j >d;andl + c[j —d;] < c[j]
c[jl = 1+clj—di
denonij] = d;
return ¢ anddenom

This procedure obviously runs ii(n k) time.

We use the following procedure to output the coins used ifgtienal solution
computed by ©MPUTE-CHANGE:

GIVE-CHANGE(/j, denom
if j >0
give one coin of denominatiodenont; |
GIVE-CHANGE(j — denonjj], denom

The initial call is GvE-CHANGE(n, denom). Since the value of the first pa-
rameter decreases in each recursive call, this procednsanm@ (n) time.

Solution to Problem 16-5

a. The procedure ECHE-MANAGER is a generic procedure, which initializes a
cache by calling NITIALIZE -CACHE and then calls AcEsswith each data
element in turn. The inputs are a sequeiite= (ry, r5, ..., r,) of memory
requests and a cache size

CACHE-MANAGER(R, k)

INITIALIZE -CACHE (R, k)
fori = 1ton
ACCESqr;)

The running time of GCHE-MANAGER of course depends heavily on how
Accessis implemented. We have several choices for how to implerttent
greedy strategy outlined in the problem. A straightforwamd of implement-
ing the greedy strategy is that when processing reqtje$or each of the at
mostk elements currently in the cache, scan through requests...,r, to
find which of the elements in the cache anchas its next access furthest in
the future, and evict this element. Because each scan takestime, each
request entailg) (k) scans, and there arerequests, the running time of this
straightforward approach @ (kn?).

16-24

Solutions for Chapter 16: Greedy Algorithms

Instead, we describe an asymptotically faster algorithmclvuses a red-black
tree to check whether a given element is currently in the e&aaimax-priority
queue to retrieve the data element with the furthest accessdnd a hash table
(resolving collisions by chaining) to map data elementsiteger indices. We
assume that the data elements can be linearly ordered, tsib thakes sense

to put them into a red-black tree and a max-priority queuee fbiowing pro-
cedure NITIALIZE -CACHE creates and initializes some global data structures
that are used by ACESS

INITIALIZE -CACHE(R, k)

let T be a new red-black tree
let P be a new max-priority queue
let H be a new hash table

ind =1

fori = 1ton
j = HASH-SEARCH(r;)
if j ==NIL

HASH-INSERT(r;, ind)
let Siq be a new linked list
j =ind
ind = ind + 1
append to S;

In the above procedure, here is the meaning of various \asab

» Thered-black tre& has at most nodes and holds the distinct data elements
that are currently in the cache. We assume that the red-bleelprocedures
are modified to keep track of the number of nodes currenthénttee, and
that the procedure REE-SIZE returns this value. Because red-black tfee
has at most nodes, we can insert into, delete from, or search in@fg k)
worst-case time.

* The max-priority queue® contains elements with two attributdssyis the
next access time of a data element, aradue is the actual data element
for each data element in the cacheygives the key andalueis satellite
data in the priority queue. Like the red-black tfEethe max-priority queue
contains only elements currently in the cache. We need tataiail” and P
separately, however, becaubes keyed on the data elements abds keyed
on access times. Using a max-heap to implem@ntwe can extract the
maximum element or insert a new element(g k) time, and we can find
the maximum element i (1) time.

* The hash tablé{ is a dictionary or a map, which maps each data element to a
unique integer. This integer is used to index linked listsicl are described
next. We assume that thealdH-INSERT procedure uses the table-expansion
technique of Section 17.4.1 to keep the hash table’s loadrfaxbe at most
some constant. In this way, the amortized cost per insertiondigl) and,
under the assumption of simple uniform hashing, then by féme 11.1
and 11.2, the average-case search time is@{d9.

* For every distinct data element, we create a linked listS;,q (where
ind is obtained through the hash table) holding the indices m ith

Solutions for Chapter 16: Greedy Algorithms 16-25

put array wherer; occurs. For example, if the input sequence is
(d,b,d,b,d,a,c,d,b,a,c,b), then we create four linked listss; for a,

S, for b, S; for ¢, andS, for d. S; holds the indices where is accessed,
and soS; = (6, 10). Similarly, S, = (2, 4,9, 12), S3 = (7, 11) and

S, =(1,3,5,8).

For each data element, we first check whether there is already a linked list
associated with; and create a new linked list if not. We retrieve the linketl lis
associated withr; and append to it, indicating that an access tp occurs at
access.

ACCEsqr;)

/I Compute the next access time for
ind = HASH-SEARCH(r;)
time = oo
delete the head ;4
if Sing IS NOt empty
time = head ofSj.q
/I Check to see whethey is currently in the cache.
if TREE-SEARCH(T.root, r;) # NIL
print “cache hit”
elseif TREE-SIZE(T) < k
/I Insert in an empty slot in the cache.
let z be a new node foF
z.key=r;
RB-INSERT(T, 2)
let eventbe a new object foP
event.key = time
event.value = r;
INSERT(P, event)
print “cache miss, insertedr; “ in empty slot”
elseevent = MAXIMUM (P)
if event.key < time /I r; has the furthest access time
print “cache miss, no data element evicted”
else// evict the element with furthest access time
print “cache miss, evict data elemengent. value
event = EXTRACT-MAX (P)
RB-DELETE(T, TREE-SEARCH(T.root, event. value))
event.key = time
event.value = r;
INSERT(P, event)
let z be a new node fof
z.key=r;
RB-INSERT(T, z)

The procedure AcEsstakes an input; and decides which element to evict,
if any, from the cache. The first condition properly setsime to the next
access time of;. The head of the linked list associated withcontainsi ; we
remove this element from the list, and the new head contamsiéxt access

16-26

Solutions for Chapter 16: Greedy Algorithms

time for r;. Then, we check to see whetheris already present in the cache.
If r; is not present in the cache, we check to see whether we canrstior
an empty slot. If there are no empty slots, we have to evicetbment with
the furthest access time. We retrieve the element with titbdst access time
from the max-priority queue and compare it with that-of If r;’'s next access
is sooner, we evict the element with the furthest access fiome the cache
(deleting the element from the tree and from the prioritywp)eand insert;
into the tree and priority queue.

Under the assumption of simple uniform hashing, the avecage running
time of Accessis O(lg k), since it performs a constant number of operations
on the red-black tree, priority queue, and hash table. Ttngsaverage-case
running time of QCHE-MANAGER is O(nlg k).

. To show that the problem exhibits optimal substructure, afene the subprob-

lem (C,i) as the contents of the cache just beforeitheequest, wher€ is a
subset of the set of input data elements containing at inokthem. Asolution
to (C, i) is a sequence of decisions that specifies which elementdb(éhany)
for each request,i + 1,...,n. An optimal solutionto (C, i) is a solution that
minimizes the number of cache misses.

Let S be an optimal solution t¢C,i). Let S’ be the subsolution of for
requests + 1,i + 2,...,n. If a cache hit occurs on thih request, then the
cache remains unchanged. If a cache miss occurs, théththexjuest results in
the contents of the cache changingib(possibly withC’ = C if no element
was evicted). We claim tha’ is an optimal solution t¢C’,i + 1). Why? If S’
were not an optimal solution 1@, i + 1), then there exists another solutiSfi

to (C’,i + 1) that makes fewer cache misses tl$anBy combiningS” with the
decision ofS at theith request, we obtain another solution that makes fewer
cache misses tha$i, which contradicts our assumption th&tis an optimal
solution to(C, i).

Suppose theéth request results in a cache miss. 1Bt be the set of all cache
states that can be reached fréahthrough a single decision of the cache man-
ager. The seP¢ contains up td + 1 states:k of them arising from different
elements of the cache being evicted and one arising fromebisidn of evict-
ing no element. For example,@f = {r, r,, r3} and the requested data element
iSry, thenPc = {{r1, 12,73} 11, 12, 14} A1, 13, T4} {72, 13, Ta b

LetmisqC, i) denote the minimum number of cache misseg€ari). We can
state a recurrence fonisgC, i) as

0 if i =nandr, € C,
| . ifi =nandr, C,
misgC,i) = mis<C,i + 1) ifi <nandr;, € C,

1+ min {misgC’,i + 1)} ifi <nandr; ¢C .
C’ePc

Thus, we conclude that the problem exhibits optimal subsire.

. To prove that the furthest-in-future strategy yields aniropt solution, we

show that the problem exhibits the greedy-choice prop&tynbined with the
optimal-substructure property from part (b), the greedgice property will

Solutions for Chapter 16: Greedy Algorithms 16-27

prove that furthest-in-future produces the minimum pdssitumber of cache
misses.

We use the definitions of subproblem, solution, and optinoéditeon from
part (b). Since we will be comparing different solutiond, us defineC,,; as
the state of the cache for solutiohjust before théth request. The following
theorem is the key.

Theorem (Greedy-choice property)

Let A be some optimal solution t@C,i). Letb be the element it,; U {r;}
whose next access at the time of ttih request is furthest in the future, at
time m. Then, we can construct another solutidhto (C, i) that has the fol-
lowing properties:

1. On theith requestA’ evictsbh.

2. Fori +1 < j < m, the cache€,; andCy; differ by at most one element.
If they differ, thenb € Cy4; is always the element i@, that is not inCy ;.
Equivalently, if C4; and Cy4; differ, we can writeC,; = D; U {b} and
Cy; = D; U {x}, whereD; is a size-k — 1) set andx # b is some data
element.

3. Forrequests, ..., m — 1, if A has a cache hit, the#’ has a cache hit.

. CAJ' = CA’j forj > m.

5. For requests, . .., m, the number of cache misses produceddbys at most
the number of cache misses produceddby

N

Proof If A evictsh at request, then the proof of the theorem is trivial. There-
fore, supposel evicts data elemeit on request, wherea # b. We will prove
the theorem by constructing’ inductively for each request.

(1) Atrequest, A’ evictsd instead ofa.

(2) We proceed with induction op, wherei + 1 < j < m. The construction
for property 1 establishes the base case becayse; andCy ;4 differ by
just one element anklis the element irCy4 ;4 that is not inCy/ ;1.

For the induction step, suppose property 2 is true for sorgees j, where
i+1=<j < m.If Adoes notevict any element or evicts an elemenbjn
then constructd’ to make the same decision on requgsas A makes. IfA
evictsh on requestj, then construcd’ to evictx and keep the same element
as A keeps, namely;. This construction conserves property 2 jo#- 1. Note
that this construction might sometimes insert duplicagaments in the cache.
This situation can easily be dealt with by introducing a duymalement forx.

(3) Supposed has a cache hit for requegt wherei < j < m — 1. Then,
ri € D; sincer; # b. Thus,r; € C4; andA’ has a cache hit, too.

(4) By property 2, the cach€y,, differs from Cy,,, by at most one element,
with b being the element i€y, that might not be iCy,,. If C4rn = Carns
then constructd’ to make the same decision on requeshs A. Otherwise,
Cum # Cym andb € Cy,,. Constructd’ to evictx and keeph on requestn.
Since thenth request is for elememtandb € Cy,,, A has a cache hit so that it
does not evict any element. Thus, we can ensureGhat;; = Cy/ m+1. From
the (m + 1)st request ond’ simply makes the same decisionsAs

16-28

Solutions for Chapter 16: Greedy Algorithms

(5) By property 3, for requests...,m — 1, whenever we have a cache hit
for A, we also have a cache hit fdr. Thus, we have to concern ourselves with
only themth request. If4 has a cache miss on theth request, we are done.
Otherwise,A has a cache hit on theth request, and we will prove that there
exists at least one requestwherei +1 < j < m—1, such that thg th request
results in a cache miss fof and a cache hit fod’. Becaused evicts data
elementa in request, then, by our construction o', Cy4 ;11 = D;4; U {a}.
The mth request is for data elemeht If A has a cache hit, then because
none of the requests+ 1,...,m — 1 were forb, A could not have evicted
and brought it back. Moreover, becausdénas a cache hit on theth request,

b € Cy4,. Therefore,A did not evictd in any of requests,...,m — 1. By
our construction, 4’ did not evicta. But a request for: occurs at least once
before thenth request. Consider the first such instance. At this instatitas

a cache miss and’ has a cache hit. [

The above theorem and the optimal-substructure propedyegdrin part (b)
imply that furthest-in-future produces the minimum numbfcache misses.

Lecture Notes for Chapter 17:
Amortized Analysis

Chapter 17 overview

Amortized analysis

* Analyze asequencef operations on a data structure.

* Goal: Show that although some individual operations may be expensn
averagethe cost per operation is small.

Averagein this context does not mean that we're averaging over ailolision of
inputs.

* No probability is involved.
* We're talking abouaverage cost in the worst case

Organization

We'll look at 3 methods:

* aggregate analysis
* accounting method
* potential method

Using 3 examples:

» stack with multipop operation
* binary counter
* dynamic tables (later on)

Aggregate analysis

Stack operations

* PUSH(S, x): O(1) each= O(n) for any sequence of operations.
* Por(S): O(1) each= O(n) for any sequence of operations.

17-2 Lecture Notes for Chapter 17: Amortized Analysis

* MULTIPOP(S, k)
while S is not empty and > 0
PoP(S)
k=k—1

Running time of MULTIPOP:

* Linear in # of Rop operations.

* Leteach PsH/PoPcost 1.

» # of iterations ofwhile loop is min(s, k), wheres = # of objects on stack.
* Therefore, total cost min(s, k).

Sequence ot PusH, Pop, MULTIPOP operations:

* Worst-case cost of MLTIPOP is O(n).
* Haven operations.
« Therefore, worst-case cost of sequencé{s?).

Observation

* Each object can be popped only once per time that it's pushed.
* Have<n PusHes=> < n PoPs, including those in MLTIPOP.

* Therefore, total cost O(n).

* Average over the operations= O(1) per operation on average.

Again, notice no probability.

* Showedworst-caseO(n) cost for sequence.
* Therefore,0O(1) per operation on average.

This technique is calledggregate analysis

Binary counter

* k-bit binary counterd[0. . k — 1] of bits, whereA[0] is the least significant bit
andA[k — 1] is the most significant bit.

* Counts upward frong.
k—1
* Value of counter isy _ A[i]- 2",
i=0
* Initially, counter value i$), sOA[0..k — 1] = 0.
« Toincrement, add (mod 2F):

INCREMENT(A4, k)

i =0

whilei < k andA[i] ==
Alil] =0
i=i+1

ifi <k

Ali] = 1

Lecture Notes for Chapter 17: Amortized Analysis 17-3

Example:k =3
[Underlined bits flip. Show costs later.]
counter A
value 210 cost
0 000 0
1 001 1
2 010 3
3 011 4
4 100 7
5 101 8
6 110 10
7 111 11
0 000 14
: 15

Cost of NCREMENT = O(# of bits flipped) .

Analysis
Each call could flipt bits, son INCREMENTS takesO(nk) time.
Observation

Not every bit flips every time.
[Show costs from above.]

bit flips how often times im INCREMENTS
0 every time n
1 1/2 the time ln/2]
2 1/4 the time |n/4]
i 1/2! the time |n/2! |
i >k never 0
k—1
Therefore, total # of flips = |n/2' |

=0

o0
< ny 12
i=0

- "(1—11/2)

= 2n.

Therefore INCREMENTS costsO (n).
Average cost per operatica O(1).

17-4 Lecture Notes for Chapter 17: Amortized Analysis

Accounting method

Assign different charges to different operations.

* Some are charged more than actual cost.
* Some are charged less.

Amortized cost= amount we charge.

When amortized cost actual cost, store the differenoa specific objects the
data structure asredit

Use credit later to pay for operations whose actual soatortized cost.
Differs from aggregate analysis:

* Inthe accounting method, different operations can havfereéifit costs.
* In aggregate analysis, all operations have same cost.

Need credit to never go negative.

* Otherwise, have a sequence of operations for which the @mdrtost is not
an upper bound on actual cost.

* Amortized cost would tell uaothing

Letc; = actual cost ofth operation
¢; = amortized cost ofth operation

n n
Then require) & > » " ¢; for all sequences of operations.

i=1 i=1

Total credit stored= Za — Zci > 0.
i=1 i=1 A
had better be

Stack

operation actual cost amortized cost
PusH 1 2

Pop 1 0
MuLTIPOP min(k, s) 0

Intuition

When pushing an object, pay $2.

* $1 pays for the BsH.

* $1is prepayment for it being popped by eitheyAor MULTIPOP.

* Since each object has $1, which is credit, the credit canrrggvaegative.

* Therefore, total amortized cost, O(n), is an upper bound on total actual cost.

Lecture Notes for Chapter 17: Amortized Analysis 17-5

Binary counter

Charge $2 to set a bit to 1.

+ $1 pays for setting a bit to 1.

+ $1is prepayment for flipping it back to O.

* Have $1 of credit for every 1 in the counter.
* Therefore, credit- 0.

Amortized cost of NCREMENT:

* Cost of resetting bits to 0 is paid by credit.
* Atmost 1 bitis setto 1.

* Therefore, amortized cost $2.

* Forn operations, amortized cost O(n).

Potential method

Like the accounting method, but think of the credit@sential stored with the
entire data structure.

* Accounting method stores credit with specific objects.

* Potential method stores potential in the data structurevasote.

« Canrelease potential to pay for future operations.

* Most flexible of the amortized analysis methods.

Let D; = data structure afteth operation
D, = initial data structure
¢; = actual cost ofth operation
¢; = amortized cost ofth operation

Potential function® : D; — R
®(D;) is thepotentialassociated with data structufe .
G = ¢ +o(D;)—d(Diy)
= ¢ +AP(D;) .
N——

increase in potential due ith operation

Total amortized cost = Z ¢
i=1

= > (¢ + D(D;) — P(D;-1))
i=1
(telescoping sum: every term other thAg and D,,
is added once and subtracted once)

= ZCI‘ + CI)(D,,) - CI)(D()) .

i=1

17-6

Lecture Notes for Chapter 17: Amortized Analysis

If we require thatd(D;) > ®(D,) for all i, then the amortized cost is always an
upper bound on actual cost.

In practice:®(Dy) = 0, ®(D;) > 0foralli.

Stack
® = # of objects in stack
(= # of $1 bills in accounting method)
Dy = empty stack= ®(Dy) = 0.
Since # of objects in stack is always0, ®(D;) > 0 = ®(D,) for all i.

operation actual cost A® amortized cost

PusH 1 s+DH)—s=1 1+1=2
wheres = # of objects initially

Pop 1 (s—1)—s=-1 1-1=0

MuLTIPOP k' = min(k,s) (s—k')—s=—k kK'—k'=0

Therefore, amortized cost of a sequence operations= O(n).

Binary counter

® = b; = # of 1's afterith INCREMENT
Suppose€th operation resets bits to 0.
¢; <t; + 1 (resets; bits, sets< 1 bitto 1)
* If b; = 0, theith operation reset all bits and didn’t set one, so
biys=t=k=b=b;_;—1t.
« If b; > 0, theith operation reset bits, set one, so
bi=bi1—t + 1.
* Eitherwayb; <b;_; —t; + 1.
* Therefore,
A®(D;) =< (bisi—t; +1)—bi
= 1—1t.
¢ = ¢ +APD;)
= G+ +A-15)
= 2.
If counter starts at 0p(Dy) = 0.
Therefore, amortized cost afoperations= O(n).

Dynamic tables

A nice use of amortized analysis.

Lecture Notes for Chapter 17: Amortized Analysis 17-7

Scenario

* Have atable—maybe a hash table.
* Don'’t know in advance how many objects will be stored in it.

* Whenitfills, must reallocate with a larger size, copyingodljects into the new,
larger table.

* When it gets sufficiently smalimightwant to reallocate with a smaller size.

Details of table organization not important.

Goals

1. O(1) amortized time per operation.
2. Unused space alwaysconstant fraction of allocated space.

Load factora = nunysize wherenum= # items storedsize= allocated size.
If size= 0, thennum= 0. Calle = 1.

Never allowa > 1.

Keepa > a constant fractioes goal (2).

Table expansion

Consider only insertion.

* When the table becomes full, double its size and reinseexating items.
* Guarantees that > 1/2.
* Each time we actually insert an item into the table, it'sslementary insertion

TABLE-INSERT(T, x)
if T.size==0
allocateT.tablewith 1 slot
T.size=1
if 7.num==T.size /I expand?
allocatenewtable with 2 - T.sizeslots
insert all items inl.table into newtable /I T.numelem insertions
free T.table
T.table = newtable
T.size= 2-T.size
insertx into 7.table /I 1 elem insertion
T.num= T.num+ 1

Initially, 7.num= T.size= 0.

17-8

Lecture Notes for Chapter 17: Amortized Analysis

Running time

Charge 1 per elementary insertion. Count only elementasgriions, since all
other costs together are constant per call.

¢; = actual cost of th operation

* Ifnotfull, ¢; = 1.

« If full, have i — 1 items in the table at the start of tlth operation. Have to
copy alli — 1 existing items, then insefth item=-¢; = i.

n operations= ¢; = O(n) = O(n?) time forn operations.

Of course, we don't always expand:

i if i —1is exact power of 2
1 otherwise.

(&

Total cost = Zci
i=1

llgn]

n+ ZZj

j=0
2|_IgnJ+1_1
=ttt
< n+2n

= 3n

A

Thereforeaggregate analysisays amortized cost per operatien3.

Accounting method

Charge $3 per insertion of.

* $1 pays forx’s insertion.
* $1 pays forx to be moved in the future.
* $1 pays for some other item to be moved.

Suppose we've just expandezsize = m before next expansiornsjze = 2m after
next expansion.

* Assume that the expansion used up all the credit, so tha'shew credit stored
after the expansion.
* Will expand again after another insertions.

» Each insertion will put $1 on one of the items that were in the table just after
expansion and will put $1 on the item inserted.

* Have ®m of credit by next expansion, when there are items to move. Just
enough to pay for the expansion, with no credit left over!

Lecture Notes for Chapter 17: Amortized Analysis 17-9

Potential method

®(T) =2-T.num— T.size

* Initially, num= size=0= & = 0.
» Just after expansiosjze= 2 - num= & = 0.

* Just before expansiosjze= num= ® = num= have enough potential to
pay for moving all items.

* Need® > 0, always.

Always have

size > num > siz¢l2 =
2.-num > size =
) > 0.

Amortized cost of th operation

num = numafterith operation ,
size = sizeafterith operation,
®; = O afterith operation .

* If no expansion:

size = size_;,

num = num_; +1,
¢ = 1.

Then we have

G = ¢+ — P,

1+ (2-num —size) — (2-num_; — size_;)
= 14 (2-num —size) — 2(hum — 1) — size)
142

3.

* If expansion:
size = 2-size_;,

Sizé_.;, = num_; =hum —1,
¢ = num_;+1=num.

Then we have

G = ¢+0+d,
= num + (2-num —size) — (2-num_; — size_;)
= num + (2-num —2(num — 1)) — 2(Mum — 1) — (num — 1))
= num + 2—(num —1)

3.

17-10

Lecture Notes for Chapter 17: Amortized Analysis

32
SiZ num
24 ull '
16
b,
8
0 i
0 8 16 24 32

Expansion and contraction

Whena drops too low, contract the table.

* Allocate a new, smaller one.
* Copy all items.

Still want

* « bounded from below by a constant,
* amortized cost per operatiea O(1).

Measure cost in terms of elementary insertions and deketion

“Obvious strategy”

* Double size when inserting into a full table (when= 1, so that after insertion

o would become> 1).

* Halve size when deletion would make table less than half{(fuflenae = 1/2,
so that after deletioor would becomex< 1/2).

* Then always havé/2 < o < 1.
* Suppose we fill table.
Then insert = double
2 deletes = halve
2inserts = double
2 deletes = halve

Not performing enough operations after expansion or cotitna to pay for the

next one.

Lecture Notes for Chapter 17: Amortized Analysis 17-11

Simple solution

* Double as before: when inserting with= 1 = after doublinge = 1/2.
* Halve size when deleting witla = 1/4 = after halvinge = 1/2.

* Thus, immediately after either expansion or contracti@vel = 1/2.

* Always havel/4 <« < 1.

Intuition

* Want to make sure that we perform enough operations betwaesecutive
expansions/contractions to pay for the change in table size

* Need to delete half the items before contraction.
* Need to double number of items before expansion.

* Either way, number of operations between expansions/aiins is at least a
constant fraction of number of items copied.

2-T.num— T.size ifa>1/2,
T.sizeg2 —T.num ifa<1/2.

T empty= & = 0.

o >1/2 = num> size¢/2 = 2-num> size= & > 0.
a <1/2 = num< size/2 = & > 0.

O(T) =

Further intuition

® measures how far from = 1/2 we are.

s a=1/2=®=2.-num—2-num= 0.

* a=1= & =2-num—num= num

* a=1/4= & =size¢/2—num= 4-nuny2 — num= num

* Therefore, when we double or halve, have enough potentjahydor moving
all numitems.

* Potential increases linearly between= 1/2 anda = 1, and it also increases
linearly betweerx = 1/2 ando = 1/4.

* Sincea has different distances to go to getltar 1/4, starting froml1/2, rate
of increase ofd differs.

* Fora to go from1/2 to 1, numincreases fromsize/2 to size for a total
increase ofize/2. ® increases frond to size Thus,® needs to increase
by 2 for each item inserted. That's why there’s a coefficien2adn the
T.numterm in the formula for® whena > 1/2.

* Fora togofroml/2to1/4, numdecreases fromize/2 to size/4, for a total
decrease afize/4. ® increases frond to size/4. Thus,® needs to increase
by 1 for each item deleted. That's why there'’s a coefficient-df on the
T.numterm in the formula for® whena < 1/2.

Amortized costs: more cases

* insert, delete

* a>1/2,a <1/2(useq;, sincea can vary a lot)
* sizedoes/doesn’t change

17-12 Lecture Notes for Chapter 17: Amortized Analysis

Insert
* «a;_; > 1/2, same analysis as before ¢; = 3.
* o;—1 < 1/2 = no expansiorfonly occurs whemy;_; = 1).
* Ifa;—y <1/2ando; < 1/2:
G = ¢+ + P,
= 14 (size/2 —num) — (Size_;/2 — num_,)
= 14 (sizge/2 —num) — (sizg/2 — (num — 1))

= 0.
o If o < 1/2 andot,- > 1/2

¢i = 14 (2-num —size) — (size_;/2 —num_,)
= 1+ Q2Mum_; +1)—size_;) — (size_;/2 —num_,)

3
= 3. num_l - 5 . S|Ze_1 + 3
: 3
= 3. o;_1Slze_; — 5 -Slze_; + 3

2 ! 2 !
3 .

Therefore, amortized cost of insert<s3.

Delete
e Ifa_; < 1/2, theno; < 1/2

* If no contraction:

¢ = 1+ (sizg/2—num) — (size_,/2 —num_;)
= 14 (size/2 —num) — (size/2 — (num + 1))
= 2.

* If contraction:
¢ = (num + 1) + (size/2 — num) — (sizg-,/2 —num-,)
N’
move + delete
[size/2 = size_,/4 = num_; = hum + 1]
= (num + 1) + ((num + 1) — num) — ((2 - num + 2) — (num + 1))

=1.
* If @;_; > 1/2, then no contraction.
o Ifa; >1/2:
¢; = 14+ (Q2-num —size) — (2-num_, —size_;)

1+ (2-num —size) — (2-num + 2 — size)
—1.

Lecture Notes for Chapter 17: Amortized Analysis 17-13

* Ifa; <1/2,sinceq;—; > 1/2, have

| 1
num=num_1—125-3|ze_1—1=5-5|ze—1.

Thus,
¢i = 1+ (size/2—num) — (2-num_, —size_;)
1 + (size/2 — num) — (2- num + 2 — size)

3
= —1+§-3|ze—3-num
< 1+3 siz 3 ! siz 1
< > e > €
= 2.

Therefore, amortized cost of deleted2.

Solutions for Chapter 17:
Amortized Analysis

Solution to Exercise 17.1-3
This solution is also posted publicly
Let¢; = cost ofith operation.

i if i is an exact power of 2
1 otherwise.

(&

Operation Cost

T Bowo~NobhwWNE
T RPRRPRORPRRPRRPRARNR

n operations cost

n lgn
Zc,- §n+z2j =n+2n—-1)<3n.
i=1 j=0

(Note: Ignoring floor in upper bound of 2/.)

Total cost

Average cost of operatiosg ————
operations

By aggregate analysis, the amortized cost per operatia@n(1).

Solutions for Chapter 17: Amortized Analysis 17-15

Solution to Exercise 17.2-1

[We assume that the only way in whidboPY is invoked is automatically, after
every sequence @f PusH and PoP operations.]

Charge $2 for eachusH and Rop operation and $0 for eachd®y. When we call
PusH, we use $1 to pay for the operation, and we store the other $theoitem
pushed. When we calld®, we again use $1 to pay for the operation, and we store
the other $1 in the stack itself. Because the stack size mewereds, the actual
cost of a @PY operation is at mosti which is paid by the & found in the items

in the stack and the stack itself. Sincd’usH and Rop operations occur between
two consecutive OPY operations, $ of credit are stored, either on individual
items (from RJSH operations) or in the stack itself (fromolP operations) by the
time a GPY occurs. Since the amortized cost of each operatiaii(iy and the
amount of credit never goes negative, the total cost@berations i (n).

Solution to Exercise 17.2-2
This solution is also posted publicly

Let¢; = cost ofith operation.

)i if i is an exact power of 2
)1 otherwise.

Ci

Charge each operation $3 (amortized @@kt

* If i is not an exact power of 2, pay $1, and store $2 as credit.
* If i is an exact power of 2, pay Jusing stored credit.

Operation Cost Actual cost Credit remaining

Boo~v~ouoprwnpek
WWWWwWwwowowww
RPRPORRFPRPRARNPR
©ONUH oo MO WN

n

Since the amortized cost is $3 per operatidn,¢; = 3n.

i=1

17-16 Solutions for Chapter 17: Amortized Analysis

We know from Exercise 17.1-3 th{ ¢; < 3n.

i=1

n n
Then we haveX:a- > Z ¢; = credit= amortized cost actual cost> 0.
i=1 i=1
Since the amortized cost of each operatio®{d), and the amount of credit never
goes negative, the total costmbperations i (n).

Solution to Exercise 17.2-3
This solution is also posted publicly

We introduce a new field . maxto hold the index of the high-ordérin A. Initially,
A.maxis set to—1, since the low-order bit oft is at index 0, and there are initially
no 1's in A. The value of4.maxis updated as appropriate when the counter is
incremented or reset, and we use this value to limit how méichroust be looked

at to reset it. By controlling the cost ofERET in this way, we can limit it to an
amount that can be covered by credit from earlleCREMENTS.

INCREMENT(A)
i=0
while i < A.lengthand A[i] ==
Alil =0
i=i+1
if i < A.length
Ali] =1
/I Additions to book’s NCREMENT start here.
if i > A.max
A.max=1i
elsed.max= —1

RESET(A)
fori = 0to A.max
Ali] =0
A.max= —1

As for the counter in the book, we assume that it costs $1 tafbji. In addition,
we assume it costs $1 to updatemax

Setting and resetting of bits bwEREMENT will work exactly as for the original
counter in the book: $1 will pay to set one bit to 1; $1 will bag#d on the bit
that is set to 1 as credit; the credit on each 1 bit will pay setahe bit during
incrementing.

In addition, we’ll use $1 to pay to updateax and ifmaxincreases, we’ll place an
additional $1 of credit on the new high-order 1. iffaxdoesn’t increase, we can
just waste that $1—it won't be needed.) SinceSRT manipulates bits at positions
only up toA.max and since each bit up to there must have become the high-brde

Solutions for Chapter 17: Amortized Analysis 17-17

at some time before the high-order 1 got up4omax every bit seen by RSET
has $1 of credit on it. So the zeroing of bits4by RESETcan be completely paid
for by the credit stored on the bits. We just need $1 to paydsettingmax

Thus charging $4 for eacnEREMENT and $1 for each RseTis sufficient, so the
sequence of INCREMENT and RESET operations take® (n) time.

Solution to Exercise 17.3-3

Let D; be the heap after thegh operation, and leb; consist ofn; elements. Also,
let k be a constant such that eaalsERT or EXTRACT-MIN operation takes at
mostk Inn time, wheren = max(n;_,n;). (We don’t want to worry about taking
the log of0, and at least one of,_; andn; is at leastl. We'll see later why we use
the natural log.)

Define
0 |f n; = 0 ,

qJD,' == .
() kn;Inn; ifn; >0.

This function exhibits the characteristics we like in a i function: if we start
with an empty heap, the®(D,) = 0, and we always maintain thét(D;) > 0.

Before proving that we achieve the desired amortized timmeshow that ifi > 2,
thenn In n”Tl < 2. We have

In " In{1+ !
n n
n—1 n—1

= In{1+ ! '
N n—1

(sincel + x < e* for all real x)

IA
=)
/N
| (8N
= 3
-
—
X

J— 2 9
assuming that > 2. (The equation la="1 = — is why we use the natural log.)
If the ith operation is anNSERT, thenn; = n;_; + 1. If the ith operation inserts

into an empty heap, thery = 1, n;_, = 0, and the amortized cost is
¢ = ¢ +P(D;)—P(Di—y)

< kInl+k-1In1-0

= 0.

If the ith operation inserts into a nonempty heap, then= n;,_; + 1, and the
amortized cost is

¢ = ¢+ ®(D;)— (D)
< klnni +kl’l,' Inl’l,' —kl’l,'_l |nni_1
= kInn; +kn;Inn; —k(m; —) In(n; — 1)

17-18 Solutions for Chapter 17: Amortized Analysis

= kInn; +kn;Inn; —kn;In(n; — 1) + kIn(n; — 1)
n;

< 2kInn; +kn;In
ni—l

2k In n; + 2k

If the ith operation is an ETRACT-MIN, thenn; = n;_; — 1. If the ith operation
extracts the one and only heap item, then= 0, n;_; = 1, and the amortized cost

is

&G = ¢ +P(D;j)—P(Di—y)
< klnl14+0—-%k-1In1
= 0.

If the ith operation extracts from a heap with more thdatem, therm; = n;_; — 1
andn;_; > 2, and the amortized cost is

G = ¢ +P(D;)—d(D;y)

kinn,_y +kn;Inn; —kn;_;Inn;_;

kinn;_y +k(n,_1—DIn(n;_y — 1) —kn;_1Inn;_;

kinn;_y +kn;_yIn(n;-y — 1) —kIn(n;—y — 1) —kn;_;Inn;_,
ni_;—1

IA

n;_
= kIn—= 4 kn,_,In

ni—1 — ni—1

n;_
! +kn;_;Inl

< kin
ni_l—l

n;i_
= kln—

ni_1— 1
< kiIn2 (sincen;_, > 2)
= 0(1).

A slightly different potential function—which may be easte work with—is as
follows. For each node in the heap, let/; (x) be the depth ok in D;. Define

o(D;) = Y k(di(x)+1)

xeD;

= k (”i + Z di(x)))

xeD;

wherek is defined as before.

Initially, the heap has no items, which means that the surmés an empty set, and
sod(Dy) = 0. We always have(D;) > 0, as required.

Observe that after arNBERT, the sum changes only by an amount equal to the
depth of the new last node of the heap, which|lign;|. Thus, the change

in potential due to anNSERT is k(1 + |lgn;]), and so the amortized cost is
O(lgn;) + O(lgn;) = O(lgn;) = O(lgn).

After an EXTRACT-MIN, the sum changes by the negative of the depth of the old
last node in the heap, and so the potentietreasedy k(1 + |Ign;_(]). The
amortized cost is at mostign; _, — k(1 + |Ign;_]) = O(1).

Solutions for Chapter 17: Amortized Analysis 17-19

Solution to Problem 17-2

a. The SEARCH operation can be performed by searching each of the indiltidu
sorted arrays. Since all the individual arrays are sortearching one of them
using a binary search algorithm takéglg m) time, wherem is the size of the
array. In an unsuccessful search, the tim@(ky m). In the worst case, we may
assume that all the arrayk), Ay, ..., Ax_; are full,k = [Ig(n + 1)], and we
perform an unsuccessful search. The total time taken is

T(n) = O(g2¥ ' +1g2¥2+... +1g2' +1g2°)
= 0(k-1)+*k-2)+---+140)
= Ok —-1)/2)
= O(lgn + D]([lg(n + 1] —-1)/2)
= 0(dg’n) .
Thus, the worst-case running time@glg? n).

b. We create a new sorted array of size 1 containing the new eldmbe inserted.
If array A, (which has size 1) is empty, then we replatiewith the new sorted
array. Otherwise, we merge sort the two arrays into anotbged array of
size 2. If A, is empty, then we replacd; with the new array; otherwise we
merge sort the arrays as before and continue. Since dgrayof size2!, if we
merge sort two arrays of siZ each, we obtain one of siZ&"!, which is the
size ofA;,,. Thus, this method will result in another list of arrays ie game
structure that we had before.

Let us analyze its worst-case running time. We will assuna¢ therge sort
takes2m time to merge two sorted lists of size each. If all the arrays

Ao, A1, ..., A, are full, then the running time to fill arraj;_, would be
T(n) = 2(2°+2'+-.-+2572)

= 201

= 2k_2

= 0O(n).
Therefore, the worst-case time to insert an element int® daita structure
is®(n).

However, let us now analyze the amortized running time. ¢J#e aggregate
method, we compute the total cost of a sequence wofserts, starting with
the empty data structure. Letbe the position of the rightmostin the binary
representatiofn,_,,ng—s,...,no) of n,sothats; = 1for j =0,1,...,r—1.
The cost of an insertion whenitems have already been inserted is

r—1
> 2.2/ =0@).
j=0

Furthermorey = 0 half the time,r = 1 a quarter of the time, and so on.
There are at mogt: /2" insertions for each value @f The total cost of the
operations is therefore bounded by

17-20

Solutions for Chapter 17: Amortized Analysis

0 (ﬂg(nim ((;D 2’) — O(nlgn).

r=0
The amortized cost peNBERT operation, therefore i©(Ig n).

We can also use the accounting method to analyze the runinieg Ve can
charge % to insert an element. $1 pays for the insertion, and we put-$1)
on the inserted item to pay for it being involved in mergesrain. Each time
it is merged, it moves to a higher-indexed array, i.e., frépto 4;,,. It can
move to a higher-indexed array at mést 1 times, and so the(® — 1) on the
item suffices to pay for all the times it will ever be involvedmerges. Since
k = ©(lgn), we have an amortized cost 6f(lg) per insertion.

. DELETE(x) will be implemented as follows:

1. Find the smallesf for which the arrayd; with 2/ elements is full. Ley be
the last element ofl; .

2. Letx be in the arrayd;. If necessary, find which array this is by using the
search procedure.

3. Removex from A; and puty into 4;. Then movey to its correct place ;.

4. Divide A; (which now ha®’ — 1 elements left): The first element goes into
array Ay, the next 2 elements go into arraly, the next 4 elements go into
array A,, and so forth. Mark arrayl; as empty. The new arrays are created
already sorted.

The cost of [ELETE is ©(n) in the worst case, where = k — 1 andj =

k —2: ©(gn) to find 4;, ©(Ig>n) to find 4;, O(2') = O(n) to puty in its
correct place in array;, and®(2/) = ©(n) to divide arrayA;. The following
sequence ot operations, where/3 is a power of2, yields an amortized cost
that is no better: perform/3 INSERT operations, followed by:/3 pairs of
DELETE and INSERT. It costsO(n Ign) to do the firstz /3 INSERT operations.
This creates a single full array. Each subsequeBtHYE/INSERT pair costs
©®(n) for the DELETE to divide the full array and anoth&¥(n) for the INSERT
to recombine it. The total is the®(n?), or ®(n) per operation.

Solution to Problem 17-4

a. For RB-INSERT, consider a complete red-black tree in which the colorg-alte

nate between levels. That is, the root is black, the childifethe root are red,
the grandchildren of the root are black, the great-grandieh of the root are
red, and so on. When a node is inserted as a red child of one oéthleaves,
then case 1 of RBNSERFFIXUP occurs(lg(n + 1))/2 times, so that there are
Q(lgn) color changes to fix the colors of nodes on the path from therted
node to the root.

For RB-DELETE, consider a complete red-black tree in which all nodes are
black. If a leaf is deleted, then the double blackness wilbbghed all the way

up to the root, with a color change at each level (case 2 of RBEDE-FIXUP),

for a total ofQ2(Ig n) color changes.

Solutions for Chapter 17: Amortized Analysis 17-21

b. All cases except for case 1 of RBSERFFIXUP and case 2 of RB-BLETE-
FIXuP are terminating.

c. Case 1 of RB4kseErRFFIXUP reduces the number of red nodes lbyAs Fig-
ure 13.5 shows, node's parent and uncle change from red to black, aisd
grandparent changes from black to red. Herded,') = ®(T') — 1.

d. Lines 1-16 of RB-NSERT cause one node insertion and a unit increase in po-
tential. The nonterminating case of RRHIERFFIXUP (Case 1) makes three
color changes and decreases the potentidl. bjhe terminating cases of RB-
INSERTFIXUP (cases 2 and 3) cause one rotation each and do not affect the
potential. (Although case 3 makes color changes, the patelties not change.

As Figure 13.6 shows, nodes parent changes from red to black, arslgrand-
parent changes from black to red.)

e. The number of structural modifications and amount of poa¢ctiange result-
ing from lines 1-16 of RBISERT and from the terminating cases of RB-
INSERFFIXUP are O(1), and so the amortized number of structural modifica-
tions of these parts i®(1). The nonterminating case of RBHERFFIXUP
may repea(Ig n) times, but its amortized number of structural modifications
is 0, since by our assumption the unit decrease in the poterdigd for the
structural modifications needed. Therefore, the amortmadber of structural
modifications performed by RBNIERTIS O(1).

f. From Figure 13.5, we see that case 1 of RBs#RTFIXuP makes the follow-
ing changes to the tree:

* Changes a black node with two red children (négeo a red node, resulting
in a potential change of2.

* Changes a red node (nodein part (a) and node in part (b)) to a black
node with one red child, resulting in no potential change.

* Changes a red node (nod® to a black node with no red children, resulting
in a potential change df.

The total change in potential isl, which pays for the structural modifications
performed, and thus the amortized number of structural fications in case 1
(the nonterminating case) s The terminating cases of RBd$ERTFIXUP
causeO(1) structural changes. Becausdv) is based solely on node col-
ors and the number of color changes caused by terminatirgg ¢a8 (1), the
change in potential in terminating caseJél). Hence, the amortized number
of structural modifications in the terminating case®id). The overall amor-
tized number of structural modifications in RBIFERT, therefore, isO(1).

g. Figure 13.7 shows that case 2 of RB=ETE-FIXxuP makes the following
changes to the tree:

* Changes a black node with no red children (n@deto a red node, resulting
in a potential change 6f1.

* If Bisred, then it loses a black child, with no effect on potdntia

* If B is black, then it goes from having no red children to having oed
child, resulting in a potential change ofi .

17-22

Solutions for Chapter 17: Amortized Analysis

The total change in potential is eithed or —2, depending on the color a8.

In either case, one unit of potential pays for the structaratifications per-
formed, and thus the amortized number of structural modifica in case 2
(the nonterminating case) is at m@stThe terminating cases of RBHDETE
causeO(1) structural changes. Becausdv) is based solely on node col-
ors and the number of color changes caused by terminatirgs ¢a8 (1), the
change in potential in terminating casesiél). Hence, the amortized number
of structural changes in the terminating case®{s). The overall amortized
number of structural modifications in RBHDETE-FIxupP, therefore, isO(1).

. Since the amortized number structural modification in egmration isO(1),

the actual number of structural modifications for any seqeaeof m RB-
INSERT and RB-DELETE operations on an initially empty red-black tree
is O(m) in the worst case.

Lecture Notes for Chapter 21.:
Data Structures for Disjoint Sets

Chapter 21 overview

Disjoint-set data structures

Also known as “union find.”

Maintain collections = {Sy, ..., Sk} of disjoint dynamic (changing over time)
sets.

Each set is identified by mpresentativewhich is some member of the set.

Doesn't matter which member is the representative, as lerifyvae ask for the
representative twice without modifying the set, we get thea answer both
times.

[We do not include notes for the proof of running time of thejadiint-set forest
implementation, which is covered in Section 21.4.]

Operations

MAKE-SET(x): make a new sef; = {x}, and addS; to §.
UNION(x, y):if x € S,y € S),then8 = 8§ — 5, — S5, U{S, US,}.

* Representative of new set is any membe§pb S, often the representative
of one of S, ands,.

+ DestroysS, andsS, (since sets must be disjoint).

FIND-SET(x): return representative of set containing

Analysis in terms of:

n = # of elements= # of MAKE-SET operations,
m = total # of operations.

21-2

Lecture Notes for Chapter 21: Data Structures for Oigj&ets

Analysis
* Since MAKE-SET counts toward total # of operations, > n.

* Can have at most — 1 UNION operations, since after — 1 UNIONS, only 1
set remains.

* Assume that the first operations are MKEe-SET (helpful for analysis, usually
not really necessary).

Application

Dynamic connected components.

For a graphG = (V, E), verticesu, v are in same connected component if and
only if there’s a path between them.

* Connected components partition vertices into equivaletasses.

CONNECTED-COMPONENTYG)

for each vertew € G.V
MAKE-SET(v)
for each edg€u,v) € G.E
if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

SAME-COMPONENT(u, V)
if FIND-SET(u) == FIND-SET(v)
return TRUE
else return FALSE

Note
If actually implementing connected components,

* each vertex needs a handle to its object in the disjoint-aet structure,
* each object in the disjoint-set data structure needs a @aodis vertex.

Linked list representation

* Each setis a singly linked list, represented by an objedt atitributes

* head the first element in the list, assumed to be the set’s reptatiee, and
+ tail: the last element in the list.

Objects may appear within the list in any order.
* Each object in the list has attributes for

* the set member,
* pointer to the set object, and
* next.

Lecture Notes for Chapter 21: Data Structures for DisjointsS 21-3

MAKE-SET: create a singleton list.

FIND-SET: follow the pointer back to the list object, and then follohethead
pointer to the representative.

UNION: a couple of ways to do it.

1. UNION(x, y): appendy'’s list onto end ofx’s list. Usex’s tail pointer to find
the end.

* Need to update the pointer back to the set object for everg nag’s list.
* |If appending a large list onto a small list, it can take a while

Operation # objects updated
UNION(x2, Xx1) 1
UNION(x3, X3) 2
UNION(x4, X3) 3
UNION(xs5, X4) 4
UNION(x,,, X,—1) n—1

O(n?) total

Amortized time per operatiog: O(n).

2. Weighted-union heuristic: Always append the smaller list to the larger list.
(Break ties arbitrarily.)

A single union can still tak&(n) time, e.qg., if both sets have/2 members.

Theorem

With weighted union, a sequence of operations onz elements takes
O(m + nlgn) time.

Sketch of proof Each MAKE-SET and AND-SET still takesO(1). How many
times can each object’s representative pointer be updaledist be in the
smaller set each time.

times updated size of resulting set

1 >2

2 >4

3 > 8

k > 2k

lgn >n
Therefore, each representative is updateld » times. m (theorem)

Seems pretty good, but we can do much better.

21-4 Lecture Notes for Chapter 21: Data Structures for Oigj&ets

Disjoint-set forest

Forest of trees.

* 1tree per set. Root is representative.
* Each node points only to its parent.

UNION(g,0) ., O @

& i
@
® ®

* MAKE-SET: make a single-node tree.
* UNION: make one root a child of the other.
* FIND-SET: follow pointers to the root.

Not so good—could get a linear chain of nodes.

Great heuristics

* Union by rank: make the root of the smaller tree (fewer nodes) a child of the
root of the larger tree.

* Don't actually usesize
* Userank, which is an upper bound on height of node.

* Make the root with the smaller rank into a child of the roothwihe larger
rank.

» Path compression: Find path= nodes visited during IKD-SET on the trip to
the root. Make all nodes on the find path direct children of.roo

Each node has two attributes (parent) andank.

Lecture Notes for Chapter 21: Data Structures for DisjointsS 21-5

MAKE-SET(x)

X.p=x
x.rank = 0
UNION(x, y)

LINK (FIND-SET(x), FIND-SET(y))

LINK (x,y)
if x.rank > y.rank
y.p=x
elsex.p=y
/I If equal ranks, choosg as parent and increment its rank.
if x.rank== y.rank
y.rank = y.rank+ 1

FIND-SET(x)
if x # x.p
x.p = FIND-SET(x.p)
return x.p
FIND-SET makes a pass up to find the root, and a pass down as recursiamdsnw
to update each node on find path to point directly to root.

Running time

If use both union by rank and path compressiOtim a(n)).

n a(n)
0-2 0
3 1
4-7 2
8-2047 3

2048-A,(1) 4

What's 4,(1)? See Section 21.4, if you dare. 155 103° ~ # of atoms in observ-
able universe.

This bound is tight—there exists a sequence of operaticaistdkesQ(m a(n))
time.

Solutions for Chapter 21.
Data Structures for Disjoint Sets

Solution to Exercise 21.2-3
This solution is also posted publicly

We want to show that we can assi@i(1) charges to MKE-SET and AND-SET

and anO(lgn) charge to WoN such that the charges for a sequence of these
operations are enough to cover the cost of the sequedue+—+n Ig n), according

to the theorem. When talking about the charge for each kinopefation, it is
helpful to also be able to talk about the number of each kinopetation.

Consider the usual sequenceoMAKE-SET, UNION, and HEND-SET operations,
n of which are MAKE-SET operations, and let < »n be the number of NION
operations. (Recall the discussion in Section 21.1 abauetheing at most — 1
UNION operations.) Then there areM AKE-SET operations/ UNION operations,
andm —n — [FIND-SET operations.

The theorem didn’'t separately name the numbef UNIONS; rather, it bounded
the number by:. If you go through the proof of the theorem withUNIONS, you
get the time boun® (m—I[+11g/) = O(m+11g!) for the sequence of operations.
That s, the actual time taken by the sequence of operatsogtsmost (m +/1g1),
for some constant.

Thus, we want to assign operation charges such that

(MAKE-SET charge) - n

+(FIND-SET charge) - (m—n—1)

+(UNION charge) -

>cm+11gl),

so that the amortized costs give an upper bound on the adsia. c
The following assignments work, wheréis some constarnt c:

* MAKE-SET: ¢’

* FIND-SET: ¢’

* UNION: ¢'(Ign + 1)

Substituting into the above sum, we get

cn+c'm—n—-0D+c(lgn+ 1) = m+c'llgn
= c'(im+1lgn)
> cm+1lgl).

Solutions for Chapter 21: Data Structures for Disjoint Sets 21-7

Solution to Exercise 21.2-5

As the hint suggests, make the representative of each séelait of its linked
list. Except for the tail element, each element’s repregamt pointer points to the
tail. The tail's representative pointer points to the head.element is the tail if
its next pointer iNIL. Now we can get to the tail i® (1) time: if x.next== NiL,
thentail = x, elsetail = x.rep. We can get to the head ifi(1) time as well: if
x.next== NiL, thenhead = x.rep, elsehead = x.rep.rep. The set object needs
only to store a pointer to the tail, though a pointer to anydisment would suffice.

Solution to Exercise 21.2-6
This solution is also posted publicly

Let's call the two lists4 and B, and suppose that the representative of the new list
will be the representative of. Rather than appending to the end of4, instead
splice B into A right after the first element od. We have to travers® to update
pointers to the set object anyway, so we can just make thelistent ofB point

to the second element df.

Solution to Exercise 21.3-3

You need to find a sequence mf operations om elements that takeQ(m Ig n)

time. Start withn MAKE-SETS to create singleton sefs; }, {x,},...,{x,}. Next
perform then — 1 UNION operations shown below to create a single set whose tree
has depth Ig.

21-8

Solutions for Chapter 21: Data Structures for DisjdBgts

UNION(x1, x5) n/2 of these
UNION(x3, x4)
UNION(xs5, x6)

UNION(xp,_1, Xp)

UNION(x2, x4) n/4 of these
UNION(x¢, X3)
UN|ON(X10, Xlz)

UNION(x,_2, X5)
UNION(x4, X3) n/8 of these
UN|ON(X12, le)
UN|ON(X20, X24)

UNION(X,,—4, X5)

UNION(xy/2, Xp) 1 of these

Finally, performm — 2n 4+ 1 FIND-SET operations on the deepest element in the
tree. Each of theselRD-SET operations take&(lgn) time. Lettingm > 3n, we
have more tham /3 FIND-SET operations, so that the total costigm Ign).

Solution to Exercise 21.3-4

Maintain a circular, singly linked list of the nodes of eaeh. STo print, just follow
the list until you get back to node, printing each member of the list. The only
other operations that change arevie-SET, which setsx.next = x, and LNK,
which exchanges the pointersnextandy.next

Solution to Exercise 21.3-5

With the path-compression heuristic, the sequenca Ol AKE-SET, FIND-SET,
and LINK operations, where all thelllk operations take place before any of the
FIND-SET operations, runs irO(m) time. The key observation is that once a
nodex appears on a find path,will be either a root or a child of a root at all times
thereafter.

We use the accounting method to obtain #én) time bound. We charge a
MAKE-SET operation two dollars. One dollar pays for theakkE-SET, and one
dollar remains on the nodethat is created. The latter pays for the first time that
x appears on a find path and is turned into a child of a root.

We charge one dollar for aik operation. This dollar pays for the actual linking
of one node to another.

Solutions for Chapter 21: Data Structures for Disjoint Sets 21-9

We charge one dollar for aikD-SET. This dollar pays for visiting the root and
its child, and for the path compression of these two nodesnglihe HND-SET.
All other nodes on the find path use their stored dollar to matHeir visitation
and path compression. As mentioned, after tineD-SET, all nodes on the find
path become children of a root (except for the root itselfid ao whenever they
are visited during a subsequentnB-SET, the END-SET operation itself will pay
for them.

Since we charge each operation either one or two dollargjuesee ofn opera-
tions is charged at mo2in dollars, and so the total time 8(m).

Observe that nothing in the above argument requires unioark: Therefore, we
get anO(m) time bound regardless of whether we use union by rank.

Solution to Exercise 21.4-4

Clearly, each MKE-SET and LINK operation take®)(1) time. Because the rank
of a node is an upper bound on its height, each find path haghléhdg »), which

in turn implies that each IND-SET takesO(lgn) time. Thus, any sequence of
m MAKE-SET, LINK, and END-SET operations om elements take® (m Ign)
time. It is easy to prove an analogue of Lemma 21.7 to showiftha convert a
sequence afi’ MAKE-SET, UNION, and END-SET operations into a sequence of
m MAKE-SET, LINK, and KND-SET operations that také® (m Ig n) time, then the
sequence ofr’ MAKE-SET, UNION, and BEND-SET operations take® (m’Ign)
time.

Solution to Exercise 21.4-5

Professor Dante is mistaken. Take the following scenareinl= 16, and make
16 separate singleton sets usingiE-SET. Then do 8 WNION operations to link
the sets into 8 pairs, where each pair has a root with rank @ ahdd with rank 1.
Now do 4 INIONS to link pairs of these trees, so that there are 4 trees, eidiclaw
root of rank 2, children of the root of ranks 1 and 0, and a nddartk O that is the
child of the rank-1 node. Now link pairs of these trees togetho that there are
two resulting trees, each with a root of rank 3 and each coinia path from a
leaf to the root with ranks 0, 1, and 3. Finally, link these twees together, so that
there is a path from a leaf to the root with ranks 0, 1, 3, andetxlandy be the
nodes on this path with ranks 1 and 3, respectively. Si¢é) = 3, level(x) = 1,
and sinced(3) = 4, level(y) = 0. Yet y follows x on the find path.

Solution to Exercise 21.4-6

First,a’(22°47 — 1) = min{k : Ax(1) > 2047} = 3, and22*4” — 1 > 108,

21-10

Solutions for Chapter 21: Data Structures for Disjdbets

Second, we need that < level(x) < «'(n) for all nonrootsx with x.rank > 1.
With this definition ofa’(n), we havedy) (x.rank) > Ay (1) > Ig(n + 1) >
Ign > x.p.rank. The rest of the proof goes through with(n) replacinge (n).

Solution to Problem 21-1

a. For the input sequence
4’8?E’3?E’9?2’6?E’ E’ E? 1’7?E?5)

the values in thextractedarray would bet, 3,2, 6,8, 1.

The following table shows the situation after titl iteration of thefor loop
when we use GF-LINE-MINIMUM on the same input. (For this input,= 9
andm—the number of extractions—i).

i Kq K> K3 Ky K5 Ke K7 extracted
1123|456
0 {4.8) | {3} | {9.2,6} { { {17} {5}
1 {4.85 | {3} {9.2,6} {} {} {5, 1.7} 1
2 (4.8} | {3} {9,2,6} {} {5,1,7} 2 1
3 || {4,8} {9,2,6,3} {} {5,1,7} 3(2 1
4 {9,2,6,3,4,8} {} {5,1,7} 413]2 1
5 {9,2,6,3,4,8} {} {5,1,7} 413|2 1
6 {9,2,6,3,4,8} {5,1,7} 413|2|6 1
7 {9,2,6,3.4,8} {5,1,7} 413|12|6 1
8 {5,1,7,9,2,6,3,4,8} ||4|3|2|6|8|1

Becausei = m + 1 in the iterations fof = 5 andi = 7, no changes occur in
these iterations.

b. We want to show that the arraxtractedreturned by GrF-LINE-MINIMUM iS
correct, meaning that far = 1,2,...,m, extracted;] is the key returned by
the jth EXTRACT-MIN call.

We start withn INSERT operations andn EXTRACT-MIN operations. The
smallest of all the elements will be extracted in the firstrRACT-MIN after
its insertion. So we fing such that the minimum element is Ky, and put the
minimum element irextracted;], which corresponds to theX@RACT-MIN
after the minimum element insertion.

Now we reduce to a similar problem with— 1 INSERT operations angh — 1
EXTRACT-MIN operations in the following way: theNBERT operations are
the same but without the insertion of the smallest that wasieted, and the

EXTRACT-MIN operations are the same but without the extraction that ex-

tracted the smallest element.

Conceptually, we unite;land |1, removing the extraction between them and
also removing the insertion of the minimum element frorll; ;. Uniting |;
and |, isaccomplished by line 6. We need to determine which skt jsather
than just usingk;.; unconditionally, becausg&;.; may have been destroyed
when it was united into a higher-indexed set by a previousgian of line 6.

Solutions for Chapter 21: Data Structures for Disjoint Sets 21-11

Because we process extractions in increasing order of tmgmmm value
found, the remaining iterations of thHer loop correspond to solving the re-
duced problem.

There are two other points worth making. First, if the snstllemaining ele-
ment had been inserted after the lasttEACT-MIN (i.e., j = m + 1), then

no changes occur, because this element is not extractedn&dbere may be
smaller elements within th&; sets than the the one we are currently looking
for. These elements do not affect the result, because thegspond to ele-
ments that were already extracted, and their effect on ti@ithm’s execution

iS over.

c. To implement this algorithm, we place each element in a iisget forest.
Each root has a pointer to ifs; set, and eaclkK; set has a pointer to the root of
the tree representing it. All the valid seks are in a linked list.

Before OFF-LINE-MINIMUM , there is initialization that builds the initial seks
according to the;lsequences.

* Line 2 (“determinej such that € K;”) turns intoj = FIND-SET(i).

* Line 5 (“let/ be the smallest value greater tharior which setK; exists”)
turns intoK; = K;.next

* Line 6 ("K; = K; U K;, destroyingK;”) turns into/ = LINK(j,/) and
removek; from the linked list.

To analyze the running time, we note that thereraeéements and that we have
the following disjoint-set operations:

* n MAKE-SET operations

* atmostz — 1 UNION operations before starting
* n FIND-SET operations

* atmostn LINK operations

Thus the numbem of overall operations i) (n). The total running time is
O(m a(n)) = O(n a(n)).

[The “tight bound” wording that this question uses does ptgmto an “asymp-
totically tight” bound. Instead, the question is merelyiagkior a bound that is
not too “loose.”]

Solution to Problem 21-2

a. Denote the number of nodes ly and letn = (m + 1)/3, so thatm =
3n — 1. First, perform the: operations MKE-TREE(v,), MAKE-TREE(v,),
..., MAKE-TREE(v,). Then perform the sequencemt 1 GRAFT operations
GRAFT(vy, v2), GRAFT(v3,V3), ..., GRAFT(v,_1, V,); this sequence produces
a single disjoint-set tree that is a linear chainnohodes withv,, at the root
andv; as the only leaf. Then performiD-DEPTH(v,) repeatedlyy times.
The total number of operationsas+ (n — 1) +n =3n—1 =m.

21-12 Solutions for Chapter 21: Data Structures for Disjdbets

Each MAKE-TREE and GRAFT operation take®)(1) time. Each FND-DEPTH
operation has to follow am-node find path, and so each of th&IND-DEPTH
operations take®(n) time. The total time is - ®(n) + 2n — 1) - O(1) =
O(n?) = O(m?).

b. MAKE-TREEIs like MAKE-SET, except that it also sets tlakvalue to0:

MAKE-TREE(v)

v.p=v
v.rank = 0
v.d=0

It is correct to sew.d to 0, because the depth of the node in the single-node
disjoint-set tree i9), and the sum of the depths on the find pathifaonsists
only of v.d.

c. FIND-DEPTH will call a procedure RND-ROOT:

FIND-ROOT(v)

if v.pF£ v.p.p
y =v.p
v.p = FIND-ROOT(y)
v.d=v.d+y.d
return v.p

FIND-DEPTH(v)

FIND-ROOT(v) /I no need to save the return value
if v==u.p

return v.d
else returnv.d + v.p.d

FIND-RoOOT performs path compression and updates pseudodistancestiato
find path fromv. Itis similar to AND-SET on page 571, but with three changes.
First, whenv is either the root or a child of a root (one of these conditions
holds if and only ifv.p = v.p.p) in the disjoint-set forest, we don’t have to
recurse; instead, we just returmp. Second, when we do recurse, we save
the pointerv.p into a new variabley. Third, when we recurse, we updated

by adding into it thed values of all nodes on the find path that are no longer
proper ancestors of after path compression; these nodes are precisely the
proper ancestors of other than the root. Thus, as longiasgloes not start out
the AND-RoOT call as either the root or a child of the root, we add into v.d.
Note thaty.d has been updated prior to updatingl, if y is also neither the
root nor a child of the root.

FIND-DEPTH first calls AND-RoOT to perform path compression and update
pseudodistances. Afterward, the find path frermonsists of either just (if v

is a root) or justv andv.p (if v is not a root, in which case it is a child of the
root after path compression). In the former case, the depthjustv.d, and

in the latter case, the depthiisd + v.p.d.

Solutions for Chapter 21: Data Structures for Disjoint Sets 21-13

d. Our procedure for GAFT is a combination of lION and LINK:

GRAFT(r,v)
r’ = FIND-ROOT(r)
v/ = FIND-ROOT(v)
z = FIND-DEPTH(v)
if r’.rank > v’.rank

rd=r.d+z+1-v'.d
if r’.rank==v’.rank
v'.rank = v.rank + 1

This procedure works as follows. First, we calNB-RoOT onr andv in
order to find the roots’ andv’, respectively, of their trees in the disjoint-set
forest. As we saw in part (c), theseN®-RoOT calls also perform path com-
pression and update pseudodistances on the find paths-feodv. We then
call FIND-DEPTH(v), saving the depth of in the variablez. (Since we have
just compressed’s find path, this call of ND-DEPTHtakesO(1) time.) Next,
we emulate the action ofINK, by making the root’ or v’) of smaller rank a
child of the root of larger rank; in case of a tie, we maka child ofv’.

If v' has the smaller rank, then all nodesria tree will have their depths in-
creased by the depth ofplus1 (because is to become a child of). Altering
the psuedodistance of the root of a disjoint-set tree chatigecomputed depth
of all nodes in that tree, and so addingt+ 1 to r’.d accomplishes this update
for all nodes inr’s disjoint-set tree. Since’ will become a child of’ in the
disjoint-set forest, we have just increased the computgthdef all nodes in
the disjoint-set tree rooted at by r’.d. These computed depths should not
have changed, however. Thus, we subtract-off from v’.d, so that the sum
v'.d 4 r’.d after makingv’ a child of’ equalsy’.d before makingy’ a child
of r'.

On the other hand, if’ has the smaller rank, or if the ranks are equal, tien
becomes a child of’ in the disjoint-set forest. In this casg, remains a root
in the disjoint-set forest afterward, and we can leale alone. We have to
updater’.d, however, so that after making a child of v/, the depth of each
node inr’s disjoint-set tree is increased hy+ 1. We addz + 1 tor’.d, but we
also subtract out’.d, since we have just madé a child of v’. Finally, if the
ranks ofr’ andv’ are equal, we increment the rankidf as is done in the Ink
procedure.

e. The asymptotic running times of MKE-TREE, FIND-DEPTH, and QRAFT are
equivalent to those of MKE-SET, FIND-SET, and WNION, respectively. Thus,
a sequence oz operations,n of which are MAKE-TREE operations, takes
O(m a(n)) time in the worst case.

Lecture Notes for Chapter 22:
Elementary Graph Algorithms

Graph representation

Given graphG = (V, E). In pseudocode, represent vertex sethy and edge set
by G.E.

* G may be either directed or undirected.

* Two common ways to represent graphs for algorithms:

1. Adjacency lists.
2. Adjacency matrix.

When expressing the running time of an algorithm, it's ofteterms of both/ V|
and|E|. In asymptotic notation—ananly in asymptotic notation—we’ll drop the
cardinality. ExampleO(V + E).

[The introduction to Part VI talks more about this.]

Adjacency lists

Array Adj of |V] lists, one per vertex.

Vertexu's list has all vertices such thatu, v) € E. (Works for both directed and
undirected graphs.)

In pseudocode, denote the array as attriitddj, so will see notation such as
G.Adju].

Example
For an undirected graph:

V1

22-2

Lecture Notes for Chapter 22: Elementary Graph Aldworis

If edges havaveights can put the weights in the lists.

Weight: w: £E — R

We'll use weights later on for spanning trees and shortetsispa
Space: O(V + E).

Time: to list all vertices adjacent to: ®(degreéu)).

Time: to determine whetheu, v) € E: O(degre€u)).

Example
For a directed graph:

Same asymptotic space and time.

Adjacency matrix

[V|x|V|matrix A = (a;;)

1 ifG,j) ek,
ajj = .
0 otherwise.
123 45
1/0 1 0 0 1 123 4
21011 1 110100
3/]01 010 2/0 001
4/0 110 1 311100
5/1 1010 40011

Space: O(V?).

Time: to list all vertices adjacent ta: ©(V).

Time: to determine whethd, v) € E: ©(1).

Can store weights instead of bits for weighted graph.
We'll use both representations in these lecture notes.

Representing graph attributes

Graph algorithms usually need to maintain attributes fotiees and/or edges. Use
the usual dot-notation: denote attributef vertexv by v.d.

Use the dot-notation for edges, too: denote attribtitef edge(u, v) by (u, v).f.

Lecture Notes for Chapter 22: Elementary Graph Algorithms 2-32

Implementing graph attributes

No one best way to implement. Depends on the programmingiéageg the algo-
rithm, and how the rest of the program interacts with the lgrap

If representing the graph with adjacency lists, can repitegertex attributes in
additional arrays that parallel th&dj array, e.g..d[1..|V|], so that if vertices
adjacent tas are inAdj[u], storeu.d in array entryd [u].

But can represent attributes in other ways. Example: reptesertex attributes as
instance variables within a subclass dfex t ex class.

Breadth-first search

Input: GraphG = (V, E), either directed or undirected, asdurce vertex € V.
Output: v.d = distance (smallest # of edges) freno v, forallv € V.

In book, alsov. 7w such that(u, v) is last edge on shortest path- v.

* wuisv’s predecessor

* setof edgeg(v.m,v) : v # s} forms a tree.

Later, we'll see a generalization of breadth-first searcith wdge weights. For
now, we’ll keep it simple.
* Compute only.d, notv. . [See book fow.r.]

* Omitting colors of verticesfUsed in book to reason about the algorithm. We’'ll
skip them here.]

Idea
Send a wave out from.

* First hits all vertices 1 edge from
* From there, hits all vertices 2 edges frem
+ Etc.

Use FIFO queud® to maintain wavefront.
* v e @ ifand only if wave has hiv but has not come out of yet.

BFS(V, E,s)

for eachu € V — {s}
u.d = oo
s.d=0
0 =90
ENQUEUE(Q, s)
while Q0 # @
u = DEQUEUE(Q)
for eachv € G.Adj[u]
if v.d==00
v.d=ud+1
ENQUEUE(Q, v)

22-4

Lecture Notes for Chapter 22: Elementary Graph Aldworis

Example
directed graptiundirected example in book]

Can show thap consists of vertices withl values.
il .1 i+ i+ P41

* Only1or2values.

+ If 2, differ by 1 and all smallest are first.

Since each vertex gets a finilevalue at most once, values assigned to vertices are
monotonically increasing over time.

Actual proof of correctness is a bit trickier. See book.
BFS may not reach all vertices.

Time= O(V + E).

* O(V) because every vertex enqueued at most once.

* O(E) because every vertex dequeued at most once and we examineonly
whenu is dequeued. Therefore, every edge examined at most onicedfet],
at most twice if undirected.

Depth-first search

Input: G = (V, E), directed or undirected. No source vertex given!
Output: 2timestampon each vertex:

* v.d = discovery time
* v.f = finishing time

These will be useful for other algorithms later on.
Can also compute. . [See book.]
Will methodically exploresveryedge.
+ Start over from different vertices as necessary.
As soon as we discover a vertex, explore from it.

* Unlike BFS, which puts a vertex on a queue so that we explora ft later.

Lecture Notes for Chapter 22: Elementary Graph Algorithms 2-52

As DFS progresses, every vertex habor:
* WHITE = undiscovered

* GRAY = discovered, but not finished (not done exploring from it)
* BLACK = finished (have found everything reachable from it)

Discovery and finishing times:

* Unique integers from 1t2 |V|.
* Forally,v.d < v.f.

In other words,] <v.d <v.f <2|V]|.

Pseudocode
Uses a global timestantpne

DFS(G)
for eachu € G.V
u.color = WHITE
time= 10
for eachu € G.V
if u.color == WHITE
DFS-VISIT(G, u)

DFS-VISIT(G, u)
time = time+ 1

u.d = time
u.color = GRAY /! discoveru
for eachv € G.Adj[u] /I explore(u, v)
if v.color == WHITE
DFS-VisIT(v)

u.color = BLACK
time = time+ 1
u.f = time /I finishu

Example

[Go through this example, adding in theand f values as they’re computed. Show
colors as they change. Don’t put in the edge types yet.]

22-6

Lecture Notes for Chapter 22: Elementary Graph Aldworis

Time= O(V + E).

Similar to BFS analysis.
®, not justO, since guaranteed to examine every vertex and edge.

DFS forms adepth-first forestcomprised of> 1 depth-first trees Each tree is
made of edgegu, v) such that: is gray andv is white when(u, v) is explored.

Theorem (Parenthesis theorem)
[Proof omitted.]

For allu, v, exactly one of the following holds:

1. ud<uf<vd<v.forv.d<v.f <ud<u.f(e.,theintervalgu.d, u.f]

and[v.d, v.f] are disjoint) and neither af andv is a descendant of the other.

2. u.d<v.d <v.f <u.f andv is a descendant of.
3. v.d<u.d<u.f <v.fandu is adescendant of.

Sou.d < v.d < u.f < v.f cannothappen.
Like parentheses:

OK: O [0l
NotOK: ([)] [(])

Corollary
v is a proper descendant ofif and only ifu.d < v.d < v.f < u.f.

Theorem (White-path theorem)
[Proof omitted.]

v is a descendant of if and only if at timeu.d, there is a patly ~» v consisting
of only white vertices. (Except far, which wagust colored gray.)

Classification of edges

Tree edgein the depth-first forest. Found by explorig, v).
Back edge:(u, v), whereu is a descendant of.
Forward edge:(u, v), wherev is a descendant of, but not a tree edge.

Cross edge:any other edge. Can go between vertices in same depth-&est tr
or in different depth-first trees.

[Now label the example from above with edge types.]

In an undirected graph, there may be some ambiguity simce) and (v, u) are
the same edge. Classify by the first type above that matches.

Theorem
[Proof omitted.]

In DFS of anundirected graph, we get only tree and back edges. No forward or
cross edges.

Lecture Notes for Chapter 22: Elementary Graph Algorithms 2-72

Topological sort

Directed acyclic graph (dag)

A directed graph with no cycles.
Good for modeling processes and structures that haeeteal order:

* a>bandb>c=a>c.
* But may haver andb such that neithex > » norb > c.

Can always make ®tal order (eithera > b orb > a for all a # b) from a partial
order. In fact, that's what a topological sort will do.

Example

Dag of dependencies for putting on goalie equipméiéave on board, but show
without discovery and finishing times. Will put them in lafer

25/26

Lemma
A directed graphG is acyclic if and only if a DFS ofs yields no back edges.

Proof = : Show that back edge> cycle.
Suppose there is a back edgev). Thenv is ancestor ofi in depth-first forest.

22-8

Lecture Notes for Chapter 22: Elementary Graph Aldworis

Therefore, there is a path~ u, sov ~ u — v is a cycle.
< : Show that cycle= back edge.

Supposes contains cycle. Letv be the first vertex discovered inand let(u, v)
be the preceding edge in At time v.d, vertices ofc form a white pathv ~» u
(sincev is the first vertex discovered ir). By white-path theoremy is descendant
of v in depth-first forest. Thereforéy, v) is a back edge. m (lemma)

Topological sortof a dag: a linear ordering of vertices such thatifv) € FE,
thenu appears somewhere befare(Not like sorting numbers.)

TOPOLOGICAL-SORT(G)

call DFS(G) to compute finishing times.f forallv € G.V
output vertices in order afecreasindinishing times

Don't need to sort by finishing times.
* Can just output vertices as they're finished and understaatiwe want the
reverseof this list.

» Or put them onto théront of a linked list as they're finished. When done, the
list contains vertices in topologically sorted order.

Time

O + E).

Do example [Now write discovery and finishing times in goalie equipmeram-
ple.]

Order:

26 socks
24 shorts
23 hose

22 pants

21 skates
20 leg pads
14 t-shirt
13 chest pad
12 sweater
11 mask

6 batting glove
5 catch glove
4 Dblocker

Correctness

Just need to show {fu,v) € E, thenv.f < u.f.
When we explordu, v), what are the colors af andv?

* uisgray.

Lecture Notes for Chapter 22: Elementary Graph Algorithms 2-92

* Isv gray, too?

* No, because them would be ancestor of.
= (u,v) is a back edge.
= contradiction of previous lemma (dag has no back edges).

* |s vy white?

* Then becomes descendantof
By parenthesis theorem,d < v.d <v.f < u.f.

* |sv black?

* Thenv is already finished.
Since we're explorindgu, v), we have not yet finished.
Thereforep.f < u.f.]

Strongly connected components

Given directed grapliy = (V, E).
A strongly connected compone8CQ of G is a maximal set of vertice§ C V
such that for alk, v € C, bothu ~» v andv ~ u.

Example
[Just show SCC's at first. Do DFS a little later.]

Algorithm usesG" = transposeof G.

* G'=W,E",E"={(u,v): (v,u) € E}.

* G"is G with all edges reversed.

Can creat&; " in ©(V + E) time if using adjacency lists.

Observation

G andG' have thesameSCC's. ¢ andv are reachable from each otherd@nif
and only if reachable from each otherdi .)

Component graph

. GSCC — (VSCC ESC%.
» VStChas one vertex for each SCCéh
« ESCChas an edge if there’s an edge between the correspondings 30,

22-10 Lecture Notes for Chapter 22: Elementary Graph Aldyonis

For our example:

Lemma

GSCCis a dag. More formally, le€ andC’ be distinct SCC's irG, letu,v € C,
u’,v" € C’, and suppose there is a path-» v’ in G. Then there cannot also be a
pathv’ ~ vin G.

Proof Suppose there is a path ~» v in G. Then there are paths ~ u’ ~» v/
andv’ ~ v ~ u in G. Thereforeu andyv’ are reachable from each other, so they
are not in separate SCC'’s. m (lemma)

SCQG)
call DFS(G) to compute finishing times.f for all u
computeG'
call DFS(G"), but in the main loop, consider vertices in order of decrepsi f
(as computed in first DFS)
output the vertices in each tree of the depth-first foreshéat in second DFS
as a separate SCC

Example:
1. Do DFS

2. G'
3. DFS (roots blackened)

Time: ®(V + E).
How can this possibly work?

Idea

By considering vertices in second DFS in decreasing ordénighing times from
first DFS, we are visiting vertices of the component graplopotogical sort order.

To prove that it works, first deal with 2 notational issues:
* Will be discussing:.d andu.f. These always refer tirst DFS.
* Extend notation for/ and f to sets of vertice¥/ C V:

* d(U) = min,cy {u.d} (earliest discovery time)
* f(U) = max,y {u.f} (latest finishing time)

Lecture Notes for Chapter 22: Elementary Graph Algorithms 2-12

Lemma

Let C andC’ be distinct SCC’s irtG = (V, E). Suppose there is an ed@e v) €
E such thatt € C andv € C'.

Then £(C) > f(C).

Proof Two cases, depending on which SCC had the first discovereexveuring
the first DFS.

* If d(C) < d(C’), let x be the first vertex discovered ifi. At time x.d, all
vertices inC andC’ are white. Thus, there exist paths of white vertices from
to all vertices inC andC’.

By the white-path theorem, all vertices (0 and C’ are descendants af in
depth-first tree.

By the parenthesis theorem.f = f(C) > f(C’).

* If d(C) > d(C’), let y be the first vertex discovered {@i’. At time y.d, all
vertices inC’ are white and there is a white path frogmo each vertex irC’
= all vertices inC’ become descendants pf Again, y.f = f(C’).

Attime y.d, all vertices inC are white.

By earlier lemma, since there is an edgev), we cannot have a path fro6Y
toC.

So no vertex inC is reachable frony.
Therefore, at time . f, all vertices inC are still white.

Therefore, for alw € C, w.f > y.f, which implies thatf (C) > f(C’).
m (lemma)

Corollary
Let C and C’ be distinct SCC’s inG = (V, E). Suppose there is an edge
(u,v) € ET,whereu € C andv € C’". Then f(C) < f(C).

Proof (u,v) € E" = (v,u) € E. Since SCC’s ofG and G are the same,
f(C) > f(C). m (corollary)

Corollary
Let C and(C’ be distinct SCC’s inG = (V, E), and suppose thagf(C) > f(C’).
Then there cannot be an edge fréhto C’ in GT.

Proof It's the contrapositive of the previous corollary. [

Now we have the intuition to understand why the SCC procedn&s.

When we do the second DFS, 6, start with SCCC such thatf(C) is max-
imum. The second DFS starts from some= C, and it visits all vertices irC.

22-12

Lecture Notes for Chapter 22: Elementary Graph Aldyonis

Corollary says that sincg(C) > f(C’)forall C' # C, there are no edges froM
toC’inG".

Therefore, DFS will visibnly vertices inC'.

Which means that the depth-first tree rooted abntainsexactlythe vertices ofC.

The next root chosen in the second DFS is in SCGuch thatf (C’) is maximum
over all SCC’s other thaw'. DFS visits all vertices irC’, but the only edges out
of C' go toC, which we've already visited

Therefore, the only tree edges will be to vertice€n
We can continue the process.
Each time we choose a root for the second DFS, it can reach only

* vertices in its SCC—qget tree edges to these,
» vertices in SCC'already visitedn second DFS—qgeto tree edges to these.

We are visiting vertices ofG) in reverse of topologically sorted order.
[The book has a formal proof.]

Solutions for Chapter 22:
Elementary Graph Algorithms

Solution to Exercise 22.1-6

We start by observing that if;;, = 1, so that(i, j) € E, then vertexi cannot
be a universal sink, for it has an outgoing edge. Thus, if taentains al, then
vertexi cannot be a universal sink. This observation also meansfttiegtre is a
self-loop (i, i), then vertex is not a universal sink. Now suppose thgt = 0,
so that(i, j) ¢ E, and also that # j. Then vertex; cannot be a universal sink,
for either its in-degree must be strictly less th&n — 1 or it has a self-loop. Thus
if column j contains & in any position other than the diagonal engyy j), then
vertex j cannot be a universal sink.

Using the above observations, the following procedurermstuirRUE if vertex k
is a universal sink, andaLSE otherwise. It takes as input|&| x |V'| adjacency
matrix A = (a;;).

IS-SINK (4, k)
let A be|V|x |V]|
for j = 1to|V| /I check for al in row k
if agj == 1
return FALSE
fori = 1to|V]| /I check for an off-diagona) in columnk

if a;x ==0andi # k
return FALSE
return TRUE

Because this procedure runs (1) time, we may call it onlyO(1) times in
order to achieve ou@(V)-time bound for determining whether directed graph
contains a universal sink.

Observe also that a directed graph can have at most one sadigémk. This prop-
erty holds because if vertekis a universal sink, then we would hawe j) € E
foralli # j and so no other vertaxcould be a universal sink.

The following procedure takes an adjacency matrigs input and returns either a
message that there is no universal sink or a message cogtaing identity of the
universal sink. It works by eliminating all but one vertexapotential universal
sink and then checking the remaining candidate vertex byglescall to 5-SINK.

22-14

Solutions for Chapter 22: Elementary Graph Algoristhm

UNIVERSAL-SINK (A4)

let Abe|V]|x |V|
i=j=1
whilei <|V|andj < |V|

if a;; == 1

i=i+1

elsej = j+1
ifi >|V|

return “there is no universal sink”
elseifIs-SINK (A, i) == FALSE

return “there is no universal sink”
else returni “is a universal sink”

UNIVERSAL-SINK walks through the adjacency matrix, starting at the uppér le
corner and always moving either right or down by one posijtidgpending on
whether the current entry;; it is examining isO or 1. It stops once either or j
exceedsV|.

To understand why NIVERSAL-SINK works, we need to show that after tivhile
loop terminates, the only vertex that might be a universét & vertexi. The call
to Is-SINK then determines whether vertels indeed a universal sink.

Let us fixi andj to be values of these variables at the termination ofwthéde
loop. We claim that every vertek such thatl < £ < i cannot be a universal
sink. That is because the way thiachieved its final value at loop termination was
by finding al in each rowk for which1 < k < i. As we observed above, any
vertexk whose row contains Acannot be a universal sink.

If i > |V| at loop termination, then we have eliminated all verticesnfrconsid-
eration, and so there is no universal sink. If, on the othedha < |V| at loop
termination, we need to show that every verkesuch that < k < |V| cannot
be a universal sink. If < |V| at loop termination, then thehile loop terminated
becausg > |V|. That means that we found)an every column. Recall our earlier
observation that if columk contains & in an off-diagonal position, then vertéx
cannot be a universal sink. Since we found ia every column, we found & in
every columnk such that < k£ < |V|. Moreover, we never examined any matrix
entries in rows greater thanand so we never examined the diagonal entry in any
columnk such that < k < |V|. Therefore, all thés that we found in columnk
such that < k < |V| were off-diagonal. We conclude that every vertesuch
thati < k < |V/| cannot be a universal sink.

Thus, we have shown that every vertex less thand every vertex greater than
cannot be a universal sink. The only remaining possibititthat vertex might be
a universal sink, and the call te{ISINK checks whether it is.

To see that BIVERSAL-SINK runs in O(V) time, observe that eitheror j is
incremented in each iteration of thiéhile loop. Thus, thewhile loop makes at
most2 |V | — 1 iterations. Each iteration takeg(1) time, for a totalwhile loop
time of O(V) and, combined with th& (V)-time call to Is-SINK, we get a total
running time ofO(V).

Solutions for Chapter 22: Elementary Graph Algorithms »-1

Solution to Exercise 22.1-7
This solution is also posted publicly

BB"(i,j) =) bihl; = bicbje
ecE ecE
* Ifi = j,thenb;.b;, =1 (itis1-1or(—1)-(—1)) whenever enters or leaves
vertexi, and O otherwise.
* Ifi # j,thenb;.b;, = —1 whene = (i, j) ore = (j, i), and O otherwise.

Thus,

degree of = in-degree+ out-degree if = j ,

BBT (i,) = - . e
—(# of edges connectingand ;) ifi £ j.

Solution to Exercise 22.2-3

Note: This exercise changed in the third printing. This solutieftects the change.

The BFS procedure cares only whether a vertex is white or Aetertex v must
become non-white at the same time that is assigned a finite value so that we do
not attempt to assign t.d again, and so we need to change vertex colors in lines
5 and 14. Once we have changed a vertex’s color to non-whéejoaxnot need to
change it again.

Solution to Exercise 22.2-5
This solution is also posted publicly

The correctness proof for the BFS algorithm shows that = &(s,u), and the
algorithm doesn’t assume that the adjacency lists are irparticular order.

In Figure 22.3, ift precedest in Adjlw], we can get the breadth-first tree shown
in the figure. But ifx precedes in Adjlw] andu precedey in Adjx], we can get
edge(x, u) in the breadth-first tree.

Solution to Exercise 22.2-6

The edges irE,, are shaded in the following graph:

D=
s

22-16 Solutions for Chapter 22: Elementary Graph Algoristhm

To see thatE,, cannot be a breadth-first tree, let's suppose &ujfs] containsu
beforev. BFS adds edge&, u) and (s, v) to the breadth-first tree. Sinaeis
enqueued before, BFS then adds edgés, w) and(u, x). (The order ofw andx
in Adj[u] doesn't matter.) Symmetrically, A&dj[s] containsv beforeu, then BFS
adds edgess, v) and (s, u) to the breadth-first tree, is enqueued before, and
BFS adds edge®, w) and(v, x). (Again, the order ofv andx in Adj[v] doesn’t
matter.) BFS will never put both edgés, w) and(v, x) into the breadth-first tree.
In fact, it will also never put both edgés, x) and(v, w) into the breadth-first tree.

Solution to Exercise 22.2-7

Create a graply where each vertex represents a wrestler and each edgeamtgres
a rivalry. The graph will contaim vertices and- edges.

Perform as many BFS’s as needed to visit all vertices. Asalignrestlers whose
distance is even to be babyfaces and all wrestlers whosandestis odd to be
heels. Then check each edge to verify that it goes betweehydaz® and a heel.
This solution would take) (n + r) time for the BFSO(n) time to designate each
wrestler as a babyface or heel, afdr) time to check edges, which 8(n + r)
time overall.

Solution to Exercise 22.3-4

Note: This exercise changed in the third printing. This solutieftercts the change.

The DFS and DFS-MIT procedures care only whether a vertex is white or not.
By coloring vertexu gray when it is first visited, in line 3 of DFSHgIT, we
ensure that: will not be visited again. Once we have changed a vertexisrdol
non-white, we do not need to change it again.

Solution to Exercise 22.3-5

a. Edge(u,v) is a tree edge or forward edge if and onlyifs a descendant of
in the depth-first forest. (Ifu, v) is a back edge, them is a descendant of,
and if (4, v) is a cross edge, then neithenobr v is a descendant of the other.)
By Corollary 22.8, therefordu, v) is a tree edge or forward edge if and only if
u.d<v.d<v.f <u.f.

b. First, suppose thatu, v) is a back edge. A self-loop is by definition a back
edge. If(u,v) is a self-loop, then clearly.d = u.d < u.f = v.f. If (u,v)
is not a self-loop, them is a descendant of in the depth-first forest, and by
Corollary 22.8p.d < u.d < u.f < v.f.

Now, suppose that.d < u.d < u.f <v.f. If w andv are the same vertex, then
v.d =u.d <u.f =v.f,and(u,v) is a self-loop and hence a back edgeu If

Solutions for Chapter 22: Elementary Graph Algorithms »-1

andv are distinct, then.d < u.d < u.f < v.f. By the parenthesis theorem,
interval [u.d, u.f] is contained entirely within the interv@l.d, v.f], andu is a
descendant of in a depth-first tree. Thusy, v) is a back edge.

c. First, suppose thdis, v) is a cross edge. Since neithenorv is an ancestor of
the other, the parenthesis theorem says that the intdmwals:.f] and[v.d, v.f]
are entirely disjoint. Thus, we must have eithed < u.f < v.d < v.f or
v.d <v.f <u.d<u.f. We claim that we cannot haved < v.dif (u,v)is a
cross edge. Why? H.d < v.d, thenv is white at timeu.d. By the white-path
theorem,v is a descendant af, which contradictqu, v) being a cross edge.
Thus, we must have.d < v.f < u.d < u.f.

Now suppose that.d < v.f < u.d < u.f. By the parenthesis theorem, neither
u nor v is a descendant of the other, which means that) must be a cross
edge.

Solution to Exercise 22.3-8

Let us consider the example graph and depth-first searclvbelo

d_f
1 6
2 3
v, |4 5

Clearly, there is a path from to v in G. The bold edges are in the depth-first
forest produced. We can see thatl < v.d in the depth-first search butis not a
descendant ai in the forest.

SRS

Solution to Exercise 22.3-9

Let us consider the example graph and depth-first searclvbelo

d_f
1 6
2 3
v, |4 5

Clearly, there is a path fromto v in G. The bold edges df are in the depth-first
forest produced by the search. Howewed > u.f and the conjecture is false.

SRS

Solution to Exercise 22.3-11

Let us consider the example graph and depth-first searclvbelo

22-18 Solutions for Chapter 22: Elementary Graph Algoristhm

d f
wl|l 2 : C C
u|3 4
v| 5 6

Clearlyu has both incoming and outgoing edge%irbut a depth-first search of
produced a depth-first forest wheres in a tree by itself.

Solution to Exercise 22.3-12
This solution is also posted publicly

The following pseudocode modifies the DFS and DFS+V procedures to assign
values to thecc attributes of vertices.

DFS(G)
for each vertexx € G.V
u.color = WHITE
u.m = NIL
time= 0
counter= 0
for each vertexx € G.V
if u.color == WHITE
counter = counter+ 1
DFS-VIsIT(G, u, counter

DFS-VIsIT(G, u, counten

u.CC = counter /I label the vertex
time = time—+ 1
u.d = time

u.color = GRAY
for eachv € G.Adj[u]
if v.color == WHITE

V.T = U

DFS-VIsIT(G, v, counten
u.color = BLACK
time = time+ 1
u.f = time

This DFS increments a counter each time DF&1V is called to grow a new tree
in the DFS forest. Every vertex visited (and added to the) togeDFS-MVISIT is
labeled with that same counter value. Thusc = v.ccif and only ifu andv are
visited in the same call to DFS4¥IT from DFS, and the final value of the counter
is the number of calls that were made to DF&N by DFS. Also, since every
vertex is visited eventually, every vertex is labeled.

Thus all we need to show is that the vertices visited by ealtha®FS-VisIT
from DFS are exactly the vertices in one connected compafeiit

Solutions for Chapter 22: Elementary Graph Algorithms »-1

» All vertices in a connected component are visited by onetcaDFS-VisIT
from DFS:

Letu be the first vertex in component visited by DFS-VSIT. Since a vertex
becomes non-white only when it is visited, all verticesCinare white when
DFS-VisiT is called foru. Thus, by the white-path theorem, all vertice<(n
become descendants »fin the forest, which means that all verticesGnhare
visited (by recursive calls to DFS4¥1T) before DFS-VSIT returns to DFS.

* All vertices visited by one call to DFS-€IT from DFS are in the same con-
nected component:

If two vertices are visited in the same call to DFSsW from DFS, they are in
the same connected component, because vertices are aBliedy following
paths inG (by following edges found in adjacency lists, starting freome
vertex).

Solution to Exercise 22.4-3
This solution is also posted publicly

An undirected graph is acyclic (i.e., a forest) if and onl@iDFS yields no back

edges.

« If there’s a back edge, there’s a cycle.

* If there’s no back edge, then by Theorem 22.10, there are toedy edges.
Hence, the graph is acyclic.

Thus, we can run DFS: if we find a back edge, there’s a cycle.

* Time: O(V). (NotO(V + E)Y)
If we ever segV/| distinct edges, we must have seen a back edge because (by
Theorem B.2 on p. 1174) in an acyclic (undirected) forgst,< |V| — 1.

22-20 Solutions for Chapter 22: Elementary Graph Algoristhm

Solution to Exercise 22.4-5

TOPOLOGICAL-SORT(G)
/I Initialize in-degree ® (V') time.
for each vertexx € G.V
u.in-degree= 0
/I Computein-degree ®(V + E) time.
for each vertexx € G.V
for eachv € G.Adj[u]
v.in-degree= v.in-degree+ 1
/I Initialize Queue® (V) time.
0=29
for each vertexx € G.V
if u.in-degree==0
ENQUEUE(Q, u)
/I while loop takesO(V + E) time.
while Q # ¢
u = DEQUEUE(Q)
outputu
/I for loop execute®)(E) times total.
for eachv € G.Adj[u]
v.in-degree= v.in-degree— 1
if v.in-degree==0
ENQUEUE(Q, v)
/I Check for cyclesQ (V) time.
for each vertexx € G.V
if u.in-degrees£ 0
report that there’s a cycle
/I Another way to check for cycles would be to count the vertices
/I that are output and report a cycle if that numbegig/|.

To find and output vertices of in-degree 0, we first computgetices’ in-degrees
by making a pass through all the edges (by scanning the adjadists of all the
vertices) and incrementing the in-degree of each vertexdga enters.

* Computing all in-degrees také¥(V + E) time (|V| adjacency lists accessed,
| E| edges total found in those list®(1) work for each edge).

We keep the vertices with in-degree 0 in a FIFO queue, so liegt ¢an be en-
queued and dequeued @(1) time. (The order in which vertices in the queue are
processed doesn’'t matter, so any kind of FIFO queue works.)

+ Initializing the queue takes one pass over the verticegyd®iri) work, for total
time ®(V).

As we process each vertex from the queue, we effectively venits outgoing
edges from the graph by decrementing the in-degree of eatéxwene of those
edges enters, and we enqueue any vertex whose in-degre® @o&¥e do not need
to actually remove the edges from the adjacency list, becthet adjacency list

Solutions for Chapter 22: Elementary Graph Algorithms 2A2-2

will never be processed again by the algorithm: Each vegexqueued/dequeued
at most once because it is enqueued only if it starts out wittegree 0 or if its in-
degree becomes 0 after being decremented (and never imteieome number
of times.

* The processing of a vertex from the queue happ@(k) times because no
vertex can be enqueued more than once. The per-vertex weduéde and
output) takes0(1) time, for a total ofO (V') time.

* Because the adjacency list of each vertex is scanned onln dieevertex is
dequeued, the adjacency list of each vertex is scanned atomos. Since the
sum of the lengths of all the adjacency list®6E), at mostO(E) time is spent
in total scanning adjacency lists. For each edge in an aujgdest, © (1) work
is done, for a total o (E) time.

Thus the total time taken by the algorithm@V + E).

The algorithm outputs vertices in the right orderi{eforev for every edgeu, v))
becausev will not be output until its in-degree becomes 0, which haygpenly
when every edgéu, v) leading intov has been “removed” due to the processing
(including output) ofu.

If there are no cycles, all vertices are output.

* Proof: Assume that some vertex is not output. Vertex, cannot start out
with in-degree 0 (or it would be output), so there are edgesiig Sincev,’s
in-degree never becomes 0, at least one €dge),) is never removed, which
means that at least one other verigxvas not output. Similarlyy; not output
means that some vertex such that(v,,v;) € E was not output, and so on.
Since the number of vertices is finite, this path & v, — v — vy) is finite,
so we must have; = v; for somei and; in this sequence, which means there
is a cycle.

If there are cycles, not all vertices will be output, becassme in-degrees never
become 0.

* Proof: Assume that a vertex in a cycle is output (its in-dedrecomes 0). Let
be the first vertex in its cycle to be output, andudebe v’s predecessor in the
cycle. In order forv’s in-degree to become 0, the ed@e v) must have been
“removed,” which happens only whenis processed. But this cannot have
happened, becauseis the first vertex in its cycle to be processed. Thus no
vertices in cycles are output.

Solution to Exercise 22.5-5

We have at our disposal an(V + E)-time algorithm that computes strongly con-
nected components. Let us assume that the output of thisithlgois a map-
ping u.scG giving the number of the strongly connected componentaiointy
vertexu, for each vertexu. Without loss of generality, assume thatsccis an
integer in the sefl,2,...,|V|}.

22-22 Solutions for Chapter 22: Elementary Graph Algoristhm

Construct the multiset (a set that can contain the same tolijere than once)

T = {u.scc: u € V}, and sort it by using counting sort. Since the values we are
sorting are integers in the rangeo |V |, the time to sort i90(1'). Go through the
sorted multise?” and every time we find an elementhat is distinct from the one
before it, addx to VS, (Consider the first element of the sorted set as “distinct
from the one before it.”) It take® (1) time to construct’ S¢C,

Construct the set of ordered pairs
S ={(x,y) : thereis an edgé:,v) € E,x = u.scc andy = v.scG .

We can easily construct this set®(£) time by going through all edges ifi and
looking upu.sccandv.sccfor each edgéu, v) € E.

Having constructed, remove all elements of the for(w, x). Alternatively, when
we constructS, do not put an element il when we find an edgét, v) for which
u.scc= v.scc S now has at mogtt | elements.

Now sort the elements & using radix sort. Sort on one component at a time. The
order does not matter. In other words, we are performing tass@s of counting
sort. The time to do so i©(V + E), since the values we are sorting on are integers
in the rangel to |V|.

Finally, go through the sorted sét, and every time we find an elemeft, y)
that is distinct from the element before it (again consmfgiihe first element of
the sorted set as distinct from the one before it), &@dd) to ES5CC, Sorting and
then addingx, y) only if it is distinct from the element before it ensures tiet
add(x, y) at most once. It take®(FE) time to go throughS in this way, onceS
has been sorted.

The total time isO(V + E).

Solution to Exercise 22.5-6

The basic idea is to replace the edges within each SCC by amaesidirected
cycle and then remove redundant edges between SCC’s. Jiaeemust be at
leastk edges within an SCC that h&svertices, a single directed cycle bfedges
gives thek-vertex SCC with the fewest possible edges.

The algorithm works as follows:

1. Identify all SCC’s ofG. Time: ®(V + E), using the SCC algorithm in Sec-
tion 22.5.

2. Form the component gragh®cC. Time: O(V + E), by Exercise 22.5-5.

Start withE’ = 0. Time: O(1).

4. Foreach SCC af7, let the vertices in the SCC hg, v,, ..., v, and add taE’
the directed edge®, v,), (V2,v3), ..., (Vk—1, Vi), (vk, v1). These edges form
a simple, directed cycle that includes all vertices of theCSClime for all
SCC’s: O(V).

5. For each edgé, v) in the component graptrScC, select any vertex in u's

SCC and any vertey in v’'s SCC, and add the directed edge, y) to E’.
Time: O(E).

Thus, the total time i®(V + E).

w

Solutions for Chapter 22: Elementary Graph Algorithms -2

Solution to Exercise 22.5-7

To determine whethetr = (V, E) is semiconnected, do the following:

1. Call STRONGLY-CONNECTED-COMPONENTS

2. Form the component graph. (By Exercise 22.5-5, you maynasghat this
takesO(V + E) time.)

3. Topologically sort the component graph. (Recall thatatdag.) Assuming that
G containsk SCC's, the topological sort gives a linear order{mg, v,, ..., v¢)
of the vertices.

4. Verify that the sequence of verticés,, v,, ..., v;) given by topological sort
forms a linear chain in the component graph. That is, vetift the edges
(v1,v2), (V2,v3), ..., (vk_1, Vi) €Xist in the component graph. If the vertices
form a linear chain, then the original graph is semiconrectgherwise it is
not.

Because we know that all vertices in each SCC are mutualghedde from each
other, it suffices to show that the component graph is semaxted if and only if
it contains a linear chain. We must also show that if therdisear chain in the
component graph, it's the one returned by topological sort.

We'll first show that if there’s a linear chain in the compongraph, then it’s the
one returned by topological sort. In fact, this is trivial. tépological sort has to
respect every edge in the graph. So if there’s a linear chawpological sorinust
give us the vertices in order.

Now we’ll show that the component graph is semiconnecteadfenly if it con-
tains a linear chain.

First, suppose that the component graph contains a linean.cifhen for every
pair of verticesu, v in the component graph, there is a path between them. If
precedes in the linear chain, then there’s a path-» v. Otherwisey precedes:,
and there’s a path ~ u.

Conversely, suppose that the component graph does notirt@tmear chain.
Then in the list returned by topological sort, there are twosecutive vertices;
andv; 1, but the edgév;,, v;,) is not in the component graph. Any edges out,of
are to vertices);, wherej > i + 1, and so there is no path from to v;;, in the
component graph. And sineg, ; follows v; in the topological sort, there cannot be
any paths at all fronw; ., to v;. Thus, the component graph is not semiconnected.

Running time of each step:

1. ©(V+E).

2. O(V +E).

3. Since the component graph has at md5t vertices and at mogtE| edges,
oV + E).

4. Also O(V + E). We just check the adjacency list of each vertgxn the

component graph to verify that there’'s an edge v;;;). We'll go through
each adjacency list once.

Thus, the total running time ®(V + E).

22-24 Solutions for Chapter 22: Elementary Graph Algoristhm

Solution to Problem 22-1
This solution is also posted publicly

a. 1. Supposdu, v) is a back edge or a forward edge in a BFS of an undirected
graph. Then one aof andv, sayu, is a proper ancestor of the othe) (n
the breadth-first tree. Since we explore all edges b&fore exploring any
edges of any ofi’'s descendants, we must explore the efige) at the time
we exploreu. But then(u, v) must be a tree edge.

2. In BFS, an edgéu, v) is a tree edge when we setr = u. But we only
do so when we sat.d = u.d + 1. Since neither:.d nor v.d ever changes
thereafter, we have.d = u.d + 1 when BFS completes.

3. Consider a cross edge, v) where, without loss of generality, is visited
beforev. At the time we visitu, vertexyv must already be on the queue, for
otherwise(u, v) would be a tree edge. Becauséds on the queue, we have
v.d < u.d+ 1 by Lemma 22.3. By Corollary 22.4, we haved > u.d.
Thus, eithew.d = u.dorv.d = u.d + 1.

b. 1. Supposgu,v) is a forward edge. Then we would have explored it while

visiting u, and it would have been a tree edge.

. Same as for undirected graphs.

3. For any edggu,v), whether or not it's a cross edge, we cannot have
v.d > u.d + 1, since we visitv at the latest when we explore edge v).
Thus,v.d < u.d + 1.

4. Clearly,v.d > 0 for all verticesv. For a back edgéu, v), v is an ancestor
of u in the breadth-first tree, which means thatl < u.d. (Note that since
self-loops are considered to be back edges, we couldihave.)

N

Solution to Problem 22-3

a. An Euler tour is a single cycle that traverses each edge ekactly once, but
it might not be a simple cycle. An Euler tour can be decompastxda set of
edge-disjoint simple cycles, however.

If G has an Euler tour, therefore, we can look at the simple cyobdstogether,
form the tour. In each simple cycle, each vertex in the cyee dne entering
edge and one leaving edge. In each simple cycle, therefach, \&rtexv has
in-degredév) = out-degreév), where the degrees are eithie(if v is on the
simple cycle) or0 (if v is not on the simple cycle). Adding the in- and out-
degrees over all edges proves thatiihas an Euler tour, then in-degfe¢ =
out-degreév) for all verticesv.

We prove the converse—that if in-degteg = out-degreév) for all verticesy,
thenG has an Euler tour—in two different ways. One proof is nontotsive,
and the other proof will help us design the algorithm for gla)t

First, we claim that if in-degrge) = out-degreév) for all verticesv, then we
can pick any vertex for which in-degreé«) = out-degreé:) > 1 and create

Solutions for Chapter 22: Elementary Graph Algorithms »-2

a cycle (not necessarily simple) that containsio prove this claim, let us start
by placing vertex: on the cycle, and choose any leaving edga,afay(u, v).
Now we putv on the cycle. Since in-degrée = out-degreév) > 1, we can
pick some leaving edge ofand continue visiting edges and vertices. Each time
we pick an edge, we can remove it from further consideratiineach vertex
other thanu, at the time we visit an entering edge, there must be an tedisi
leaving edge, since in-degteg = out-degreév) for all verticesv. The only
vertex for which there might not be an unvisited leaving etge, since we
started the cycle by visiting one afs leaving edges. Since there’s always a
leaving edge we can visit from all vertices other thareventually the cycle
must return tat, thus proving the claim.

The nonconstructive proof proves the contrapositive—th&t does not have
an Euler tour, then in-degrée) # out-degreév) for some vertex»—by con-
tradiction. Choose a grapi = (V, E) that does not have an Euler tour but
has at least one edge and for which in-de¢ree= out-degreév) for all ver-
ticesv, and letG have the fewest edges of any such graph. By the above claim,
G contains a cycle. Lef be a cycle ofG with the greatest number of edges,
and letV¢ be the set of vertices visited by cydleé. By our assumption(is
not an Euler tour, and so the set of eddg€s= E — C is nonempty. If we use
the setV of vertices and the sdi’ of edges, we get the graghf = (V, E');
this graph has in-degrée) = out-degreév) for all verticesv, since we have
removed one entering edge and one leaving edge for eaclx warteycleC.
Consider any componeiit” = (V”, E”) of G’, and observe that” also has
in-degre€v) = out-degreév) for all verticesv. SinceE” C E’ ¢ E, it fol-
lows from how we chosé& that G” must have an Euler tour, s&y. Because
the original graphG is connected, there must be some ventex V" U V¢ and,
without loss of generality, considerto be the first and last vertex on bath
andC’. But then the cycleC” formed by first traversing” and then travers-
ing C’ is a cycle ofG with more edges tha@', contradicting our choice df .
We conclude tha€ must have been an Euler tour.

The constructive proof uses the same ideas. Let us startextexu and, via
random traversal of edges, create a cycle. We know that oedake any edge
entering a vertexw # u, we can find an edge leavingthat we have not yet
taken. Eventually, we get back to vertexand if there are still edges leaving
that we have not taken, we can continue the cycle. Evenjuadlyget back to
vertexu and there are no untaken edges leavinglf we have visited every
edge in the graplir, we are done. Otherwise, sin€eis connected, there must
be some unvisited edge leaving a vertex, sagn the cycle. We can traverse
a new cycle starting at, visiting only previously unvisited edges, and we can
splice this cycle into the cycle we already know. That ish# original cycle
is{u,...,v,w,...,u), and the new cycle i¢v, x, ..., v), then we can create
the cycle(u,...,v,x,...,v,w,...,u). We continue this process of finding a
vertex with an unvisited leaving edge on a visited cycletivig a cycle starting
and ending at this vertex, and splicing in the newly visitgde, until we have
visited every edge.

b. The algorithm is based on the idea in the constructive prbo¥e.

22-26

Solutions for Chapter 22: Elementary Graph Algoristhm

We assume that is represented by adjacency lists, and we work with a copy
of the adjacency lists, so that as we visit each edge, we caove it from

its adjacency list. The singly linked form of adjacency ltl suffice. The
output of this algorithm is a doubly linked ligt of vertices which, read in list
order, will give an Euler tour. The algorithm construdisby finding cycles
(also represented by doubly linked lists) and splicing theta 7. By using
doubly linked lists for cycles and the Euler tour, splicingyale into the Euler
tour takes constant time.

We also maintain a singly linked lidt, in which each list element consists of
two parts:

1. a vertexv, and
2. a pointer to some appearancevoh T'.

Initially, L contains one vertex, which may be any vertexGgof
Here is the algorithm:

EULER-TOUR(G)
T = empty list
L = (any vertexv € G.V,NIL)
while L is not empty
remove(v, locationin-T) from L
C = VISIT(G, L,v)
if locationin-T == NIL
T =C
elsespliceC into T just beforelocatiorin-T
return T

VISIT(G, L,v)

C = empty sequence of vertices
u =1V
while out-degreéu) > 0
let w be the first vertex irG. Adj[u]
removew from G.Adj[u], decrementing out-degrée)
addu onto the end o
if out-degreéu) > 0
add(u, u’s location inC) to L
u=mw
return C

The use ofNIL in the initial assignment td. ensures that the first cyclé
returned by VsIT becomes the current version of the Euler tdurAll cycles
returned by \'sIT thereafter are spliced int6. We assume that whenever an
empty cycle is returned by Ig1T, splicing it into T leavesT” unchanged.

Each time that ELER-TOUR removes a vertex from the list L, it calls
VISIT(G, L,v) to find a cycleC, possibly empty and possibly not simple, that
starts and ends at the cycleC is represented by a list that starts wittand
ends with the last vertex on the cycle before the cycle endsBULER-TOUR

Solutions for Chapter 22: Elementary Graph Algorithms n-2

then splices this cycl€ into the Euler toufl” just before some appearancevof
inT.

When MisIT is at a vertex, it looks for some vertew such that the edge:, w)
has not yet been visited. Removingfrom Adj[u] ensures that we will never
visit (u, w) again. MsIT addsu onto the cycleC that it constructs. If, after
removing edgdu, w), vertexu still has any leaving edges, thanalong with
its location inC, is added ta.. The cycle construction continues fram and
it ceases once a vertex with no unvisited leaving edges isdfolJsing the
argument from part (a), at that point, this vertex must cigse cycle. At that
point, therefore, the cycl€ is returned.

Itis possible that a vertex has unvisited leaving edges at the time it is added to
list L in VISIT, but that by the time that is removed fromL in EULER-TOUR,

all of its leaving edges have been visited. In this casewié loop of VisIT
executes 0 iterations, and$/T returns an empty cycle.

Once the listL is empty, every edge has been visited. The resulting cydke
then an Euler tour.

To see that HLER-TOUR takesO(E) time, observe that because we remove
each edge from its adjacency list as it is visited, no edgésited more than
once. Since each edge is visited at some time, the numbenes that a vertex

is added td_, and thus removed frorh, is at most £|. Thus, thewhile loop in
EULER-TOUR executes at modt iterations. Thavhile loop in VISIT executes
one iteration per edge in the graph, and so it executes at Adstrations as
well. Since adding vertex to the doubly linked lisIC takes constant time and
splicing C into T takes constant time, the entire algorithm takEs) time.

Solution to Problem 22-4

ComputeGT in the usual way, so that" is G with its edges reversed. Then do
a depth-first search oG ", but in the main loop of DFS, consider the vertices in
order of increasing values d@f(v). If vertexu is in the depth-first tree with root,
then min(u) = v. Clearly, this algorithm take®(V + E) time.

To show correctness, first note thauifs in the depth-first tree rooted atin G,
then there is a path ~ u in GT, and so there is a path~> v in G. Thus, the
minimum vertex label of all vertices reachable franis at mostL(v), or in other
words,L(v) = min{L(w) : w € R(u)}.

Now suppose that.(v) > min{L(w): w € R(u)}, so that there is a vertex
w € R(u) such thatL(w) < L(v). At the timev.d that we started the depth-
first search fromw, we would have already discovered, so thatw.d < v.d.
By the parenthesis theorem, either the interyald, v.f], and{w.d, w.f] are dis-
joint and neitherv nor w is a descendant of the other, or we have the ordering
w.d < v.d < v.f < w.f andv is a descendant af). The latter case cannot
occur, sincev is a root in the depth-first forest (which means thagannot be a de-
scendant of any other vertex). In the former case, sinaé< v.d, we must have
w.d < w.f <v.d < v.f. Inthis case, since is reachable fronw in GT, we would

22-28 Solutions for Chapter 22: Elementary Graph Algoristhm

have discovered by the timew.f, so thatu.d < w.f. Since we discovered dur-
ing a search that started atwe havev.d < u.d. Thus,v.d < u.d < w.f < v.d,
which is a contradiction. We conclude that no such vettecan exist.

Lecture Notes for Chapter 23:
Minimum Spanning Trees

Chapter 23 overview

Problem

* Atown has a set of houses and a set of roads.

* Aroad connects 2 and only 2 houses.

* Aroad connecting housesandv has a repair cost (u, v).
* Goal: Repair enough (and no more) roads such that

1. everyone stays connected: can reach every house frothail lmouses, and
2. total repair cost is minimum.

Model as a graph:
* Undirected graplG = (V, E).
* Weightw(u, v) on each edgéu,v) € E.
* FindT C E such that
1. T connects all verticesI{is aspanning tre¢, and
2.w(T)= Y w(u,v)isminimized.
(u,v)eT

A spanning tree whose weight is minimum over all spanningstie called anin-
imum spanning treeor MST.

Example of such a grapledges in MST are shaded]

In this example, there is more than one MST. Replace €dgg¢) in the MST
by (¢, e). Get a different spanning tree with the same weight.

23-2 Lecture Notes for Chapter 23: Minimum Spanning Trees

Growing a minimum spanning tree

Some properties of an MST:

* Ithas|V|— 1 edges.
* It has no cycles.
* It might not be unique.

Building up the solution

* We will build a set4 of edges.
* Initially, A has no edges.
* As we add edges td, maintain a loop invariant:

Loop invariant: A is a subset of some MST.

* Add only edges that maintain the invariant. Afis a subset of some MST, an
edge(u, v) is safefor A if and only if A U {(u,v)} is also a subset of some
MST. So we will add only safe edges.

Generic MST algorithm

GENERIC-MST(G, w)
A=10
while A4 is not a spanning tree
find an edgdu, v) that is safe ford
A= AU{(u,v)}
return A

Use the loop invariant to show that this generic algorithnkso

Initialization: The empty set trivially satisfies the loop invariant.
Maintenance: Since we add only safe edgesyemains a subset of some MST.

Termination: All edges added tal are in an MST, so when we stog,is a span-
ning tree that is also an MST.

Finding a safe edge

How do we find safe edges?

Let’s look at the example. Edge, /) has the lowest weight of any edge in the
graph. Is it safe fod = @7

Intuitively: Let S C V be any set of vertices that includesbut not f (so that
fisinV —). In any MST, there has to be one edge (at least) that conSects
with V' — §. Why not choose the edge with minimum weight? (Which would be
(c, f) in this case.)

Some definitions: Le§ ¢ V andA4 C E.

Lecture Notes for Chapter 23: Minimum Spanning Trees 23-3

« Acut(S,V —9)is a partition of vertices into disjoint setsandS — V.

* Edge(u,v) € E crossexut (S, V — §) if one endpoint is inS and the other is
inV —S.

* Acutrespects if and only if no edge in4 crosses the cut.

* An edge is dight edgecrossing a cut if and only if its weight is minimum over
all edges crossing the cut. For a given cut, there can bdight edge crossing
it.

Theorem

Let A be a subset of some MS§, V' — §) be a cut that respect$, and(u, v) be
a light edge crossingS, vV — S). Then(u, v) is safe forA.

Proof Let T be an MST that included.

If T contains(u, v), done.

So now assume thdt does not contaiiu, v). We'll construct a different MST™
that includesA U {(u, v)}.

Recall: a tree has unique path between each pair of vertiieseT is an MST, it
contains a unique path betweeny andv. Pathp must cross the cutS,V — §)

at least once. Letx,y) be an edge op that crosses the cut. From how we
chose(u, v), must havav (1, v) < w(x, y).

[Except for the dashed eddge, v), all edges shown are ifi. A is some subset of
the edges of', but A cannot contain any edges that cross tha 8uv — S), since
this cut respectd. Shaded edges are the path

Since the cut respects, edge(x, y) is not in A.
ToformT’ from T':

* Remove(x, y). BreaksT into two components.
* Add (u,v). Reconnects.

23-4 Lecture Notes for Chapter 23: Minimum Spanning Trees

SoT' =T —{(x,y)} U{(u,v)}.

T’ is a spanning tree.

w(T) = w(T)—w(x,y)+ wu,v)
= w(),

sincew(u,v) < w(x, y). SinceT’ is a spanning treey(7’) < w(T), andT is an
MST, then7’ must be an MST.

Need to show thatu, v) is safe forA:

e ACTand(x,y)dA=ACT.
s AU{(u,v)} T
» SinceT’ is an MST,(u, v) is safe forA. m (theorem)

So, in GENERIC-MST:

* A is a forest containing connected components. Initiallgheeomponent is a
single vertex.

* Any safe edge merges two of these components into one. Eagborent is a
tree.

* Since an MST has exactly’| — 1 edges, thdor loop iterategV| — 1 times.
Equivalently, after adding/’ |—1 safe edges, we’re down to just one component.

Corollary

If C = (V¢, Ec) is a connected component in the forést = (V, A) and(u, v)
is a light edge connecting to some other component @&, (i.e., (u, v) is a light
edge crossing the c@tc, V — V¢)), then(u, v) is safe forA.

Proof SetS = V¢ in the theorem. m (corollary)

This idea naturally leads to the algorithm known as Kruskalgorithm to solve
the minimum-spanning-tree problem.

Kruskal'’s algorithm

G = (V, E) is a connected, undirected, weighted graph. £ — R.

+ Starts with each vertex being its own component.

* Repeatedly merges two components into one by choosingghedidge that
connects them (i.e., the light edge crossing the cut betwresm).

* Scans the set of edges in monotonically increasing orderdighi

* Uses a disjoint-set data structure to determine whethedga eonnects ver-
tices in different components.

Lecture Notes for Chapter 23: Minimum Spanning Trees 23-5

KRUSKAL(G, w)
A=0
for each vertew € G.V
MAKE-SET(v)
sort the edges df. E into nhondecreasing order by weigint
for each(u, v) taken from the sorted list
if FIND-SET(u) # FIND-SET(v)
A= AU{(u,v)}
UNION(u, v)
return A

Run through the above example to see how Kruskal's algonittomiks on it:

(c, f) safe
(g.0) safe
(e, 1) safe
(c,e) reject
(d,h) safe
(fih) safe
(e,d) reject
(b,d) safe
d,g) safe
(b,c) reject
(g, h) reject
(a,b) safe

At this point, we have only one component, so all other edgkb®irejected.[We
could add a test to the main loop BRUSKAL to stop oncaV | — 1 edges have
been added td.]

Get the shaded edges shown in the figure.

Suppose we had examinéd ¢) before(e, /). Then would have foung, ¢) safe
and would have rejecte@, f).

Analysis

Initialize A: o)

Firstfor loop: |V| MAKE-SETS
SortE: O(EIgE)

Secondor loop: O(E) FIND-SETS and WNIONS

* Assuming the implementation of disjoint-set data strugtualready seen in
Chapter 21, that uses union by rank and path compression:
O(V+E)a(V))+ O(EIQgE) .

* SinceG is connected|E| > |V|—1= O(E a(V)) + O(E g E).

* a(V])=0(gV) = O(gE).

* Therefore, total time i®)(E Ig E).

* |El=|VI>=1g|E| = 0@2lgV) = 0(gV).

23-6 Lecture Notes for Chapter 23: Minimum Spanning Trees

* Therefore,O(E Ig V') time. (If edges are already sorted(E «(V)), which is
almost linear.)

Prim’s algorithm

* Builds one tree, sd is always a tree.
» Starts from an arbitrary “root?.

* At each step, find a light edge crossing ¢ug, V — V), wherelV,, = vertices
that A is incident on. Add this edge ta.

light edge

[Edges ofA are shaded.]

How to find the light edge quickly?
Use a priority queue:

* Each object is a vertex if — V.
* Key of v is minimum weight of any edgéu, v), whereu € V.

* Then the vertex returned byx&RACT-MIN is v such that there exists € V,
and(u, v) is light edge crossingV,, V — V).
+ Keyofvisooif vis not adjacent to any vertices k.

The edges ofd will form a rooted tree with root:

* risgiven as an input to the algorithm, but it can be any vertex.

» Each vertex knows its parent in the tree by the attribute = parent ofv.
v.t = NIL if v = r or v has no parent.

* As algorithm progressest = {(v,v.wr):v eV —{r} — 0}.
* Attermination,Vy =V = Q =0,S0MSTisA = {(v,v.n) :v eV —{r}}.

[The pseudocode that follows differs from the book in thakjlicitly callSINSERT
andDECREASEKEY to operate orQ.]

Lecture Notes for Chapter 23: Minimum Spanning Trees 23-7

PRIM(G, w,r)

Q=0

for eachu € G.V

u.key = oo

u.m = NIL

INSERT(Q, u)
DECREASEKEY(Q,r,0) /I r.key= 0

while Q # 0

u = EXTRACT-MIN(Q)
for eachv € G.Adj[u]
if ve Qandw(u,v) < v.key
V.T = U
DECREASEKEY (Q, v, w(u,v))

Do example from previous grapfi.et a student pick the root.]

Analysis

Depends on how the priority queue is implemented:

Suppose is a binary heap.
Initialize Q and firstfor loop: OV Ig V)

Decrease key of: o(gV)
while loop: |V| EXTRACT-MIN calls= OV IgV)

< |E| DECREASEKEY calls= O(EIgV)
Total: O(ElgV)

Suppose we could doECREASEKEY in O(1) amortizedtime.

Then< |E| DECREASEKEY calls takeO(F) time altogether= total time
becomexD(VIgV + E).

In fact, there is a way to do ECREASEKEY in O(1) amortized time: Fi-
bonacci heaps, in Chapter 19.

Solutions for Chapter 23:
Minimum Spanning Trees

Solution to Exercise 23.1-1
This solution is also posted publicly

Theorem 23.1 shows this.
Let 4 be the empty set an8l be any set containing but notv.

Solution to Exercise 23.1-4
This solution is also posted publicly

A triangle whose edge weights are all equal is a graph in wineny edge is a light
edge crossing some cut. But the triangle is cyclic, so it tssmminimum spanning
tree.

Solution to Exercise 23.1-6
This solution is also posted publicly

Suppose that for every cut 6f, there is a unique light edge crossing the cut. Let
us consider two minimum spanning tre@&sand7’, of G. We will show that every
edge ofT is also inT’, which means thal’ and T’ are the same tree and hence
there is a unigue minimum spanning tree.

Consider any edgéu,v) € T. If we remove(u,v) from T, thenT becomes
disconnected, resulting ina o, V —§). The edgdu, v) is a light edge crossing
the cut(S,V — S) (by Exercise 23.1-3). Now consider the edgey) € T’ that
crosseq S,V — §). It, too, is a light edge crossing this cut. Since the lighgeed
crossing(S, V' —S) is unique, the edge@:, v) and(x, y) are the same edge. Thus,
(u,v) € T'. Since we choséu, v) arbitrarily, every edge iff" is also inT"’.

Solutions for Chapter 23: Minimum Spanning Trees 23-9

Here’s a counterexample for the converse:

1

Here, the graph is its own minimum spanning tree, and so thémmim spanning
tree is unique. Consider the ot} , {y,z}). Both of the edgesgx, y) and(x, z)
are light edges crossing the cut, and they are both lightsedge

Solution to Exercise 23.1-10

Letw(T) = 3, ,)er w(x,y). We havew'(T) = w(T) — k. Consider any other
spanning tred”’, so thatw(7T") < w(T").

If (x,y) €T, thenw (T") = w(T’) > w(T) > w'(T).
If (x,y) eT’, thenw'(T") = w(T')—k >w(T) —k = w'(T).

Either way,w’(T) < w’(T’), and soT is a minimum spanning tree for weight
functionw’.

Solution to Exercise 23.2-4

We know that Kruskal's algorithm take®@(V) time for initialization, O(E Ig E)
time to sort the edges, ard(E «a(V)) time for the disjoint-set operations, for a
total running time ofO(V + EIQE + E a(V)) = O(EIQ E).

If we knew that all of the edge weights in the graph were intedge the range
from 1 to |V|, then we could sort the edges (V' + E) time using counting
sort. Since the graph is connectdd,= O(E), and so the sorting time is reduced
to O(E). This would yield a total running time 0o®(V + E + E a(V)) =
O(E a(V)), again sincel = O(E), and sinceE = O(E «(V)). The time to
process the edges, not the time to sort them, is now the doirtigren. Knowledge
about the weights won't help speed up any other part of tharidign, since nothing
besides the sort uses the weight values.

If the edge weights were integers in the range from Wtdor some constankV,
then we could again use counting sort to sort the edges macklyguThis time,
sorting would takeD(E + W) = O(F) time, sincelV is a constant. As in the first
part, we get a total running time @¥(E a(1)).

23-10 Solutions for Chapter 23: Minimum Spanning Trees

Solution to Exercise 23.2-5

The time taken by Prim’s algorithm is determined by the spefatie queue oper-
ations. With the queue implemented as a Fibonacci heagkest@a(E£ + Vg V)
time.

Since the keys in the priority queue are edge weights, it trighpossible to im-
plement the queue even more efficiently when there arectistrs on the possible
edge weights.

We can improve the running time of Prim’s algorithmif is a constant by imple-
menting the queue as an arr@f0.. W + 1] (using theW + 1 slot for key= o0),
where each slot holds a doubly linked list of vertices withttiveight as their
key. Then XTRACT-MIN takes onlyO(W) = O(1) time (just scan for the first
nonempty slot), and BCREASEKEY takes onlyO(1) time (just remove the ver-
tex from the list it's in and insert it at the front of the listdexed by the new key).
This gives a total running time @ (E), which is the best possible asymptotic time
(sinceQ(E) edges must be processed).

However, if the range of edge weights is 1 [i6]|, then EXTRACT-MIN takes
O(V) time with this data structure. So the total time spent doixgACT-MIN
is ®(V?), slowing the algorithm t®(E + V?) = ©(V?). In this case, it is better
to keep the Fibonacci-heap priority queue, which gaveahg + V' Ig V) time.

Other data structures yield better running times:
* van Emde Boas trees (see Chapter 20) give an upper boungrof-V Iglg V)
time for Prim’s algorithm.

* A redistributive heap (used in the single-source shompatts algorithm of
Ahuja, Mehlhorn, Orlin, and Tarjan, and mentioned in theptbanotes for
Chapter 24) gives an upper bound®@f E + V /Ig V) for Prim’s algorithm.

Solution to Exercise 23.2-7

We start with the following lemma.

Lemma

Let T be a minimum spanning tree 6f = (V, E), and consider a grapG’ =
(V', E") for which G is a subgraph, i.e}y € V' andE C E’. LetT = E — T be
the edges o that are not iril". Then there is a minimum spanning tree(@fthat
includes no edges .

Proof By Exercise 23.2-1, there is a way to order the edges b that Kruskal’s
algorithm, when run o6z, produces the minimum spanning trée We will show
that Kruskal's algorithm, run oi67’, produces a minimum spanning tréé that
includes no edges ifi. We assume that the edgesArare considered in the same
relative order when Kruskal's algorithm is run éhand onG’. We first state and
prove the following claim.

Solutions for Chapter 23: Minimum Spanning Trees 23-11

Claim

For any pair of vertices, v € V, if these vertices are in the same set after Kruskal's
algorithm run onG considers any edgex, y) € E, then they are in the same set
after Kruskal’s algorithm run o’ considerdx, y).

Proof of claim Let us order the edges @& by nondecreasing weight &6x,, y,),
(x2,¥2),...,(xk, y&)), Wwherek = | E|. This sequence gives the order in which the
edges ofF are considered by Kruskal’s algorithm, whether it is runGbor onG’.

We will use induction, with the inductive hypothesis that iandv are in the same
set after Kruskal's algorithm run ofi considers an edgg;, y;), then they are in
the same set after Kruskal’s algorithm run @hconsiders the same edge. We use
induction oni.

Basis: For the basis; = 0. Kruskal's algorithm run orG has not considered
any edges, and so all vertices are in different sets. Thectivéuhypothesis holds
trivially.

Inductive step: We assume that any vertices that are in the same set aftetd{rus
algorithm run onG has considered edgééx,, y,), (x2, y2), ..., (xi—1, yi—1))
are in the same set after Kruskal’s algorithm run@nhas considered the same
edges. When Kruskal’s algorithm runs 61, after it considergx; _, y;—1), it may
consider some edges Ei— E before consideringyx;, y;). The edges itE’— E may
cause WION operations to occur, but sets are never divided. Hence, ariges
that are in the same set after Kruskal’s algorithm rurGérconsiders(x;_;, y;—1)
are still in the same set whén;, y;) is considered.

When Kruskal's algorithm run o considerg(x;, y;), eitherx; and y; are found
to be in the same set or they are not.

» If Kruskal's algorithm run onG finds x; and y; to be in the same set, then
no UNION operation occurs. The sets of vertices remain the same,atibs
inductive hypothesis continues to hold after considetingy;).

» If Kruskal's algorithm run onG finds x; and y; to be in different sets, then
the operation BIION(x;, y;) will occur. Kruskal's algorithm run orG’ will
find that eitherx; and y; are in the same set or they are not. By the induc-
tive hypothesis, when edde;, y;) is considered, all vertices in;’s set when
Kruskal's algorithm runs orG are inx;’s set when Kruskal's algorithm runs
on G’, and the same holds fgr.. Regardless of whether Kruskal's algorithm
run onG’ findsx; andy; to already be in the same set, their sets are united af-
ter consideringx;, y;), and so the inductive hypothesis continues to hold after
considering(x;, y;). m (claim)

With the claim in hand, we suppose that some edge) < T is placed into7".
That means that Kruskal's algorithm run éhfound u andv to be in the same
set (since(u,v) € T) but Kruskal's algorithm run o’ foundu andv to be in
different sets (sincéu, v) is placed intdl'™’). This fact contradicts the claim, and we
conclude that no edge if is placed intol”’. Thus, by running Kruskal’s algorithm
onG andG’, we demonstrate that there exists a minimum spanning tré&é ihiat
includes no edges If. m (lemma)

We use this lemma as follows. L&' = (V’, E’) be the graplG = (V, E) with
the one new vertex and its incident edges added. Suppossdhatve a minimum

23-12 Solutions for Chapter 23: Minimum Spanning Trees

spanning tred” for G. We compute a minimum spanning tree et by creating
the graphG” = (V', E”), where E” consists of the edges @t and the edges
in E' — E (i.e., the edges added @ that madeG’), and then finding a minimum
spanning tred” for G”. By the lemma, there is a minimum spanning treeGor
that includes no edges & — 7'. In other wordsG’ has a minimum spanning tree
that includes only edges i and E’ — E; these edges comprise exactly the B&t
Thus, the the minimum spanning tréé of G” is also a minimum spanning tree
of G'.

Even though the proof of the lemma uses Kruskal's algoritmare not required
to use this algorithm to find”. We can find a minimum spanning tree by any
means we choose. Let us use Prim’s algorithm with a Fiborzeap priority
queue. SincéV’| = |V| + 1 and|E”| < 2|V| —1 (E” contains thg V| — 1
edges ofl" and at mostV | edges inE’ — E), it takesO(V) time to constructG”,
and the run of Prim’s algorithm with a Fibonacci-heap ptioqueue takes time
O(E” +V'lgV’)y = O(VIgV). Thus, if we are given a minimum spanning tree
of G, we can compute a minimum spanning tree56in O(V Ig V) time.

Solution to Problem 23-1

a. To see that the minimum spanning tree is unique, observesithed the graph
is connected and all edge weights are distinct, then thexeisque light edge
crossing every cut. By Exercise 23.1-6, the minimum spantrige is unique.

To see that the second-best minimum spanning tree need nioidpge, here is
a weighted, undirected graph with a unique minimum spanmaegof weight7
and two second-best minimum spanning trees of weight

1 1 1
3 5 3 5 3 5
2 4 2 4 2 4
minimum second-best second-best
spanning tree minimum minimum
spanning tree spanning tree

b. Since any spanning tree has exad¢#yf — 1 edges, any second-best minimum
spanning tree must have at least one edge that is not in tk8 féimum
spanning tree. If a second-best minimum spanning tree redlgxone edge,
say(x, y), that is not in the minimum spanning tree, then it has the ssehef
edges as the minimum spanning tree, except(that) replaces some edge, say
(u, v), of the minimum spanning tree. Inthis ca%é,= T —{(u, v)}U{(x, y)},
as we wished to show.

Thus, all we need to show is that by replacing two or more edfdéise min-
imum spanning tree, we cannot obtain a second-best mininpamneng tree.
Let T be the minimum spanning tree 6f, and suppose that there exists a
second-best minimum spanning tréé that differs from7 by two or more

Solutions for Chapter 23: Minimum Spanning Trees 23-13

edges. There are at least two edged'in- 7', and let(u, v) be the edge in
T — T’ with minimum weight. If we were to ad@, v) to 7/, we would get a
cyclec. This cycle contains some edge, y) in 7’ — T (since otherwise]
would contain a cycle).

We claim thatw(x,y) > w(u,v). We prove this claim by contradiction,
so let us assume that(x,y) < w(u,v). (Recall the assumption that
edge weights are distinct, so that we do not have to concerselves with
w(x,y) =w(u,v).) If we add(x, y) to T, we get a cycle’, which contains
some edgéu’,v’) in T —T' (since otherwisel” would contain a cycle). There-
fore, the set of edgeB” = T — {(u/, v')} U {(x, y)} forms a spanning tree, and
we must also have (u',v') < w(x, y), since otherwisd”” would be a span-
ning tree with weight less tham (7). Thus,w(u’,v") < w(x,y) < w(u,v),
which contradicts our choice ¢f, v) as the edge iff — T’ of minimum weight.

Since the edgeé&t, v) and(x, y) would be on a common cycle if we were

to add (u,v) to T’, the set of edge§”’ — {(x,y)} U {(u,v)} is a spanning
tree, and its weight is less than(7’). Moreover, it differs fromT" (because

it differs from T’ by only one edge). Thus, we have formed a spanning tree
whose weight is less than(7") but is notT. Hence, T’ was not a second-best
minimum spanning tree.

c. We canfillinmaxu, v] forallu,v € V in O(V?) time by simply doing a search
from each vertex:, having restricted the edges visited to those of the spgnnin
treeT. It doesn’'t matter what kind of search we do: breadth-firepth-first,
or any other kind.

We'll give pseudocode for both breadth-first and depth-Amiroaches. Each
approach differs from the pseudocode given in Chapter 22aitwvie don’t need
to computed or f values, and we'll use thmaxtable itself to record whether a
vertex has been visited in a given search. In particater{u, v] = NIL if and
only if u = v or we have not yet visited vertexin a search from vertex. Note
also that since we're visiting via edges in a spanning tresmafmdirected graph,
we are guaranteed that the search from each verewhether breadth-first or
depth-first—will visit all vertices. There will be no needtestart” the search
as is done in the DFS procedure of Section 22.3. Our pseudasslimes that
the adjacency list of each vertex consists only of edgesarsgianning tre&'.

Here’s the breadth-first search approach:

23-14 Solutions for Chapter 23: Minimum Spanning Trees

BFS-ALL-MAX (G, T, w)
let maxbe a new table with an entmaxu, v] for eachu,v € G.V
for each vertext € G.V
for each vertew € G.V
maxu, v] = NIL
0=29
ENQUEUE(Q, u)
while Q # 0
x = DEQUEUE(Q)
for eachv € G.Ad][x]
if maxu,v]==NIL andv # u
if x ==wuorw(x,v)>maxu, x|
maxu, v] = (x,v)
elsemau, v] = maxu, x]
ENQUEUE(Q, v)
return max

Here’s the depth-first search approach:

DFS-ALL-MAX (G, T, w)

let maxbe a new table with an entmaxu, v] for eachu,v € G.V
for each vertex: € G.V
for each vertex € G.V
maxu, v] = NIL
DFS-RLL-MAX-VISIT(G, u,u, max
return max

DFS-HLL-MAX-VISIT(G,u, x,max

for each vertex € G.Adj[x]
if maxu, v] ==NIL andv # u
if x ==u orw(x,v) > maxu, x|
maxu, v] = (x,v)
elsemaxu, v] = maxu, x|
DFS-RLL-MAX-VISIT(G,u, v, max

For either approach, we are filling ifY'| rows of themaxtable. Since the
number of edges in the spanning tre¢lig — 1, each row take® (1) time to
fill in. Thus, the total time to fill in thenaxtable isO(V?).

d. In part (b), we established that we can find a second-bestmimi spanning
tree by replacing just one edge of the minimum spanning Treley some
edge(u,v) notinT. As we know, if we create spanning tré&e by replacing
edge(x, y) € T by edge(u,v) € T, thenw(T’) = w(T) —w(x, y) + w(u, v).
For a given edgéu, v), the edgdx, y) € T that minimizesw(7") is the edge
of maximum weight on the unique path betweeandv in 7. If we have al-
ready computed theaxtable from part (c) based dh, then the identity of this
edge is precisely what is storednmaxu, v]. All we have to do is determine an
edge(u,v) ¢ T for which w(maxu, v]) — w(u, v) is minimum.

Solutions for Chapter 23: Minimum Spanning Trees 23-15

Thus, our algorithm to find a second-best minimum spannieg goes as fol-
lows:

1. Compute the minimum spanning tréeTime: O(E +V Ig V), using Prim’s
algorithm with a Fibonacci-heap implementation of the ptyoqueue. Since
|E| < |V|?, this running time is0(V2).

2. Given the minimum spanning trd& compute thenaxtable, as in part (c).
Time: O(V?).

3. Find an edgdu,v) ¢ T that minimizesw(maxu, v]) — w(u,v). Time:
O(E), which isO(V?).

4. Having found an edg@t, v) in step 3, retur?”’ = T —{maxu, v]}U{(u,v)}
as a second-best minimum spanning tree.

The total time isO(V?).

Lecture Notes for Chapter 24
Single-Source Shortest Paths

Shortest paths

How to find the shortest route between two points on a map.
Input:

* Directed graptG = (V, E)

* Weight functionw : E — R

Weight of pathp = (v, vi,..., k)
k

= Zw(vi—hvi)

i=1
= sum of edge weights on pagh.

Shortest-path weight: to v:

min {w(p) cu L v} if there exists a path ~ v ,
s(u,v) =

00 otherwise.

Shortest path to v is any pathp such thatw(p) = §(u, v).

Example
shortest paths from
[§ values appear inside vertices. Shaded edges show shatbst]p

This example shows that the shortest path might not be unique

It also shows that when we look at shortest paths from onexedd all other
vertices, the shortest paths are organized as a tree.

24-2

Lecture Notes for Chapter 24: Single-Source ShortattsP

Can think of weights as representing any measure that

* accumulates linearly along a path, and

* we want to minimize.

Examples: time, cost, penalties, loss.

Generalization of breadth-first search to weighted graphs.

Variants

* Single-source:Find shortest paths from a giveourcevertexs € V to every
vertexv € V.

* Single-destination:Find shortest paths to a given destination vertex.

* Single-pair: Find shortest path from to v. No way known that's better in
worst case than solving single-source.

* All-pairs: Find shortest path from to v for all u, v € V. We'll see algorithms
for all-pairs in the next chapter.

Negative-weight edges

OK, as long as no negative-weight cycles are reachable fnesdurce.

+ If we have a negative-weight cycle, we can just keep goingrattat, and get
w(s,v) = —oo for all v on the cycle.

* But OK if the negative-weight cycle is not reachable from sberce.

* Some algorithms work only if there are no negative-weiglgesdin the graph.
We'll be clear when they’re allowed and not allowed.

Optimal substructure

Lemma
Any subpath of a shortest path is a shortest path.

Proof Cut-and-paste.
@A h D)
Suppose this patp is a shortest path from to v.

Thend(u,v) = w(p) = w(pux) + W(Pxy) + W(Pyy)-

Now suppose there exists a shorter pﬂt‘fﬁ"»y y.

Thenw(py,) < w(pxy)-
Constructp’:

P P
O OO O

Pux

Lecture Notes for Chapter 24: Single-Source Shortest Paths 24-3

Then

w(p) = w(pux) + w(py,) + w(pyw)

W(Pux) + wW(Pxy) + w(Pyv)

w(p) .

Contradicts the assumption thais a shortest path. m (lemma)

A

Cycles

Shortest paths can’t contain cycles:

* Already ruled out negative-weight cycles.
* Positive-weight= we can get a shorter path by omitting the cycle.

* Zero-weight: no reason to use them assume that our solutions won't use
them.

Output of single-source shortest-path algorithm

For each vertex € V;

* v.d=46(s,v).

Initially, v.d = oo.
* Reduces as algorithms progress. But always maintadn> 6(s, v).
Call v.d ashortest-path estimate

* v.7 = predecessor af on a shortest path from

If no predecesson. 7 = NIL.
* 7 induces a tree-shortest-path tree
We won't prove properties of in lecture—see text.

Initialization
All the shortest-paths algorithms start withiT-SINGLE-SOURCE

INIT-SINGLE-SOURCE(G, s)
for eachv € G.V

v.d = ©
v.w = NIL
s.d=0

Relaxing an edge(u, v)

Can we improve the shortest-path estimatefdsy going throughu and taking
(u,v)?

24-4

Lecture Notes for Chapter 24: Single-Source ShortattsP

RELAX (u, v, w)

if v.d>u.d+ w(u,v)
v.d = u.d+ w(u,v)
VT =u

u \'

U RELA U RELA

For all the single-source shortest-paths algorithms ek at,

» start by calling NIT-SINGLE-SOURCE,
+ thenrelax edges.

The algorithms differ in the order and how many times thegorelach edge.

Shortest-paths properties

Based on calling NIT-SINGLE-SOURCE once and then calling BAX zero or
more times.

Triangle inequality

For all (u,v) € E, we haves(s,v) < §(s,u) + w(u,v).

Proof Weight of shortest path ~» v is < weight of any paths ~ v. Path
s~ u — v is a paths ~ v, and if we use a shortest path~ u, its weight is
8(s,u) + w(u,v). [

Upper-bound property

Always havev.d > §(s, v) for all v. Oncev.d = é(s, v), it never changes.

Proof Initially true.

Suppose there exists a vertex such that< §(s, v).

Without loss of generalityy is first vertex for which this happens.
Letu be the vertex that causesd to change.

Thenv.d = u.d + w(u, v).

So,
v.d < 4(s,v)
< &(s,u) + w(u,v) (triangle inequality)
< ud+wu,v) (v is first violation)
=vd < wud+w,v).

Lecture Notes for Chapter 24: Single-Source Shortest Paths 24-5

Contradictsv.d = u.d + w(u, v).

Oncev.d reachesi(s, v), it never goes lower. It never goes up, since relaxations
only lower shortest-path estimates. [

No-path property

If 8(s,v) = 00, thenv.d = oo always.

Proof v.d > §(s,v) = 00 = v.d = 0. n

Convergence property

If s ~ u — v is ashortest pathy.d = §(s, u), and we call RLAX (u, v, w), then
v.d = 4(s, v) afterward.
Proof After relaxation:
v.d < wu.d+w(u,v) (RELAX code)
= 8(s,u) + w(u,v)
8(s,v) (lemma—optimal substructure)

Sincev.d > 6(s, v), must haver.d = §(s, v). |

Path relaxation property

Let p = (vg, v1, ..., Vi) be a shortest path from = v, to vi. If we relax,
in order, (vo,v1), (vi,v2), ..., (vi_1, vk), €ven intermixed with other relaxations,
thenv,.d = §(s, vi).

Proof Induction to show that,;.d = §(s, v;) after (v;_y, v;) is relaxed.

Basis:i = 0. Initially, vo.d = 0 = §(s, v9) = 8(s, 5).

Inductive step: Assumev;_;.d = §(s,v;—). Relax(v;_;,v;). By convergence
property,v;.d = §(s, v;) afterward and;.d never changes. [

The Bellman-Ford algorithm

* Allows negative-weight edges.
* Computesr.dandv.x forallv € V.
* ReturnsTrRUE if no negative-weight cycles reachable franFALSE otherwise.

24-6 Lecture Notes for Chapter 24: Single-Source ShortattsP

BELLMAN -FORD(G, w, s)

INIT-SINGLE-SOURCE(G, s)
fori =1t0|G.V|—1
for each edgéu,v) € G.E
RELAX (u, v, w)
for each edgé€u,v) € G.E
if v.d>u.d+ w(u,v)
return FALSE
return TRUE

Core: The nestedor loops relax all edgegd/| — 1 times.
Time: ©(VE).

Example

Values you get on each pass and how quickly it converges depem order of
relaxation.

But guaranteed to converge aftgf| — 1 passes, assuming no negative-weight
cycles.

Proof Use path-relaxation property.

Let v be reachable from, and letp = (v, vy, ..., vx) be a shortest path from
to v, wherevy, = s andv, = v. Sincep is acyclic, it has< |V| — 1 edges, so
k<|V|-1.

Each iteration of théor loop relaxes all edges:

+ Firstiteration relaxegvy, vy).
* Second iteration relaxgs, v,).
* kthiteration relaxes$vy_;, vi).

By the path-relaxation property,d = vi.d = §(s, vi) = 8(s, v). |

How about therRUE/FALSE return value?

* Suppose there is no negative-weight cycle reachable from
At termination, for all(u, v) € E,
v.d = 4(s,v)
< §(s,u) +w(u,v) (triangle inequality)
= ud+w,v).
S0 BELLMAN -FORD returnsTRUE.

Lecture Notes for Chapter 24: Single-Source Shortest Paths 24-7

* Now suppose there exists negative-weight cycle: (vg, vy, ..., vi), Where
Vo = Vi, reachable from.

k
ThenZ(Ui_l, U,’) <0.
i=1

Suppose (for contradiction) thateHBLMAN -FORD returnsSTRUE.
Thenv;.d <v;,_.d+ w(v;_,v;) fori =1,2,... k.

Sum around:
k

k
Zvi-d < Z(Vi—l-d‘i‘w(vi—l,vi))
i=1

i=1

k k
= Zvi—l-d + Zw(‘)i—h v;)
i=1 i=1
; k

Each vertex appears once in each summagdn, v;.d and Y r_, v;_,.d =

k
0=< Zw(vi—l,vi) :

i=1

Contradictse being a negative-weight cycle. [

Single-source shortest paths in a directed acyclic graph

Since a dag, we're guaranteed no negative-weight cycles.

DAG-SHORTESFPATHS(G, w, §)

topologically sort the vertices
INIT-SINGLE-SOURCE(G, s)
for each vertex, taken in topologically sorted order
for each vertex € G.Adj[u]
RELAX (u, v, w)

Example

Time
e + E).

24-8

Lecture Notes for Chapter 24: Single-Source ShortattsP

Correctness

Because we process vertices in topologically sorted oedigres ofany path must
be relaxed in order of appearance in the path.

= Edges on any shortest path are relaxed in order.

= By path-relaxation property, correct. [

Dijkstra’s algorithm

No negative-weighedges
Essentially a weighted version of breadth-first search.

* Instead of a FIFO queue, uses a priority queue.
* Keys are shortest-path weightis ¢).

Have two sets of vertices:
* § = vertices whose final shortest-path weights are determined,

e Q = priority queue=V — §.

DIIKSTRA(G, w, s)
INIT-SINGLE-SOURCE(G, s)

S=90
0 =GV /I i.e., insert all vertices int@)
while Q0 # @

u = EXTRACT-MIN(Q)

S = S U{u}

for each vertex € G.Adju]
RELAX (u, v, w)

* Looks a lot like Prim’s algorithm, but computingd, and using shortest-path
weights as keys.

* Dijkstra’s algorithm can be viewed as greedy, since it asvayooses the “light-
est” (“closest™?) vertex iV — S to add toS.

Example

Order of adding ta&: s, y, z, x.

Lecture Notes for Chapter 24: Single-Source Shortest Paths 24-9

Correctness
Loop invariant: At the start of each iteration of thehile loop, v.d =
8(s,v)forallv e S.

Initialization: Initially, S = @, so trivially true.

Termination: Atend,Q =0 =S =V = v.d=4§(s,v)forallv e V.

Maintenance: Need to show that.d = §(s,u) whenu is added toS in each
iteration.

Suppose there exisissuch that:.d # §(s, u). Without loss of generality, let
be the first vertex for whiclr.d # &(s, u) whenu is added tcS.

Observations:

* u #s,sinces.d = §(s,s) = 0.

* Therefores € S, so0S # 0.

* There must be some path~ u, since otherwise:.d = §(s,u) = oo by

no-path property.
So, there’s a path ~» u.
Then there’s a shortest path® u.

Just before: is added taS, pathp connects a vertex i (i.e.,s) to a vertex in
V-8 (i.e.,u).

Let y be first vertex along that's inV — S, and letx € S be y’s predecessor.

Decompose into s X4 x — y £3 u. (Could havex = s or y = u, so thatp;
or p, may have no edges.)

Claim
y.d = §(s, y) whenu is added tcS.

Proof x € S andu is the first vertex such that d # (s, u) whenu is added
to S = x.d = §(s, x) whenx is added taS. Relaxed(x, y) at that time, so by
the convergence property,d = §(s, y). m (claim)

Now can get a contradiction to.d £ §(s, u):

y is on shortest path~» u, and all edge weights are nonnegative
= (s, y) = 8(s,u) =

8(s,y)

8(s,u)

u.d (upper-bound property) .

y.d

=
=

24-10 Lecture Notes for Chapter 24: Single-Source ShoRatts

Also, bothy andu were inQ when we chose, so
ud<yd=ud=y.d.

Therefore,y.d = (s, y) = §(s,u) = u.d.

Contradicts assumption thatd # §(s,u). Hence, Dijkstra’s algorithm is cor-
rect. [

Analysis
Like Prim’s algorithm, depends on implementation of ptypueue.
» If binary heap, each operation takéglg V) time = O(E Ig V).
+ If a Fibonacci heap:

* Each XTRACT-MIN takesO(1) amortized time.

* There are0 (V') other operations, takin@(lg V') amortized time each.
* Therefore, time iD(VIgV + E).

Difference constraints

Given a set of inequalities of the form) — x; < by.

* Xx'sarevariables] <i,j <n,
* Jb’sare constants, < k < m.

Want to find a set of values for thes that satisfy alk» inequalities, or determine
that no such values exist. Call such a set of valufesasible solution

Example
X1—X, < 5
X1—x3 < 6
Xo—Xq4 < -—1
Xz3—Xg4 < =2
X4—Xx1 < =3

Solution: x = (0,—4,-5,-3)
Also: x = (5,1,0,2) = [above solutionH- 5

Lemma
If x is a feasible solution, then sois+ d for any constant/.

Proof x is a feasible solutiors x; — x; < b forall i, j, k
= ((x;+d)—(x; +d) < b. m (lemma)

Lecture Notes for Chapter 24: Single-Source Shortest Paths 24-11

Constraint graph

G = (V, E), weighted, directed.

* V ={vg,v1,Va,...,V,}: ONe vertex per variable- v,

* E={(vi,vj):x; —x; < b isaconstraintU {(vo, v1), (vo,V2), ..., (Vo,Vn)}
* w(vg,v;) =0forall j

o w(,v;) =bif xj —x; < by

Theorem
Given a system of difference constraints, et= (V, E) be the corresponding
constraint graph.

1. If G has no negative-weight cycles, then

x = (6(vg,v1),8(vo,V2),...,8(vo,Vy))
is a feasible solution.
2. If G has a negative-weight cycle, then there is no feasibleisalut

Proof
1. Show no negative-weight cycles feasible solution.
Need to show that;, — x; < by for all constraints. Use

xj = 68(vo,v))
xi = 68(vo,vi)
by = w(v,v)).

By the triangle inequality,

S(Vo,l)j) = 8(])0’])1') + w(vi’vj)
X;j =< xi+bg
Xj — Xi < bk .

Therefore, feasible.
2. Show negative-weight cycles no feasible solution.

Without loss of generality, let a negative-weight cycle de= (v, v,, ...,
Vi), Wherev; = v;. (v can’t be onc, sincev, has no entering edgesJ
corresponds to the constraints

Xo—x1 < w,v),

X3—x2 < w(vpv3),

W(Vk—2, Vk—1)

W(Vk—1, Vi) -

Xk—1 — Xk—2

IATA

Xk — Xk—1

24-12 Lecture Notes for Chapter 24: Single-Source ShoRatts

If x is a solution satisfying these inequalities, it must sgtikéir sum.

So add them up.

Eachx; is added once and subtracted oncg.=£ vy = x; = x¢.)

We get0 < w(c).

But w(c) < 0, sincec is a negative-weight cycle.

Contradiction= no such feasible solution exists. m (theorem)

How to find a feasible solution

1. Form constraint graph.

* n + 1 vertices.
* m + n edges.
* O(m + n) time.

2. Run BELLMAN-FORD from vy.
* O((n+ 1)(m +n)) = O(n? + nm) time.
3. If BELLMAN -FORD returnsrALSE = no feasible solution.
If BELLMAN -FORD returnsTRUE = setx; = §(v, v;) for all i.

Solutions for Chapter 24:
Single-Source Shortest Paths

Solution to Exercise 24.1-3
This solution is also posted publicly

If the greatest number of edges on any shortest path fronotivees ism, then the
path-relaxation property tells us that afterterations of BELLMAN -FORD, every
vertexv has achieved its shortest-path weightid. By the upper-bound property,
afterm iterations, naf values will ever change. Therefore, davalues will change

in the (m + 1)st iteration. Because we do not knewin advance, we cannot make
the algorithm iterate exactly: times and then terminate. But if we just make the
algorithm stop when nothing changes any more, it will stapraf + 1 iterations.

BELLMAN -FORD-(M+1)(G, w, 5)

INITIALIZE -SINGLE-SOURCE(G, s)
changes= TRUE
while changes= TRUE
changes= FALSE
for each edgéu,v) € G.E
RELAX-M(u, v, w)

RELAX-M (u, v, w)
if v.d>u.d+ w(u,v)
v.d =wu.d+ wu,v)
V.T = U
changes= TRUE

The test for a negative-weight cycle (based on there beidgvalue that would
change if another relaxation step was done) has been reratroe®, because this
version of the algorithm will never get out of tlwhile loop unless alld values
stop changing.

Solution to Exercise 24.2-3

Instead of modifying the BG-SHORTESTFPATHS procedure, we'll modify the
structure of the graph so that we can ruaddSHORTESFPATHS on it. In fact,

24-14

Solutions for Chapter 24: Single-Source Shortestsat

we’ll give two ways to transform a PERT chast = (V, E) with weights on ver-
tices to a PERT chat’ = (V’, E’) with weights on edges. In each way, we’ll
have thatV’'| < 2|V| and|E’| < |V| + |E|. We can then run o’ the same
algorithm to find a longest path through a dag as is given iri@e@4.2 of the
text.

In the first way, we transform each vertexs V' into two verticesv” andv” in V",
All edges inE that enten will enterv’ in E’, and all edges itE that leavev will
leavev” in E’. In other words, if(u,v) € E, then(u”,v") € E’. All such edges
have weigh). We also put edge8’, v”) into E’ for all verticesv € V', and these
edges are given the weight of the corresponding vertexG. Thus,|V’| = 2 |V|,
|E’| = |V|+ |E|, and the edge weight of each paththequals the vertex weight
of the corresponding path i&.

In the second way, we leave verticediralone, but we add one new source vestex
to V’, so thatV’ = V U {s}. All edges ofE are in E’, and E’ also includes an
edge(s, v) for every vertexv € V that has in-degre@in G. Thus, the only vertex
with in-degree0 in G’ is the new source. The weight of edgéu, v) € E’ is the
weight of vertexv in G. In other words, the weight of each entering edgé&ins
the weight of the vertex it enters @. In effect, we have “pushed back” the weight
of each vertex onto the edges that enter it. HEré, = |V |+ 1, |[E'| < |V | + |E]
(since no more thaf¥| vertices have in-degre®in G), and again the edge weight
of each path irG’ equals the vertex weight of the corresponding pati in

Solution to Exercise 24.3-3
This solution is also posted publicly

Yes, the algorithm still works. Leu be the leftover vertex that does not
get extracted from the priority queu@. If u is not reachable fromy, then
u.d=24(s,u) = oco. If u is reachable froms, then there is a shortest path
p = s~ x — u. When the vertexx was extractedx.d = 4(s, x) and then the
edge(x, u) was relaxed; thus;.d = §(s, u).

Solution to Exercise 24.3-4

Verify thats.d = 0 ands.7 = NIL.
Verify thatv.d = v.r.+w(v.z,v) forall v # s.
Verify thatv.d = oo if and only if v.3 = NIL for all v # s.

If any of the above verification tests fail, declare thepottto be incorrect.
Otherwise, run one pass of Bellman-Ford, i.e., relax eage éd,v) € E
one time. If any values of.d change, then declare the output to be incorrect;
otherwise, declare the output to be correct.

e

Solutions for Chapter 24: Single-Source Shortest Paths 124-

Solution to Exercise 24.3-5

Let the graph have vertices x, y,z and edgeds, x), (x,), (v,2), (s, y), and
let every edge have weigltt Dijkstra’s algorithm could relax edges in the or-
der (s, y), (s, x), (¥,2), (x,y). The graph has two shortest paths frento z:
(s,x,y,z) and (s, y, z), both with weight0. The edges on the shortest path
(s, x,y,z) are relaxed out of order, because y) is relaxed afte(y, z).

Solution to Exercise 24.3-6
This solution is also posted publicly

To find the most reliable path betweemnd:, run Dijkstra’s algorithm with edge
weightsw (1, v) = —Ig r(u, v) to find shortest paths fromin O(E+V Ig V') time.
The most reliable path is the shortest path froto ¢, and that path’s reliability is
the product of the reliabilities of its edges.

Here's why this method works. Because the probabilitiesirdependent, the
probability that a path will not fail is the product of the pabilities that its edges
will not fail. We want to find a path - ¢ such thaf [, ,)c, r (1, v) is maximized.
This is equivalent to maximizing (@], ,)c, 7 (1, v)) = >_(,.1)e, 197 (1, v), which
is in turn equivalent to minimizing_,)., — 197 (u,v). (Note: r(u,v) can be 0,
and Igo is undefined. So in this algorithm, definellg= —oc0.) Thus if we assign
weightsw (u,v) = —Ig r(u, v), we have a shortest-path problem.

Since Igl =0, Igx < 0for 0 < x < 1, and we have defined (= —oo, all the
weightsw are nonnegative, and we can use Dijkstra’s algorithm to fiecshortest
paths froms in O(E + Vg V) time.

Alternative solution

You can also work with the original probabilities by runniagnodified version of
Dijkstra’s algorithm that maximizes the product of relighds along a path instead
of minimizing the sum of weights along a path.

In Dijkstra’s algorithm, use the reliabilities as edge wefjand substitute

* max (and XTRACT-MAX) for min (and EXTRACT-MIN) in relaxation and the
queue,

e . for + in relaxation,

* 1 (identity for-) for O (identity for+) and—oo (identity for min) forco (identity
for max).

For example, we would use the following instead of the usualAX procedure:

RELAX-RELIABILITY (u,v,r)

if v.d <u.d-r(u,v)
v.d =u.d-r(u,v)
VT = U

24-16

Solutions for Chapter 24: Single-Source Shortestsat

This algorithm is isomorphic to the one above: it performs same operations
except that it is working with the original probabilitiesstiead of the transformed
ones.

Solution to Exercise 24.3-8

Observe that if a shortest-path estimate is sgtthen it's at most(|V| — 1) W.
Why? In order to haver.d < oo, we must have relaxed an edg¢e, v) with
u.d < oco. By induction, we can show that if we reldx, v), thenv.d is at most
the number of edges on a path frano v times the maximum edge weight. Since
any acyclic path has at mogt| — 1 edges and the maximum edge weighWlis
we see that.d < (|V| — 1)W. Note also that.d must also be an integer, unless
itis oo.

We also observe that in Dijkstra’s algorithm, the valuesnretd by the ETRACT-
MIN calls are monotonically increasing over time. Why? Afteraeeour initial
|V| INSERT operations, we never do another. The only other way that a&iex
can change is by a ECREASEKEY operation. Since edge weights are nonneg-
ative, when we relax an edde, v), we have that«.d < v.d. Sinceu is the
minimum vertex that we just extracted, we know that any otlestex we extract
later has a key value that is at least.

When keys are known to be integers in the range/0dad the key values extracted
are monotonically increasing over time, we can implementrapriority queue so
that any sequence of INSERT, EXTRACT-MIN, and DECREASEKEY operations
takesO(m + k) time. Here's how. We use an array, sdf0 .. k], whereA[/] is

a linked list of each element whose keyjis Think of A[j] as a bucket for all
elements with key/. We implement each bucket by a circular, doubly linked list
with a sentinel, so that we can insert into or delete from dagiket inO(1) time.
We perform the min-priority queue operations as follows:

* INSERT. To insert an element with key, just insert it into the linked list
in A[j]. Time: O(1) per INSERT.

* EXTRACT-MIN: We maintain an indexnin of the value of the smallest key
extracted. Initially,minis 0. To find the smallest key, look id[min| and, if
this list is nonempty, use any element in it, removing thenelet from the list
and returning it to the caller. Otherwise, we rely on the ntonizity property
and incremeninin until we either find a listd[min] that is nonempty (using any
element inA[min] as before) or we run off the end of the arrayin which case
the min-priority queue is empty).

Since there are at most INSERT operations, there are at mostelements in
the min-priority queue. We incrementin at mostk times, and we remove and
return some element at mosttimes. Thus, the total time over allX€RACT-
MIN operations iO(m + k).

* DEecREASEKEY: To decrease the key of an element frgnto i, first check
whetheri < j, flagging an error if not. Otherwise, we remove the element
from its list A[j] in O(1) time and insert it into the lis[i] in O(1) time.
Time: O(1) per DECREASEKEY.

Solutions for Chapter 24: Single-Source Shortest Paths 124-

To apply this kind of min-priority queue to Dijkstra’s algthrm, we need to let
k = (V| —1)W, and we also need a separate list for keys with vatuer'he num-
ber of operations: is O(V + E) (since there arg’| INSERTand|V | EXTRACT-
MIN operations and at mogt | DECREASEKEY operations), and so the total time
SOV +E+VW)=0VW+E).

Solution to Exercise 24.3-9

First, observe that at any time, there are at nist- 2 distinct key values in the
priority queue. Why? A key value is eitheo or it is not. Consider what happens
whenever a key value.d becomes finite. It must have occurred due to the relax-
ation of an edgéu, v). At that time,u was being placed int§, andu.d < y.dfor

all verticesy € V — S. After relaxing edgéu, v), we havev.d < u.d+ W. Since
any other vertey € VV—S with y.d < oo also had its estimate changed by a relax-
ation of some edge with x.d < u.d, we musthave.d < x.d+ W <u.d+ W.
Thus, at the time that we are relaxing edges from a vertexe must have, for all
verticesv € V — §, thatu.d <v.d <u.d + W orv.d = co. Since shortest-path
estimates are integer values (exceptdoy, at any given moment we have at most
W + 2 different onesu.d,u.d + 1,u.d+ 2,...,u.d + W andoo.

Therefore, we can maintain the min-priorty queue as a birmansheap in which
each node points to a doubly linked list of all vertices witliveen key value. There
are at most¥ + 2 nodes in the heap, and s&XERACT-MIN runs in O(lg W)
time. To perform [ECREASEKEY, we need to be able to find the heap node
corresponding to a given key i@(Ig W) time. We can do so ir0O(1) time as
follows. First, keep a pointenf to the node containing all theo keys. Second,
maintain an arrayoc|[0.. W], whereloc[i] points to the unique heap entry whose
key value is congruent to (mod (W + 1)). As keys move around in the heap, we
can update this array i@(1) time per movement.

Alternatively, instead of using a binary min-heap, we cousa a red-black tree.
Now INSERT, DELETE, MINIMUM , and SARCH—from which we can construct
the priority-queue operations—each runtrlg W) time.

Solution to Exercise 24.4-4

Let §(u) be the shortest-path weight frasrio u. Then we want to find(z).
8 must satisfy
8(s) = 0
S(w)—68m) =< w(u,v)forall (u,v) € E (Lemma 24.10)
wherew (u, v) is the weight of edgéu, v).
Thusx, = §(v) is a solution to
xs = 0

Xy =Xy = w(u,v).

24-18

Solutions for Chapter 24: Single-Source Shortestsat

To turn this into a set of inequalities of the required foreplacex;, = 0 by x;, <0
and—x; <0 (i.e.,x; > 0). The constraints are now

xs < 0,
_xS S 05
Xy =Xy < w(u,v),

which still hasx,, = §(v) as a solution.

However,§ isn’t the only solution to this set of inequalities. (For axae, if all

edge weights are nonnegative, all = 0 is a solution.) To forcer, = 6(¢) as

required by the shortest-path problem, add the requiretoemiaximize (the ob-
jective function)x,. This is correct because

* max(x,) > 4(t) becauser, = §(¢) is part of one solution to the set of inequali-
ties,

* maxx;) < §(t) can be demonstrated by a technique similar to the proof of
Theorem 24.9:

Let p be a shortest path fromto ¢. Then by definition,
§0y= Y wu.v).
(u,v)ep
But for each edgéu, v) we have the inequality, — x,, < w(u,v), SO
50 =Y wuv)= Y (X)) =x—x .
w.v)ep w.v)ep
Butx, = 0, sox, < §(¢).
Note: Maximizing x, subject to the above inequalities solves the single-pair
shortest-path problem whens reachable from and there are no negative-weight
cycles. But if there’s a negative-weight cycle, the inedigs have no feasible so-

lution (as demonstrated in the proof of Theorem 24.9); andisf not reachable
from s, thenx, is unbounded.

Solution to Exercise 24.4-7
This solution is also posted publicly

Observe that after the first pass, dllvalues are at modd, and that relaxing
edgeq vy, v;) will never again change@value. Therefore, we can eliminatg by

running the Bellman-Ford algorithm on the constraint greyihout thev, vertex

but initializing all shortest path estimatestinstead ofco.

Solution to Exercise 24.4-10

To allow for single-variable constraints, we add the vdaalg and let it correspond
to the source vertex, of the constraint graph. The idea is that, if there are no

Solutions for Chapter 24: Single-Source Shortest Paths 124-

negative-weight cycles containing, we will find thaté(v,, vo) = 0. In this case,
we setx, = 0, and so we can treat any single-variable constraint usirgs if it
were a 2-variable constraint witty as the other variable.

Specifically, we treat the constraint < b; as if it werex; — xo < by, and we
add the edgév,, v;) with weightb,, to the constraint graph. We treat the constraint
—x; < by as if it werexy, — x; < by, and we add the edge;, v,) with weightb,

to the constraint graph.

Once we find shortest-path weights frorg, we setx; = &(vy,v;) for all

i =0,1,...,n; that is, we do as before but also includg as one of the vari-
ables that we set to a shortest-path weight. Sinces the source vertex, either
Xo=00rxq, <0.

If §(vo,vo) = 0, SO thatx, = 0, then settingr; = §(vy,v;) foralli =0,1,....n
gives a feasible solution for the system. The only new cairds beyond those in
the text are those involving,. For constraints;; < by, we usex; — xo < by. By

the triangle inequality§(ve, v;) < &(vo, Vo) + w(vg,v;) = b, and sox; < by.
For constraints-x; < b, we usex, — x; < b;. By the triangle inequality) =
8(vg, vg) < 8(vg, v;) + w(v;, vg); thus,0 < x; + by or, equivalently—x; < by.

If §(vg, Vo) < 0, sothatx, < 0, then there is a negative-weight cycle containigg
The portion of the proof of Theorem 24.9 that deals with nggatveight cycles
carries through but witlv, on the negative-weight cycle, and we see that there is
no feasible solution.

Solution to Exercise 24.5-4
This solution is also posted publicly

Whenever RLAX setsw for some vertex, it also reduces the vertexk'sralue.

Thus ifs. 7 gets set to a nomL value,s.d is reduced from its initial value df to

a negative number. Butd is the weight of some path fromto s, which is a cycle
includings. Thus, there is a negative-weight cycle.

Solution to Exercise 24.5-7

Suppose we have a shortest-paths tige Relax edges irG, according to the
order in which a BFS would visit them. Then we are guarantéadl the edges
along each shortest path are relaxed in order. By the p&tkattoon property, we
would then haver.d = §(s,v) for all v € V. SinceG,, contains at mostV’ | — 1
edges, we need to relax orjliy| — 1 edges to get.d = §(s,v) forallv € V.

Solution to Exercise 24.5-8

Suppose that there is a negative-weight cycte (vg, vy, ..., vx), wherev, = vy,
that is reachable from the source vertethus,w(c) < 0. Without loss of general-

24-20

Solutions for Chapter 24: Single-Source Shortestsat

ity, ¢ is simple. There must be an acyclic path frerio some vertex of that uses
no other vertices ir. Without loss of generality let this vertex ofbe vy, and let
this path froms to vy be p = (ug, uy, ..., u;), whereuy = s andu; = vy = vg.

(It may be the case that = s, in which case patlp has no edges.) After the call
to INITIALIZE -SINGLE-SOURCE setsv.d = oo for all v € V — {s}, perform the
following sequence of relaxations. First, relax every eidgeath p, in order. Then
relax every edge in cycle, in order, and repeatedly relax the cycle. That is, we
relax the edge&lo, ul), (ul, uz), ey (ul_l, U()), (U(), Ul), (Ul, Uz), ey (Vk_l, U()),
(vo,v1), (v, 12), -y (Vi—1, Vo), (Vo, V1)s (V15 V2)s oy (Vk—1,V0),s - - - -

We claim that every edge relaxation in this sequence redacd®rtest-path es-
timate. Clearly, the first time we relax an edge _,,u;) or (v;_,v;), for
i=12,...,landj =1,2,...,k — 1 (note that we have not yet relaxed the last
edge of cycler), we reducey;.d or v;.d from oo to a finite value. Now consider
the relaxation of any edgé&;_;,v;) after this opening sequence of relaxations.
We use induction on the number of edge relaxations to shothimrelaxation
reduces;.d.

Basis: The next edge relaxed after the opening sequende;is, v;). Before
relaxation,v,.d = w(p), and after relaxationy,.d = w(p) + w(c) < w(p),
sincew(c) < 0.

Inductive step: Consider the relaxation of edge,_,,v;). Sincec is a sim-
ple cycle, the last timev;.d was updated was by a relaxation of this same
edge. By the inductive hypothesisj;_;.d has just been reduced. Thus,
v,_1.d 4+ w(v;_1,v;) <v;.d, and so the relaxation will reduce the valuevpfd.

Solution to Problem 24-1

a. Assume for the purpose contradiction ti@¢ is not acyclic; thusG, has a
cycle. A cycle must have at least one edgev) in which u has higher index
thanv. This edge is not irEs (by the definition ofEy), in contradition to the
assumption thatrs has a cycle. Thué&; is acyclic.

The sequencev,, vs, ..., vy)) is a topological sort folG,, because from the
definition of E, we know that all edges are directed from smaller indices to
larger indices.

The proof forE, is similar.

b. For all verticesv € V, we know that eitheB(s,v) = oo or §(s, v) is finite.
If 8(s,v) = oo, thenv.d will be co. Thus, we need to consider only the
case where.d is finite. There must be some shortest path fromo v. Let
p = {vo,V1,...,Vk_1, V) be that path, where, = s andv, = v. Let us now
consider how many times there is a change in directiop, ithat is, a situation
in which (v;_y,v;) € Ef and(v;,v;4+1) € E, Or vice versa. There can be at
most| V' |—1 edges irp, so there can be at mg$t|—2 changes in direction. Any
portion of the path where there is no change in direction immated with the
correctd values in the first or second half of a single pass once thex#nat
begins the no-change-in-direction sequence has the tarredue, because the
edges are relaxed in the order of the direction of the segudgach change in

Solutions for Chapter 24: Single-Source Shortest Paths 2Pp4-

direction requires a half pass in the new direction of thénpdthe following
table shows the maximum number of passes needed dependihg parity of
|V| — 1 and the direction of the first edge:

|V|—1 first edge direction passes

even forward (V]i—-1/2
even backward (Vi-1D/2+1
odd forward [V1]/2

odd backward [V1]/2

In any case, the maximum number of passes that we will negd’is/2].

¢. This scheme does not affect the asymptotic running time eftborithm be-
cause even though we perform orjly’| /2] passes instead oF | — 1 passes,
it is still O(V) passes. Each pass still take$E) time, so the running time
remainsO(VE).

Solution to Problem 24-2

a. Consider boxes with dimensions = (xy,...,x4), ¥y = (J1,...,¥4), and
z =(21,...,24). Suppose there exists a permutatiorsuch thatx,;, < y;
fori = 1,...,d and there exists a permutatiari such thaty,.;, < z; for
i = 1,...,d, so thatx nests insidey and y nests insidez. Construct a
permutationz”, wherex”(i) = n'(w(i)). Then fori = 1,...,d, we have
Xpr(iy = Xp/(z(i)) < Va'(i) < Zi, and sax nests insider.

b. Sort the dimensions of each box from longest to shortest. A Xowith
sorted dimensionéx, x,, ..., x4) nests inside a boX with sorted dimensions
(y1,¥2,...,yq) ifand only if x; < y; fori = 1,2,...,d. The sorting can
be done inO(d Ig d) time, and the test for nesting can be don&i@/) time,
and so the algorithm runs i@(d Ig d) time. This algorithm works because a
d-dimensional box can be oriented so that every permutafiits dimensions
is possible. (Experiment with &dimensional box if you are unsure of this).

c. Construct ada@ = (V, E), where each vertex; corresponds to bo®;, and
(vi,v;) € E ifand only if box B; nests inside bo®B;. GraphG is indeed a dag,
because nesting is transitive and antireflexive (i.e., nor@sts inside itself).
The time to construct the dag@(dn? + dnlg d), from comparing each of the
(5) pairs of boxes after sorting the dimensions of each.

Add a supersource vertexand a supersink vertexto G, and add edge®, v;)
for all verticesv; with in-degree0 and (v;,) for all verticesv; with out-
degreed). Call the resulting dags’. The time to do so i®)(n).

Find a longest path from to ¢ in G’. (Section 24.2 discusses how to find a
longest path in a dag.) This path corresponds to a longestreq of nesting
boxes. The time to find a longest pathd$n?), sinceG’ hasn + 2 vertices and
O(n?) edges.

Overall, this algorithm runs i (dn? + dnlgd) time.

24-22 Solutions for Chapter 24: Single-Source Shortestsat

Solution to Problem 24-3
This solution is also posted publicly

a. We can use the Bellman-Ford algorithm on a suitable weigluieeicted graph
G = (V, E), which we form as follows. There is one vertex lihfor each
currency, and for each pair of currencigsandc;, there are directed edges
(vi,v;) and(v;,v;). (Thus,|V| =nand|E| =n(n —1).)

We are looking for a cycléi,, i», i3, ..., i, i;) such that

R[il, 12] . R[iz, 13] see R[ik_l, lk] . R[ik, ll] >1.

Taking logarithms of both sides of this inequality gives

lg R[i1, 2] + 19 Rliz, i3] + -+ + 19 Rlix—1.ix] + 19 R[i.i;] > 0.

If we negate both sides, we get

(=g Rli1,i2]) + (=19 R[i2,i3]) + -+ + (gRlik—1. ik]) + (=19 Rik. ;1]) <O,

and so we want to determine wheth@rcontains a negative-weight cycle with
these edge weights.

We can determine whether there exists a negative-weigha ay& by adding
an extra vertexv, with 0-weight edges(vy, v;) for all v; € V, running
BELLMAN -FORD from v,, and using the boolean result oEB.MAN -FORD
(which is TRUE if there are no negative-weight cycles amlsE if there is a
negative-weight cycle) to guide our answer. That is, werirthe boolean result
of BELLMAN -FORD.

This method works because adding the new vertgxvith 0-weight edges
from v, to all other vertices cannot introduce any new cycles, yeh#gures
that all negative-weight cycles are reachable figm

It takes®(n?) time to createG, which has®(n?) edges. Then it take®(n?)
time to run BELLMAN -FORD. Thus, the total time i€ (n?).

Another way to determine whether a negative-weight cycistexs to creatér
and, without adding, and its incident edges, run either of the all-pairs shortest
paths algorithms. If the resulting shortest-path distana&ix has any negative
values on the diagonal, then there is a negative-weighecycl

b. Note: The solution to this part also serves as a solution trdise 24.1-6.

Assuming that we ran BLLMAN -FORD to solve part (a), we only need to find
the vertices of a negative-weight cycle. We can do so asAsli@&o through the
edges once again. Once we find an edge) for whichu.d + w(u,v) < v.d,
then we know that either vertexis on a negative-weight cycle or is reachable
from one. We can find a vertex on the negative-weight cycledmirig back the

7 values fromv, keeping track of which vertices we've visited until we reac
a vertexx that we've visited before. Then we can trace backalues fromx
until we get back toc, and all vertices in between, along withwill constitute

a negative-weight cycle. We can use the recursive methashdiy the RINT-
PATH procedure of Section 22.2, but stop it when it returns toexext

Solutions for Chapter 24: Single-Source Shortest Paths 224-

The running time i) (n?) to run BELLMAN -FORD, plus O(m) to check all the
edges and)(n) to print the vertices of the cycle, for a total 6f(n?) time.

Solution to Problem 24-4

a. Since all weights are nonnegative, use Dijkstra’s algorithimplement the
priority queue as an arra@[0.. | E| + 1], whereQ][i] is a list of vertices for
whichv.d = i. Initialize v.d for v # s to |E| + 1 instead of tooo, so that all
vertices have a place i@. (Any initial v.d > §(s, v) works in the algorithm,
sincev.d decreases until it reachéés, v).)

The |V| EXTRACT-MINS can be done irO(FE) total time, and decreasing a
d value during relaxation can be done @(1) time, for a total running time
of O(E).

* Whenv.d decreases, just addto the front of the list inQ[v.d].

* EXTRACT-MIN removes the head of the list in the first nonempty slofof
To do EXTRACT-MIN without scanning all ofQ, keep track of the small-
esti for which QJi] is not empty. The key point is that whend decreases
due to relaxation of edgét, v), v.d remains> u.d, so it never moves to
an earlier slot ofQ than the one that had, the previous minimum. Thus
EXTRACT-MIN can always scan upward in the array, taking a totaD 0F)
time for all EXTRACT-MINS.

b. Forall (u,v) € E, we havew,(u,v) € {0, 1}, soé,(s,v) < |[V| =1 < |E]|.
Use part (a) to get th@(FE) time bound.

c. To show thatw; (4, v) = 2w;_(u,v) or w; (u,v) = 2w;_1(u,v) + 1, observe
that thei bits of w; (1, v) consist of the — 1 bits of w;_ (u, v) followed by one
more bit. If that low-order bit is 0, thew; (u, v) = 2w;_;(u, v); ifitis 1, then
w; (u,v) =2w;_1(u,v) + 1.

Notice the following two properties of shortest paths:

1. If all edge weights are multiplied by a factor of then all shortest-path
weights are multiplied by.

2. If all edge weights are increased by at maghen all shortest-path weights
are increased by at most|V| — 1), since all shortest paths have at most
|V|— 1 edges.

The lowest possible value fav; (1, v) is 2w;_;(u, v), SO by the first observa-

tion, the lowest possible value féy(s, v) is 28,1 (s, v).

The highest possible value faw; (u,v) is 2w;_(u,v) + 1. Therefore, us-

ing the two observations together, the highest possiblaevédr §; (s, v) is
28,'_1(S, U) + |V| — 1.
d. We have

@i(u7‘)) = wi(uvv)+28i—1(s7u)_28i—1(svv)
zwi—l(u’ V) + 28i—1(s9 u) - 25,'_1(5, V)
0.

v v

24-24 Solutions for Chapter 24: Single-Source Shortestsat

The second line follows from part (c), and the third line dols from
Lemma 24.106;_;(s,v) < &;—1(s,u) + w;_1(u, v).

e. Observe that if we comput@; (p) for any pathp : u ~» v, the terms5; _, (s,)
cancel for every intermediate vertexn the path. Thus,

W; (p) = w;(p) + 28;—1(s,u) —28;_1(s,v) .

(This relationship will be shown in detail in equation (2®). Within the proof of
Lemma 25.1.) Thé;_; terms depend only am, v, ands, but not on the patip;
therefore the same paths will be of minimum weight and of minimump;
weight betweem andv. Lettingu = s, we get

§i(s,v) = 8i(s.v) +26;1(5.5) — 28;_4(5.v)

= Si(svv)_28i—l(svv)‘

Rewriting this result ag; (s,v) = 3,- (s,v) + 26;_1(s, v) and combining it with
8;(s,v) <28;_1(s,v)+|V|—1 (from part (c)) gives ug; (s,v) < |V|—1 < |E|.

f. To computes; (s, v) from;_ (s, v) forallv € V in O(F) time:

1. Compute the weight®; (1, v) in O(E) time, as shown in part (d).

2. By part (e),§,~ (s,v) < |E|, so use part (a) to compute gll(s, v) in O(E)
time.

3. Compute all§; (s, v) from 6;(s,v) and §;_,(s,v) as shown in part (e), in
o(V) time.

To compute alb(s,v) in O(E Ig W) time:

1. Computed (s, v) for all v € V. As shown in part (b), this take@(E) time.

2. For eachi = 2,3,...,k, compute all§;(s,v) from §;_;(s,v) in O(E)
time as shown above. This procedure compdtesv) = 3, (u, v) in time
O(Ek) = O(EIgW).

Solution to Problem 24-6

Observe that a bitonic sequence can increase, then dedtessécrease, or it can

decrease, then increase, then decrease. That is, there aambst two changes of
direction in a bitonic sequence. Any sequence that incegdlsen decreases, then
increases, then decreases has a bitonic sequence as austiogeq

Now, let us suppose that we had an even stronger conditiontiieabitonic prop-
erty given in the problem: for each vertexe 1V, the weights of the edges along
any shortest path from to v are increasing. Then we could caNITIALIZE -
SINGLE-SOURCE and then just relax all edges one time, going in increasidgror
of weight. Then the edges along every shortest path woulcelaered in order
of their appearance on the path. (We rely on the uniquenessigd weights to
ensure that the ordering is correct.) The path-relaxatiopgrty (Lemma 24.15)
would guarantee that we would have computed correct shqraghs froms to
each vertex.

Solutions for Chapter 24: Single-Source Shortest Paths 224-

If we weaken the condition so that the weights of the edgasgedmy shortest path
increase and then decrease, we could relax all edges ongrtimereasing order
of weight, and then one more time, in decreasing order of kieibhat order, along
with uniqueness of edge weights, would ensure that we hadeeélthe edges of
every shortest path in order, and again the path-relaxptigperty would guarantee
that we would have computed correct shortest paths.

To make sure that we handle all bitonic sequences, we do gestaegl above. That
is, we perform four passes, relaxing each edge once in eash phe first and third

passes relax edges in increasing order of weight, and tlomdend fourth passes
in decreasing order. Again, by the path-relaxation prgpand the uniqueness of
edge weights, we have computed correct shortest paths.

The total time isO(V + E Ig V), as follows. The time to soff | edges by weight
iSO(EIgQE) = O(EIgV) (since|E| = O(V?)). INITIALIZE -SINGLE-SOURCE
takesO (V') time. Each of the four passes tak@¢F) time. Thus, the total time is
O(ElgV +V+E)=0lV+ElgV).

Lecture Notes for Chapter 25:
All-Pairs Shortest Paths

Chapter 25 overview

Given a directed graply = (V, E), weight functionw : £ — R, |V| = n.
Assume that we can number the vertides, ..., n.

Goal: create am x n matrix D = (d;;) of shortest-path distances, so that
d;j = 8(i, j) for all verticesi and ;.

Could run BELLMAN -FORD once from each vertex:
* O(V2E)—which isO(V*) if the graph isdense(E = O(V2)).
If no negative-weight edges, could run Dijkstra’s algaritbnce from each vertex:

* O(VEIg V) with binary heap—©(V3Ig V) if dense,
* O(V?lgV + VE) with Fibonacci heap-9(V?) if dense.

We’'ll see how to do inO(V?) in all cases, with no fancy data structure.

Shortest paths and matrix multiplication

Assume that is given as adjacency matrix of weightd: = (w;;), with vertices
numbered! to n.

0 ifi=j,
w;; = { weightof(i, j) ifi #j,(,j)eE,
00 ifi#j,0J)¢E.

Won't worry about predecessors—see book.
Will use dynamic programming at first.

Optimal substructure
Recall: subpaths of shortest paths are shortest paths.

25-2

Lecture Notes for Chapter 25: All-Pairs Shortest Paths

Recursive solution
Let /™ = weight of shortest path~ j that contains< m edges.

* m=0
= there is a shortest paih~ j with < m edges ifand only if = j

;sl.“’)zgo ifi=j,
’J

0o ifidt]).
s m>1
= 1" = min (lg”_l) min {197 + wkj}) (k ranges over all possible
l<k=n predecessors gf)
= min {97V + wy;) (sincew;; = O forall j).

1<k<n
- Observe that whem = 1, must have’ = w;;.

Conceptually, when the path is restricted to at most 1 edgeweight of the
shortest patli ~» j must bew;;.

And the math works out, too:

m _ i ©) .
" = 12:2;; {0 + wis}
19+ w; (" is the only noneo among/ ")
= w,~j .

All simple shortest paths containn — 1 edges
.oy (-1 gm) _ (1)
=86,)=1l; "=l =" =...

1

Compute a solution bottom-up
ComputeL® L@ L&D

Start withL® = W, sincel” = wy;.
Go from LD to L0™:

EXTEND(L, W,n)

let L' = (I/;) be a new: x n matrix
fori = 1ton
for j = 1ton
l,./j = 00
fork =1ton
Ij; = min(l;, lix + wg;)
return L’

Compute eaclL."™:

SLowW-APSRW, n)
LY =w
form =2ton—1
let L™ be a new: x n matrix
L = EXTEND(L™D W, n)
return L®~1

Lecture Notes for Chapter 25: All-Pairs Shortest Paths 25-3

Time
* EXTEND: ®(n?).
* SLOW-APSP:®(n*).

Observation

EXTEND is like matrix multiplication:
L — A

W — B

L — C

min — +

+ =

oo — 0

let C be ann x n matrix
fori =1ton
for j = 1ton
Cij = 0
fork =1ton
Cij = Cij + ik - by
return C

So, we can view ETEND as just like matrix multiplication!

Why do we care?

Because our goal is to compuié¢”~" as fast as we can. Don’t need to compute
all the intermediatd., L® 13 [0#=2),

Suppose we had a matrikand we wanted to comput”~! (like calling EXTEND

n — 1 times).

Could computed, A2, A*, A%, ...

If we knewA™ = A"~ ! for all m > n — 1, could just finish withA”, wherer is the
smallest power o that's> n — 1. (r = 2M9¢:=DT)

FASTER-APSRW,n)

LY =W

m=1

whilem <n —1
let L?™ be a new: x n matrix
L™ = EXTEND(L™, L™ p)
m=2m

return L

OK to overshoot, since products don’t change aftér".

Time
On3Ign).

25-4 Lecture Notes for Chapter 25: All-Pairs Shortest Paths

Floyd-Warshall algorithm

A different dynamic-programming approach.

For pathp = (v, v,,...,v;), anintermediate vertexs any vertex ofp other than
V; Orvy.

Letd = shortest-path weight of any pathv j with all intermediate vertices
in{l,2,...,k}.

Consider a shortest paih\’i J with all intermediate vertices ifil, 2, ..., k}:

* If k is not an intermediate vertex, then all intermediate vestiof p are in
(1,2,....k—1}.
+ If k is an intermediate vertex:

Py P2

all intermediate vertices in {1, 2, .k+1}

Recursive formulation

(k) _
a% =

Wi ifk=0 s
min (40, a$ " +ds V) k=1,

(Havedi(j") = w;; because can’'t have intermediate vertiees< 1 edge.)

WantD® = (d.), since all vertices numbered .

Compute bottom-up
Compute in increasing order bf

FLOYD-WARSHALL (W, n)

DO = w
fork = 1ton
let D® = (4{") be a newn x n matrix
fori =1ton
for j = 1ton

return D®

Can drop superscripts. (See Exercise 25.2-4 in text.)

Time
O®m3).

Lecture Notes for Chapter 25: All-Pairs Shortest Paths

Transitive closure

GivenG = (V, E), directed.

ComputeG* = (V, E*).

* E*=/{(,]J):thereisapath~ jin G}.

Could assign weight of to each edge, then run.BYD-WARSHALL.

* If d;; < n, then there is a path~ ;.
* Otherwised;; = oo and there is no path.

Simpler way
Substitute other values and operators iro¥D-WARSHALL.

* Use unweighted adjacency matrix
* min— Vv (OR)
* + — A(AND)

i) 0 otherwise.

. { 1 if there is path’ ~ j with all intermediate vertices ifl, 2, ...

.o _Joifi#jandG) ¢E.
i 1ifi=jor(ij)ek.

.) _ L (k=1) (k=1) (k=1
L =1t V(1 Al)-

TRANSITIVE-CLOSURE(G, n)
n=|G.V|
let 7@ = (1) be a new: x n matrix
fori = 1ton
for j = 1ton
ifi==jor(i,j)eG.E

z,.({") =1
elser) =0
fork =1ton

let 7® = (:) be a new: x n matrix
fori = 1ton
for j = 1ton
k) _ ((k—1) (k—1) (k—1)
=ty OVt AgTY)
return 7™

Time
©(n?), but simpler operations tharn.BYD-WARSHALL.

K

25-5

25-6 Lecture Notes for Chapter 25: All-Pairs Shortest Paths

Johnson’s algorithm

Idea
If the graph is sparse, it pays to run Dijkstra’s algorithne@ifrom each vertex.

If we use a Fibonacci heap for the priority queue, the runninge is down
to O(V?IgV + VE), which is better than FOYD-WARSHALL's O(V?) time if
E =o(V?).

But Dijkstra’s algorithm requires that all edge weights loamegative.

Donald Johnson figured out how to make an equivalent graghdtieshave all
edge weights> 0.

Reweighting

Compute a new weight functioi such that

1. Forallu,v € V, pis ashortest path ~» v usingw if and only if p is a shortest
pathu ~» v usingw.

2. Forall(u,v) € E,w(u,v) > 0.

Property (1) says that it suffices to find shortest paths witfProperty (2) says we

can do so by running Dijkstra’s algorithm from each vertex.

How to come up withp?

Lemma shows it's easy to get property (1):

Lemma (Reweighting doesn’t change shortest paths)
Given a directed, weighted gragh= (V, E),w : E — R. Let/ be any function
such that: : V — R. For all (u,v) € E, define

wu,v) = wu,v) + hu) —hQ@).

Let p = (vo,vy,..., V) be any pathyy ~> vy.

Thenp is a shortest path, ~» v with w if and only if p isAa shortest patbkl ~ Vg
with w. (Formally,w(p) = §(ve, vr) if and only if w = §(ve, v), Whereé is the
shortest-path weight witfy.)

Also, G has a negative-weight cycle with if and only if G has a negative-weight
cycle withw.

Proof First, we'll show thatw (p) = w(p) + h(ve) — h(vg):
k
D(p) = Y DV vi)

i=1

k

= Y (i1, v) +hi) —h(w)
1;1

= Z w1, vi) + h(ve) — h(ve) (sum telescopes)
i=1

= w(p) +h(vo) —h(vi) .

Lecture Notes for Chapter 25: All-Pairs Shortest Paths 25-7

Therefore, any path, % v has@w(p) = w(p) + h(ve) — h(vi). Sinceh(vy)
andh(vg) don’t depend on the path from to vy, if one pathvy ~ v is shorter
than another withw, it's also shorter withb.

Now show there exists a negative-weight cycle witlif and only if there exists a
negative-weight cycle withy:

* Letcyclec = (vg, vy, ..., V), Wherevy = vy.
* Then
w(e) = wlc)+ h(vo) —h(vg)
= w(c) (sincevy = vg) .

Therefore,c has a negative-weight cycle with if and only if it has a negative-
weight cycle withw. m (lemma)

So, now to get property (2), we just need to come up withafandt : V — R
such that when we compute(u, v) = w(u, v) + h(u) — h(v), it's > 0.

Do what we did for difference constraints:

° G/ — (V/, E/)
* V' =V U{s}, wheres is a new vertex.
s EE=FEU{(s,v):vel}.
* w(s,v)=0forallveV.

* Since no edges enter G’ has the same set of cycles@sIn particular,G' has
a negative-weight cycle if and only @ does.

Defineh(v) = é(s,v) forallv e V.

Claim
w(u,v) = wu,v) + h(u) —h(v) > 0.

Proof By the triangle inequality,
8(s,v) < 68(s,u) +w(u,v)
h(v) =< h)+w(u,v).

Thereforew (v, v) + h(u) — h(v) > 0. m (claim)

25-8 Lecture Notes for Chapter 25: All-Pairs Shortest Paths

Johnson’s algorithm

form G’
run BELLMAN -FORD on G’ to computes(s,v) forallv € G'.V
if BELLMAN -FORD returnsrALSE
G has a negative-weight cycle
elsecomputew (u,v) = w(u,v) + §(s,u) — (s, v) forall (u,v) € E
let D = (d,,) be a news x n matrix
for each vertexx € G.V
run Dijkstra’s algorithm from using weight functionv
to computeg(u, v)forallveV
for each vertew € G.V
/I Compute entryl,, in matrix D.

duy = 8(u,v) + 8(s,v) — 8(s.u)

because ifp is a pathu ~ v, thenw(p) = w(p) + h(u) — h(v)
return D

Time

s OV + E) to computeG’.

* O(VE) to run BELLMAN -FORD.

* O(E) to computen.

« O(V?IgV +VE) to run Dijkstra’s algorithn V| times (using Fibonacci heap).
« ©O(V?) to computeD matrix.

Total: O(V2IgV + VE).

Solutions for Chapter 25:
All-Pairs Shortest Paths

Solution to Exercise 25.1-3
This solution is also posted publicly

The matrixL© corresponds to the identity matrix

100 - 0
010 - 0
;=001 -0
000 - 1

of regular matrix multiplication. Substitute(the identity for+) for co (the iden-
tity for min), and1 (the identity for-) for O (the identity for+).

Solution to Exercise 25.1-5
This solution is also posted publicly

The all-pairs shortest-paths algorithm in Section 25.1 mates
L(n—l) — Wn—l — L(O) . Wn—l ,

Wherel,.(/.”_“ = 8(i, j) and L© is the identity matrix. That is, the entry in the
ith row andj th column of the matrix “product” is the shortest-path dist@ from
vertexi to vertexj, and rowi of the product is the solution to the single-source
shortest-paths problem for vertéx

Notice that in a matrix “productC = A4 - B, theith row of C is theith row of A
“multiplied” by B. Since all we want is th&h row of C, we never need more than
theith row of A.

Thus the solution to the single-source shortest-paths fremex: is Lf") CWwnmL
where L' is theith row of L(©—a vector whoséth entry is 0 and whose other
entries arex.

Doing the above “multiplications” starting from the left éssentially the same

as the ELLMAN-FORD algorithm. The vector corresponds to thevalues in
BELLMAN -FORD—the shortest-path estimates from the source to each vertex

25-10

Solutions for Chapter 25: All-Pairs Shortest Paths

* The vector is initially O for the source anxb for all other vertices, the same as
the values set up faf by INITIALIZE -SINGLE-SOURCE

* Each “multiplication” of the current vector by¥ relaxes all edges just as
BELLMAN -FORD does. That is, a distance estimate in the row, say the distanc
tov, is updated to a smaller estimate, if any, formed by addimgeao(u, v) to
the current estimate of the distanceito

* The relaxation/multiplication is done— 1 times.

Solution to Exercise 25.1-10

Run S.ow-ALL-PAIRS-SHORTESFPATHS on the graph. Look at the diagonal el-
ements ofL ™, Return the first value of: for which one (or more) of the diagonal
elementsl(.(f”)) is negative. Iim reaches: + 1, then stop and declare that there are
no negative-weight cycles.

Let the number of edges in a minimum-length negative-weighte bem*, where
m* = oo if the graph has no negative-weight cycles.

Correctness

Let's assume that for some valwe®* < n and some value of, we find that
l,.(i’"*) < 0. Then the graph has a cycle with* edges that goes from vertéx

to itself, and this cycle has negative weight (storeq(ﬁﬁ)). This is the minimum-
length negative-weight cycle becauseo8/-ALL -PAIRS-SHORTESFPATHS com-
putes all paths of edge, then all paths @fedges, and so on, and all cycles shorter
thanm* edges were checked before and did not have negative weigiataisume
that for allm < n, there is no negative”” element. Then, there is no negative-

weight cycle in the graph, because all cycles have lengthoatm

Time
O(n*). More precisely®(n? - min(n, m*)).

Faster solution

Run FASTER-ALL-PAIRS-SHORTESTFPATHS on the graph until the first time that
the matrix L has one or more negative values on the diagonal, or until we ha
computedL ™ for somem > n. If we find any negative entries on the diagonal,
we know that the minimum-length negative-weight cycle hasenthann /2 edges
and at mosin edges. We just need to binary search for the valueoh the range
m/2 < m* < m. The key observation is that on our way to computitif’, we
computedL®, L@ L@ [® 10/2 andthese matrices suffice to compute
every matrix we’ll need. Here’s pseudocode:

Solutions for Chapter 25: All-Pairs Shortest Paths 25-11

FIND-MIN-LENGTH-NEG-WEIGHT-CYCLE (W)

n = W.rows
LY =W
m=1

while m < n and no diagonal entries & are negative
L®™ = EXTEND-SHORTESFPATHS(L™, L(™)
m = 2m
if m > n and no diagonal entries & are negative
return “no negative-weight cycles”
elseifm <2
return m
else
low = m/2
high = m
d =m/4
while d > 1
s =low+d
L® = EXTEND-SHORTESTFPATHS (LW @)
if L) has any negative entries on the diagonal

high = s
elselow = s
d =dJ/2
return high

Correctness

If, after the firstwhile loop, m > n and no diagonal entries @f™ are negative,
then there is no negative-weight cycle. Otherwisey ik 2, then eithem = 1 or

m = 2, andL™ is the first matrix with a negative entry on the diagonal. This

correct value to return is:.

If m > 2, then we maintain an interval bracketed by the valoesandhigh, such
that the correct valug:* is in the rangdow < m* < high. We use the following
loop invariant:

Loop invariant: At the start of each iteration of thevhile 4 > 1" loop,

1. d = 27 for some integep > —1,
2. d = (high—low)/2,
3. low < m* < high.

Initialization: Initially, m is an integer power d andm > 2. Sinced = m/4,
we have that/ is an integer power df andd > 1/2, so thatd = 27 for some
integerp > 0. We also havehigh— low)/2 = (m — (m/2))/2 = m/4 = d.
Finally, L has a negative entry on the diagonal drft’? does not. Since
low = m /2 andhigh = m, we have thalow < m* < high.

Maintenance: We usehigh, low, andd to denote variable values in a given it-
eration, anchigh’, low/, andd’ to denote the same variable values in the next
iteration. Thus, we wish to show thdt = 27 for some integep > —1 im-
pliesd’ = 27 for some integep’ > —1, thatd = (high — low)/2 implies
d’ = (high' —low)/2, and thatow < m* < highimplieslow < m* < high'.

25-12 Solutions for Chapter 25: All-Pairs Shortest Paths

To see that!’ = 27, note thatd’ = d/2, and sod = 27~'. The condition that
d > 1 implies thatp > 0, and sop’ > —1.

Within each iterations is set tolow + 4, and one of the following actions
occurs:

« If L® has any negative entries on the diagonal, thigi is set tos and
d’ is set tod/2. Upon entering the next iteratiorthigh’ — low')/2 =
(s —low)/2 = ((low+d) —low)/2 = d /2 = d’. SinceL has a negative
diagonal entry, we know that* < s. Becausenigh' = s andlow = low,
we have thatow < m* < high'.

« If L® has no negative entries on the diagonal, the is set tos, and
d’ is set tod/2. Upon entering the next iteratiorthigh’ — low')/2 =
(high' — 5)/2 = (high—(low-+d))/2 = (high—low)/2—d /2 = d—d /2 =
d/2 = d’'. SinceL® has no negative diagonal entries, we know that> s.
Becausdow = s andhigh’ = high, we have thalow < m* < high'.

Termination: At termination,d < 1. Sinced = 27 for some integep > —1,
we must havep = —1, so thatd = 1/2. By the second part of the loop
invariant, if we multiply both sides b2, we get thathigh — low = 2d = 1.
By the third part of the loop invariant, we know thHatv < m* < high. Since
high— low = 2d = 1 andm* > low, the only possible value for:.* is high,
which the procedure returns.

Time

If there is no negative-weight cycle, the fivghile loop iteratesd(Ig) times, and
the total time i9(n3Ig n).

Now suppose that there is a negative-weight cycle. We clhah ¢ach time we
call EXTEND-SHORTESFPATHS (L, @) we have already computeti’®
and L@ Initially, sincelow = m/2, we had already computed'® in the first
while loop. In succeeding iterations of the secovidle loop, the only way thabw
changes is when it gets the valuespfind we have just computdd®. As for L@,
observe thad takes on the values/4,m/8,m/16,...,1, and again, we computed
all of theseL matrices in the firstvhile loop. Thus, the claim is proven. Each of
the twowhile loops iterate®(Ig m*) times. Since we have already computed the
parameters to each call oOKEEND-SHORTESTFPATHS, each iteration is dominated
by the ®(n?)-time call to EXTEND-SHORTESTFPATHS. Thus, the total time is
Om3Igm*).

In general, therefore, the running time@gn> Ig min(n, m*)).

Space

The slower algorithm needs to keep only three matrices atisrgy and so its space
requirement ig9(n3). This faster algorithm needs to maintai(lg min(n, m*))
matrices, and so the space requirement increas@gitolg min(n, m*)).

Solutions for Chapter 25: All-Pairs Shortest Paths 25-13

Solution to Exercise 25.2-4
This solution is also posted publicly

With the superscripts, the computationffs’ = min (4f .25 " +a%™"). If,

having dropped the superscripts, we were to compljute ane @tpor di; before

using these values to computg, we might be computing one of the following:

k) _ o (k=1 (k) (k=1)
di’ = min(d; . d0 +di;)
* _ i (&= 5 (k=1) (k)
di’ = min(d; ", dy +d,7)
k) _ o (k=1 (k) (k)
di’ = min(d; . dy’ +d,7)
In any of these scenarios, we’'re computing the weight of atekbpath fromi to j
with all intermediate vertices ifl,2,...,k}. If we used?, rather thandy ",
in the computation, then we're using a subpath froto & with all intermediate
vertices in{1,2,...,k}. Butk cannot be aintermediatevertex on a shortest path

from i to k, since otherwise there would be a cycle on this shortest pHitius,
dy) = di". Asimilar argument applies to show thaf = 4. Hence, we
can drop the superscripts in the computation.

Solution to Exercise 25.2-6

Here are two ways to detect negative-weight cycles:

1. Check the main-diagonal entries of the result matrix floegative value. There
is a negative weight cycle if and onlycﬁ(;’) < 0 for some vertex:

« 4 is a path weight froni to itself; so if it is negative, there is a path fram
to itself (i.e., a cycle), with negative weight.
* If there is a negative-weight cycle, consider the one withfdwest vertices.

 Ifit has just one vertex, then somag; < 0, sod;; starts out negative, and
sinced values are never increased, it is also negative when theathigo
terminates.

+ Ifit has at least two vertices, l&tbe the highest-numbered vertex in the
cycle, and let be some other vertex in the cycké's " andd ¥ " have
correct shortest-path weights, because they are not basedgative-
weight cycles. (Neithed " nord*~" can includek as an intermedi-
ate vertex, and andk are on the negative-weight cycle with the fewest
vertices.) Sincé ~ k ~» i is a negative-weight cycle, the sum of those
two weights is negative, sé will be set to a negative value. Sinde
values are never increased, it is also negative when theitalgotermi-
nates.

In fact, it suffices to check Whethd;.‘,.”_” < 0 for some vertex. Here’s why.
A negative-weight cycle containing vertéxeither contains vertex or it does

not. If it does not, then clearlzy,.(;’_l) < 0. If the negative-weight cycle contains

25-14 Solutions for Chapter 25: All-Pairs Shortest Paths

vertexn, then consider/"~V. This value must be negative, since the cycle,
starting and ending at vertex does not include vertex as an intermediate
vertex.

2. Alternatively, one could just run the normal®&yD-WARSHALL algorithm one
extra iteration to see if any of thé values change. If there are negative cycles,
then some shortest-path cost will be cheaper. If there asual cycles, then
no d values will change because the algorithm gives the cortentest paths.

Solution to Exercise 25.3-4
This solution is also posted publicly

It changes shortest paths. Consider the following graph= {s, x, y,z}, and
there are 4 edgesuv(s,x) = 2, w(x,y) = 2, w(s,y) = 5, andw(s,z) = —10.
So we'd add 10 to every weight to make With w, the shortest path fromto y
iss — x — y, with weight 4. Withw, the shortest path fromto y iss — y,
with weight 15. (The path — x — y has weight 24.) The problem is that by just
adding the same amount to every edge, you penalize pathsnwith edges, even
if their weights are low.

Solution to Exercise 25.3-6

In this solution, we assume that — oo is undefined; in particular, it's n@t

Let G = (V,E), whereV = {s,u}, £ = {(u,s)}, andw(u,s) = 0. There
is only one edge, and it entess When we run Bellman-Ford from, we get
h(s) = 6(s,s) = 0 andh(u) = 6(s,u) = oo. When we reweight, we get
wu,s) = 0+00—0 = oco. We compute@(u,s) = o0, and so we compute
dy,s = 00 +0—o00 # 0. Sinced(u, s) = 0, we get an incorrect answer.

If the graphG is strongly connected, then we getv) = §(s,v) < oo for all
verticesv € V. Thus, the triangle inequality says thav) < h(u)+w(u, v) for all
edgequ,v) € E,and sav(u,v) = w(u,v)+h(u)—h(v) > 0. Moreover, all edge
weightsw (u, v) used in Lemma 25.1 are finite, and so the lemma holds. Therefor
the conditions we need in order to use Johnson’s algorithiah tioat reweighting
does not change shortest paths, and that all edge weights) are nonnegative.
Again relying onG being strongly connected, we get thﬁz{u, v) < oo for all
edges(u,v) € E, which means that,, = SA(u, v) + h(v) — h(u) is finite and
correct.

Solution to Problem 25-1

a. LetT = (t;) be the|V| x |V| matrix representing the transitive closure, such
that; is 1 if there is a path fromi to j, and O otherwise.

Solutions for Chapter 25: All-Pairs Shortest Paths 25-15

Initialize T (when there are no edgesdi) as follows:
. 1 ifi=j,

Y)0 otherwise.

We updatel” as follows when an edge:, v) is added taG:

TRANSITIVE-CLOSURE-UPDATE(T, u, v)
let T be|V| x |V|
fori = 1to|V]
for j = 1to|V|
if tiw==1 andl,,j ==
lij =1

* With this procedure, the effect of adding edgev) is to create a path (via
the new edge) from every vertex that could already reati every vertex
that could already be reached from

* Note that the procedure sejs = 1, because both,, andz,, are initialized
to 1.

* This procedure take®(V?) time because of the two nested loops.

b. Consider inserting the edde,y|, v,) into the straight-line graph, — v, —
> Yy

Before this edge is inserted, orli/ | (|V'| + 1)/2 entries inT arel (the entries
on and above the main diagonal). After the edge is insetiedytaph is a cycle
in which every vertex can reach every other vertex, sp/afl entries inT” arel.
Hence|V|> —(|V| (V| +1)/2) = ©(V?) entries must be changedih so any
algorithm to update the transitive closure must t&& ?) time on this graph.

c. The algorithm in part (a) would take(V*) time to insert all possibl€ (1?)
edges, so we need a more efficient algorithm in order for agyesece of in-
sertions to take only) (V3) total time.

To improve the algorithm, notice that the loop oyeis pointless wher,, = 1.
That is, if there is already a path~» v, then adding the edge:, v) cannot
make any new vertices reachable fronThe loop to set;; to 1 for j such that
there exists a path ~» j is just setting entries that are alreatly Eliminate
this redundant processing as follows:

TRANSITIVE-CLOSURE-UPDATE(T, u, v)
let T be|V| x |V|
fori = 1to|V]
if t;, ==1andt;, ==0
for j = 1to|V|
if tvj ==1
l‘,’j =1

We show that this procedure také%V’ ?) time to update the transitive closure
for any sequence of insertions:

* There cannot be more thaFi|* edges inG, son < |V |°.

25-16 Solutions for Chapter 25: All-Pairs Shortest Paths

* Summed over insertions, the time for the out@r loop header and the test
fort, ==1ands;, ==0is O(nV) = O(V?3).

» The last three lines, which take(V) time, are executed onlg (V' 2) times
for n insertions. To see why, notice that the last three linesyeewted only
whent;, equalsO, and in that case, the last line sets = 1. Thus, the
number of0 entries inT is reduced by at leagteach time the last three lines
run. Since there are only’|? entries inT, these lines can run at mgst|>
times.

* Hence, the total running time overinsertions isO(V?3).

Lecture Notes for Chapter 26:
Maximum Flow

Chapter 26 overview

Network flow

[The third edition treats flow networks differently from tfiest two editions. The
concept of net flow is gone, except that we do discuss net flomsa@ cut. Skew
symmetry is also gone, as is implicit summation notatiore iird edition counts
flows on edges directly. We find that although the mathemétiost quite as slick
as in the first two editions, the approach in the third edititatches intuition more
closely, and therefore students tend to pick it up more dyick

Use a graph to model material that flows through conduits.

Each edge represents one conduit, and heggacity which is an upper bound on
theflow rate = units/time.

Can think of edges as pipes of different sizes. But flows dueve to be of liquids.
Book has an example where a flow is how many trucks per day aprhslkkey
pucks between cities.

Want to compute max rate that we can ship material from a dasédsourceto a
designatedink.

Flow networks

G = (V, E) directed.

Each edgdu, v) has acapacityc(u, v) > 0.

If (u,v) & E, thenc(u,v) = 0.

If (u,v) € E, then reverse edge, u) ¢ E. (Can work around this restriction.)

Sourcevertexs, sink vertext, assumes ~ v ~» ¢ for all v € V, so that each
vertex lies on a path from source to sink.

Example:[Edges are labeled with capacities.]

26-2 Lecture Notes for Chapter 26: Maximum Flow

Flow
Afunction f : V x V — R satisfying

* Capacity constraint.For allu,v € V,0 < f(u,v) < c(u,v),

» Flow conservation:Forallu € V —{s.t}, Y " f(v.u) = > _ f(u,v).
veV veV

flowintou flow out of u

Equivalently,) ~ f(u.v) =Y f(v.u) =0.

veV veV

[Add flows to previous example. Edges here are labeled asdépactity. Leave
on board.]

* Note that all flows are< capacities.
* Verify flow conservation by adding up flows at a couple of \e=$.
* Note that all flows= 0 is legitimate.

Value of flow f = | f]|
= Y [l =) f(v.9)
veV veV

= flow out of source- flow into source

In the example above, value of flofr = | /| = 3.

Maximum-flow problem
Givenga, s, t, andc, find a flow whose value is maximum.

Antiparallel edges

Definition of flow network does not allow botx, v) and(v, u) to be edges. These
edges would bantiparallel.

What if we really need antiparallel edges?

Lecture Notes for Chapter 26: Maximum Flow 26-3

* Choose one of them, sdy, v).

* Create a new vertex.

* Replace(u, v) by two new edgesgu, v’) and(v’, v), with c(u,v') = c(v',v) =
c(u,v).

* Get an equivalent flow network with no antiparallel edges.

Cuts

A cut (S, T) of flow networkG = (V, E) is a partition ofV into S andT = V—S
suchthat € S andr € T.

* Similar to cut used in minimum spanning trees, except the¢ kiee graph is
directed, and we requiree S andr € T.

For flow f, thenet flowacross cutS, T) is

fSTY=) "3 fv) =) Y f.u).

ueS veT ueS veT

Capacityof cut (S, T) is

c(S,T) = ZZc(u,U).

ueS veT

A minimum cutof G is a cut whose capacity is minimum over all cutstaf

Asymmetry between net flow across a cut and capacity of a dtdr capacity,
count only capacities of edges going frasnto 7. Ignore edges going in the
reverse direction. For net flow, count flow on all edges actbescut: flow on
edges going fron$ to 7 minus flow on edges going froffito S.

In previous example, consider the dut= {s, w, y}, T = {x,z,1}.
f8.T) = f(w,x)+ f(y.2) — f(x,y)
N——
fromStoT fromT to S
= 24+2-1
= 3.
(8, T) = c(w,x)+c(y,2)
fromStoT
= 243
5.
Now consider the cu§ = {s,w, x,y},T = {z,t}.
f8.T) = fx,0)+ f(r,2) — f(z.,x)
N——
fromStoT fromT to S
= 2+2-1
= 3.
(8, T) = c(x,t)+c(y,2)
‘—,—/
fromStoT
3+3
6.
Same flow as previous cut, higher capacity.

26-4 Lecture Notes for Chapter 26: Maximum Flow

Lemma

For any cut(S,T), f(S,T) = |f].

(Net flow across the cut equals value of the flow.)
[Leave on board.]

[This proof is much more involved than the proof in the firsbteditions. You
might want to omit it, or just give the intuition that no matiehere you cut the
pipes in a network, you'll see the same flow volume coming dhe openings.]

Proof Rewrite flow conservation: foranye V — {s, ¢},
D fv) =" f.u)=0.
vevV veV

Take definition of| | and add in left-hand side of above equation, summed over
all vertices inS — {s}. Above equation applies to each vertexSin- {s} (since
t € S and obviouslys ¢ S — {s}), so just adding in lots dbs:

f1=D fev) =) f.+ > (Z S v) - Zf@,u)) .

vevV vev ueS—{s} \vevV vev

Expand right-hand summation and regroup terms:

fl = DY fen=Y f)+ Y Y fun— Y Y fvu

veV veV ueS—{s} veV ueS—{s} veV
=y (f(s, v+ Y f, v)) - (f(w) + > f(wu))
veV ueS—{s} veV ueS—{s}
= DY S =D) fu).
veV uesS veV uesS
PartitionV into S U T and split each summation overinto summations ove§
andT:
Fl= D) e+ Y)) =Y Y fha =Y Y fu)
veS ues veT ues veS ues veT ues
= Y > faw)y=3 % fv.u)
veT ues veT ues
+ (ZZf(u,v) —ZZf(v,u)) .
veS ues veS ues

Summations within parentheses are the same, sfitgey) appears once in each
summation, for any, y € V. These summations cancel:

L= DD fan)=> > f.u

ueS veT ueS veT

= f(S,T). m (lemma)

Corollary

The value of any flow< capacity of any cut.
[Leave on board.]

Lecture Notes for Chapter 26: Maximum Flow 26-5

Proof Let (S, T) be any cut,/ be any flow.

|lfl = f(S.T) (lemma)
= Y Y fav)=> > f(v.u) (definition of £(S.T))
ueS veT ueS veT
< Y > S (f(v,u) = 0)
ueS veT
< > e (capacity constraint)
ueS veT
= ¢(5,7). (definition ofc(S,T)) = (corollary)

Therefore, maximum flows capacity of minimum cut.
Will see a little later that this is in fact an equality.

The Ford-Fulkerson method

Residual network

Given a flow f in networkG = (V, E).
Consider a pair of verticas,v € V.

How much additional flow can we push directly framto v?
That'’s theresidual capacity

c(u,v)— f(u,v) if (u,v) e E,
cr(u,v) = f(v,u) if (v,u) e FE,

0 otherwise (i.e.(u,v), (v,u) € E) .
Theresidual networkis Gy = (V, E¢), where
Ef ={(u,v) €V xV :cr(u,v) >0} .
Each edge of the residual network can admit a positive flow.
For our example:

Every edggu, v) € E; corresponds to an edg@e, v) € E or (v,u) € E (or both).
Therefore|Es| < 2|E|.
Residual network is similar to a flow network, except that @neontain antiparal-

lel edges (u, v) and(v, u)). Can define a flow in a residual network that satisfies
the definition of a flow, but with respect to capacitigsin G;.

Given flowsf in G and /" in G, define(f 1 f”), theaugmentationof f by f”,
as a functionV x V — R:

26-6 Lecture Notes for Chapter 26: Maximum Flow

S@.v)+ flw,v) = f'vu) if (uv)ek,

0 otherwise

(f 1 /) v) =

forallu,v e V.

Intuition: Increase the flow o, v) by f’'(u,v) but decrease it by’ (v, u) be-
cause pushing flow on the reverse edge in the residual netteareases the flow
in the original network. Also known asancellation

Lemma

Given a flow networkG, a flow /" in G, and the residual network,, let /' be a
flowin Gs. Thenf 1 f’is aflowinG withvalue|f 1 f'| = |f| + |f].

[See book for proof. It has a lot of summations in it. Probatmy worth writing
on the board.]

Augmenting path

A simple paths ~ ¢ in Gy.

* Admits more flow along each edge.

* Like a sequence of pipes through which we can squirt more ftom§ to z.
How much more flow can we push frosrto ¢ along augmenting path?
cr(p) =min{cs(u,v) : (u,v)isonp} .

For our example, consider the augmenting pats (s, w, y, z, x,).

Minimum residual capacity is 1.

After we push 1 additional unit along: [Continue fromG left on board from
before. Edgéy,w) hasf(y,w) = 0, which we omit, showing only(y, w) = 3.]

Observe thatGy now has no augmenting path. Why? No edges cross the cut
({s, w},{x,y,z,t}) inthe forward direction irG,. So no path can get fromto .

Claim that the flow shown il is a maximum flow.

Lecture Notes for Chapter 26: Maximum Flow 26-7

Lemma
Given flow networkG, flow f in G, residual networlG. Let p be an augmenting
path inG,. Definef, : V x V — R:

_Jer(p) if(u,v)isonp,
Jp(,v) = 0 otherwise.

Then £, is a flow inG, with value| f,| = ¢s(p) > 0.

Corollary
Given flow networkG, flow f in G, and an augmenting paghin G, define f,
asinlemma. Therf 1 f, is aflow inG with value| f 1 f,| = | f| + | fo| > | f].

Theorem (Max-flow min-cut theorem)
The following are equivalent:

1. fis a maximum flow.
2. Gy has no augmenting path.
3. |f| =c¢(S,T) forsome cuf(S, T).

Proof

(1) = (2): Show the contrapositive: &, has an augmenting path, thgnis not a
maximum flow. IfG, has augmenting path, then by the above corollary, 1 f,
is a flow inG with value| /| + | f,| > | f|, so thatf was not a maximum flow.

(2) = (3): Supposé&r, has no augmenting path. Define

S = {v eV :there exists a path~ vin Gs} ,

T = V-S§.

Must haver € T; otherwise there is an augmenting path.

Therefore (S, T) is a cut.

Considerns € S andv € T

* If (u,v) € E, must havef (u,v) = c(u,v); otherwise(u,v) € Ef = v € S.

* If (v,u) € E, must havef(v,u) = 0; otherwisecs(u,v) = f(v,u) > 0 =
(u,v) e Ef =ves.

o If (u,v), (v,u) € E, must havef(u,v) = f(v,u) =0.

Then,
fS.T) = D 3 faw)=) 3 fv.u)
ueS veT veT ues
= XX cwn -y 30
ues veT veT uesS
= ¢(5, 7).

By lemma,|f| = f(S,T) = ¢(S,T).

(3) = (1): By corollary,| f| < ¢(S,T).
Therefore| f| = ¢(S,T) = f is a max flow. m (theorem)

26-8

Lecture Notes for Chapter 26: Maximum Flow

Ford-Fulkerson algorithm

Keep augmenting flow along an augmenting path until there sugmenting path.
Represent the flow attribute using the usual dot-notatiohph an edge(u, v).f.

FORD-FULKERSON(G, s, t)

for all (u,v) € G.E
(u,v).f =0

while there is an augmenting paghin G
augmentf by cs(p)

Analysis

If capacities are all integer, then each augmenting pafiesgf’ | by > 1. If max
flowis f*, then need | f*| iterations= time iISO(E | f*]).
[Handwaving—see book for better explanation.]

Note that this running time isot polynomial in input size. It depends aif |,
which is not a function ofV| and| E|.

If capacities are rational, can scale them to integers.
If irrational, FORD-FULKERSON might never terminate!

Edmonds-Karp algorithm

Do FORD-FULKERSON, but compute augmenting paths by BFS&f. Augment-
ing paths are shortest paths- ¢ in G5, with all edge weights= 1.

Edmonds-Karp runs i@ (VE?) time.
To prove, need to look at distances to vertice&n
Let§s(u,v) = shortest path distaneeto v in G, with unit edge weights.

Lemma

Forallv e V —{s,1}, 67 (s, v) increases monotonically with each flow augmenta-
tion.

Proof Suppose there existse V —{s, ¢} such that some flow augmentation causes
dr(s,v) to decrease. Will derive a contradiction.

Let 1 be the flow before the first augmentation that causes a shpda#sdistance
to decreasef’ be the flow afterward.

Let v be a vertex with minimund, (s, v) whose distance was decreased by the
augmentation, séy (s, v) < 67(s,v).

Let a shortest pathto v in Gy bes ~ u — v, so(u,v) € Ey andds (s, v) =
8p(s,u) + 1. (Orép (s,u) = 8p:(s,v) — 1.)
Sinceds (s, u) < 6¢/(s, v) and how we chose, we havess (s, u) > 57 (s, u).

Claim
(u, 1)) Q/ Ef.

Lecture Notes for Chapter 26: Maximum Flow 26-9

Proof If (u,v) € Ef, then
8r(s,v) < &r(s,u)+1 (triangle inequality)
< Sp(s,u)+1
= dp(s,v),
contradictingds (s, v) < 8¢ (s,v). m (claim)

How can(u,v) & Er and(u,v) € E;?
The augmentation must increase flowo u.

Since Edmonds-Karp augments along shortest paths, theshpaths tou in G
has(v,u) as its last edge.

Therefore,
Sr(s,v) = br(s,u)—1
< Sp(s,u)—1
= Sp(s,v)—2,
contradictingds (s, v) < 8¢ (s,v).
Thereforey cannot exist. m (lemma)

Theorem
Edmonds-Karp perform®(VE) augmentations.

Proof Supposep is an augmenting path arg(u, v) = cs(p). Then call(u,v) a
critical edge inGy, and it disappears from the residual network after augmenti
alongp.

> 1 edge on any augmenting path is critical.
Will show that each of th¢éF | edges can become critical | V| /2 times.

Consideru,v € V such that eithefu,v) € E or (v,u) € E or both. Since
augmenting paths are shortest paths, wikern) becomes critical first time,
8r(s,v) =30r(s,u) + 1.
Augment flow, so thatu, v) disppears from the residual network. This edge cannot
reappear in the residual network until flow framto v decreases, which happens
only if (v,u) is on an augmenting path @s: 7 (s,u) = 8¢ (s,v) + 1. (f'is
flow when this occurs.)
By lemma,ss (s, v) < 8/(s,v) =
Sp(s,u) = Spr(s,v) +1

> $p(s,v) +1

= Sr(s,u)+2.

Therefore, from the timéu, v) becomes critical to the next time, distanceuof
from s increases by 2. Initially, distance tas is > 0, and augmenting path can't
haves, u, andr as intermediate vertices.

Therefore, untilz becomes unreachable from source, its distanee | — 2 =
after (u, v) becomes critical the first time, it can become critigal{|V| — 2)/2 =
|V]/2 —1times more= (u,v) can become criticak | V| /2 times.

26-10

Lecture Notes for Chapter 26: Maximum Flow

Since O(E) pairs of vertices can have an edge between them in residtvabrie
total # of critical edges during execution of Edmonds-Kap(VE). Since each
augmenting path has 1 critical edge, have® (VE) augmentations. m (theorem)

Use BFS to find each augmenting pathdE) time = O(VE?) time.
Can get better bounds.

Push-relabel algorithms in Sections 26.4-26.5 ghé).

Can do even better.

Maximum bipartite matching

Example of a problem that can be solved by turning it into a fioeblem.

G = (V, E) (undirected) idipartite if we can partition/ = L U R such that all
edges inE go betweernl. andR.

L R L R

matching maximum matching

A matchingis a subset of edge® C E such that for alb € V', < 1 edge ofM
is incident onw. (Vertexv is matchedif an edge ofM is incident on it; otherwise
unmatched.

Maximum matching a matching of maximum cardinality. M is a maximum
matching if|M | > |M’| for all matchingsM’.)

Problem
Given a bipartite graph (with the partition), find a maximuratohing.

Application
Matching planes to routes.
+ L = set of planes.

* R = set of routes.
* (u,v) € E if planeu can fly routev.

Lecture Notes for Chapter 26: Maximum Flow 26-11

* Want maximum # of routes to be served by planes.
GivenG, define flow networlkG’ = (V', E’).

e V=V U{s,t}.

e E'={(s,u):uel}U{(u,v):m,v)e E}U{(v,t):veR}
* c¢(u,v)=1forall (u,v) € E'.

Each vertex i/ has> 1 incident edge= |E| > |V]| /2.

Therefore|E| < |E'| = |E| + |V| < 3|E]|.

Therefore |E'| = O(E).

Find a max flow inG’. Book shows that it will have integer values for all, v).
Use edges that carry flow of 1 in matching.

Book proves that this method produces a maximum matching.

Solutions for Chapter 26:
Maximum Flow

Solution to Exercise 26.1-1

We will prove that for every flow inG = (V, E), we can construct a flow in
G’ = (V’, E’) that has the same value as that of the flowinThe required result
follows since a maximum flow i is also a flow. Letf be a flow inG. By
constructionV’ = V U {x}andE’ = (E — {(u,v)}) U {(u, x), (x,v)}. Construct
f'in G’ as follows:

f.z) if(y.2) # (u,x)and(y,z) # (x,v),
S, v) if (y,2) =, x)or(y,z) = (x,v).
Informally, f” is the same ag’, except that the flow (u, v) now passes through

an intermediate vertex. The vertexx has incoming flow (if any) only frona, and
has outgoing flow (if any) only to vertex

We first prove thatf’ satisfies the required properties of a flow. It is obvious that
the capacity constraint is satisfied for every edgé-inand that every vertex in
V' —{u,v, x} obeys flow conservation.

To show that edge@t, x) and(x, v) obey the capacity constraint, we have
fu,x) = fuv) = c@w,v) = c(u,x),

fx,v) = f(u,v) < c(u,v) = c(x,v).

We now prove flow conservation far. Assuming thai: ¢ {s, ¢}, we have

oSy = Y Sl y)+)

yev’ yeV/—{x}

= Y f.y)+ fa.)

yeV—{v}

= > f.y)

yev

f(y.2) =

= Z f(y,u) (becausef obeys flow conservation)
yev

!
= > [y,
yev’
For vertexv, a symmetric argument proves flow conservation.

Solutions for Chapter 26: Maximum Flow 26-13

For vertexx, we have
S S = flu.x)
yev’/
= fl(x.v)
= > flxy).
yev’/
Thus, f' is a valid flow inG’.

We now prove that the values of the flow in both cases are etjubé sources is
not in {u, v}, the proof is trivial, since our construction assigns theedows to
incoming and outgoing edges aflf s = u, then

= D Sy = S

yev’ yev’/
= Y Sy =) fra)+ fux)
yeV/—{x} yev’
= > fay)=) f.u)+ fuv)
yeV—{v} yev
= Y Sy =Y fuw
yev yev
= |fl.
The case whem = v is symmetric. We conclude that is a valid flow inG’ with
L T=1f1.

Solution to Exercise 26.1-3

We show that, given any flovf’ in the flow networkG = (V, E), we can construct
a flow f as stated in the exercise. The result will follow whghis a maximum
flow. The idea is that even if there is a path freano the connected component
of u, no flow can enter the component, since the flow has no patlathreThus,
all the flow inside the component must be cyclic, which can lbelenzero without
affecting the net value of the flow.

Two cases are possible: wherés not connected to, and where: is not connected
tos. We only analyze the former case. The analysis for the la#ise is similar.

Let Y be the set of all vertices that have no path.t®@ur roadmap will be to first
prove that no flow can leavE. We use this result and flow conservation to prove
that no flow can enteY. We shall then constuct the floy, which has the required
properties, and prove thaf | = | f/|.

The first step is to prove that there can be no flow from a vertexY to a vertex
veV-Y. Thatis, f'(y,v) = 0. This is so, because there are no edges)
in E. If there were an edgéy,v) € E, then there would be a path fropto ¢,
which contradicts how we defined the et

We will now prove thatf”’(v, y) = 0, too. We will do so by applying flow conser-
vation to each vertex it¥ and taking the sum ovér. By flow conservation, we
have

26-14

Solutions for Chapter 26: Maximum Flow

Y S =D).

yeY veV yeY veV

PartitioningV into Y andV — Y gives

P A CROED S DY AR

yeY veV-Y yeY veY

=Y Y Fen+YY roy. %)

yeY veV-Y yeY veY
But we also have

Y S =Dy,

yeY veY yeY veY

since the left-hand side is the same as the right-hand sidepefor a change of
variable names andy. We also have

YD =0,

yeY veV-Y

since f'(y,v) = 0 for eachy € Y andv € V — Y. Thus, equation«) simplifies
to

Yo Y flvym=0.

yeY veV-Y

Because the flow function is nonnegativ&y, y) = 0 for eachv € 1V andy € Y.
We conclude that there can be no flow between any vertéx and any vertex
inV —Y.

The same technique can show that if there is a path fraay but not froms to u,
and we defineZ as the set of vertices that do not have have a path fraou,
then there can be no flow between any verteXiand any vertex iV — Z. Let
X =Y U Z.Wethus havef'(v,x) = f/(x,v) =0if x € X andv ¢ X.

We are now ready to construct floy:

fu,v) ifuvdX,

0 otherwise.

fluv) =

We note thatf satisfies the requirements of the exercise. We now prove fthat
also satisfies the requirements of a flow function.

The capacity constraint is satisfied, since wheneMer, v) = f’(u,v), we have
f(u,v) = f'(u,v) < c(u,v) and wheneveyr (u,v) = 0, we havef(u,v) =0 <

c(u,v).

For flow conservation, let be some vertex other tharor¢. If x € X, then from
the construction off', we have

Y fx) =) fw.x)=0.

veV veV

Solutions for Chapter 26: Maximum Flow 26-15

Otherwise, ifx ¢ X, note thatf(x,v) = f'(x,v) and f(v,x) = f'(v, x) for all
verticesv € V. Thus,
Do fxv) =) flxw)
veV vevV
= Z f'(v,x) (becausef’ obeys flow conservation)

vevV

= > fl.x).

veV

Finally, we prove that the value of the flow remains the samaces ¢ X, we
have f(s,v) = f'(s,v) and f(v,x) = f'(v, x) for all verticesv € VV, and so

1fl = D fev) =) f(v.s)

veV veV

= > flv)=> fv.s)
vevV vevV

= |/

Solution to Exercise 26.1-4

To see that the flows form a convex set, we show tha i&nd £, are flows, then
soisaf; + (1 —a) f> forall @ such thad < o < 1.

For the capacity constraint, first observe that 1 implies thatl —«a > 0. Thus,
foranyu,v € V, we have

afi(u,v) + (1 —a)fou,v) > 0- fi(u,v) +0-(1—a)f2(u,v)
= 0.
Since fi(u,v) < c(u,v)and f>(u,v) < c(u,v), we also have
afi(w,v) + (1 —a)fo(u,v) =< ac(u,v)+ (1 —a)c(u,v)
= (a+ (1 —a))c(u,v)
= c(u,v).

For flow conservation, observe that singeand f, obey flow conservation, we

have) ., filv,u) = > o, filu,v)yand) o, filv,u) = Y o fi(u,v) for

anyu € V —{s,t}. We need to show that
D @fivu) + (1—a) (v, w) = Y (@fiu,v) + (1 =) f2(u,)
veV veV

foranyu € V —{s,t}. We multiply both sides of the equality fof; by «, multiply
both sides of the equality fof, by 1 — «, and add the left-hand and right-hand
sides of the resulting equalities to get

aYy fivo)+A—a)Y frvu)y=a) fitwv)+(1-a)) fruv).

veV veV veV veV

26-16

Solutions for Chapter 26: Maximum Flow

Observing that
aY A+ (1—a)) o) = Y afivu)+) (1—a)fo(v,u)

veV veV veV veV

= Y @hu) +(1—a)f0,u)
veV
and, likewise, that

@Y i)+ (A —a)) foluv) =) (@fi(,v) + (1-a)fo(u,v))
veV veV veV

completes the proof that flow conservation holds, and thatsfliws form a convex
set.

Solution to Exercise 26.1-6

Create a vertex for each corner, and if there is a street leetwernera: andv,
create directed edg€s, v) and(v, u). Set the capacity of each edgeltoLet the
source be corner on which the professor’s house sits, atlgdaink be the corner
on which the school is located. We wish to find a flow of valuat also has the
property thatf (u, v) is an integer for all vertices andv. Such a flow represents
two edge-disjoint paths from the house to the school.

Solution to Exercise 26.1-7

We will constructG’ by splitting each vertex of G into two vertices,, v, joined
by an edge of capaciti{v). All incoming edges ofv are now incoming edges
to v;. All outgoing edges fronv are now outgoing edges from.

More formally, constructG’ = (V’, E’) with capacity functiorc’ as follows. For
everyv € V, create two vertices,, v, in VV’. Add an edggv,, v,) in E’ with
¢'(vi,v2) = I(v). For every edg€u,v) € E, create an edgét,,v,) in E’ with
capacityc’(u,,v;) = c(u,v). Makes, andt, as the new source and target vertices
in G'. Clearly,|V'| =2 |V]|and|E’'| = |E| + |V].

Let / be aflowinG that respects vertex capacities. Create a flow funcfion G’

as follows. For each edger,v) € G, let f'(u,,vy) = f(u,v). For each vertex
weV—{thlet f/(uruz) = ey f). Let £t 1) = ey f(0,1).

We readily see that there is a one-to-one correspondensedrflows that respect
vertex capacities iz and flows inG’. For the capacity constraint, every edge
in G’ of the form (u,,v,) has a corresponding edge ¢h with a corresponding
capacity and flow and thus satisfies the capacity constrdint. edges inE’ of
the form(u,, u,), the capacities reflect the vertex capacitie&inTherefore, for

u eV —{st}, wehavef (u;,u) = Y oy fu,v) <Il(u) = c'(uy,u). We
also havef'(t1,t,) =),y f(v,1) < I(t) = ¢'(t1,1,). Note that this constraint
also enforces the vertex capacitieGin

Solutions for Chapter 26: Maximum Flow 26-17

Now, we prove flow conservation. By construction, every eemf the formu,
in G’ has exactly one outgoing ed@e, , u,), and every incoming edge ig cor-
responds to an incoming edgewfe G. Thus, for all verticest € V — {s,1}, we
have

incoming flowtou; = > f'(v.uy)

For

veV’/
= Y f.u)
veV

= > f(u.v) (becausef obeys flow conservation)
veV

Sy us)
outgoing flow fromu, .
t1, we have

incoming flow = Y f'(v.1)

veV’

= > fvo

veV

[t t2)

outgoing flow.

Vertices of the formu, have exactly one incoming ed@e; , u»), and every outgo-

ing

edge ofu, corresponds to an outgoing edgeuo€ G. Thus, foru, # t,,

incoming flow = f'(u;,u,)

= Y f,v)

veV

= > fuav)

veV’
= outgoing flow.

Finally, we prove thatf’'| = | f|:

]

D AGH)

vev’
= f'(s1,52) (because there are no other outgoing edges frgm

= > [

veV

= [fl.

Solution to Exercise 26.2-1

Lemma

1.

2
3.
4

If vV, thenf(s,v) =0.

. fv &V, thenf(v,s) =0.

If vV, UV, thenf'(s,v) = 0.

fv € ViUV, thenf/(v,s) = 0.

26-18 Solutions for Chapter 26: Maximum Flow

Proof

1. Letv ¢ V; be some vertex. From the definition Bf, there is no edge from
tov. Thus, f(s,v) = 0.

2. Letv € V, be some vertex. From the definition Bf, there is no edge from
tos. Thus, f(v,s) = 0.

3. Letv € VUV, be some vertex. From the definition B8f andV,, neither(s, v)
nor (v, s) exists. Therefore, the third condition of the definition esidual
capacity (equation (26.2)) applies, aryds, v) = 0. Thus, f'(s,v) = 0.

4. Letv € V; UV, be some vertex. By equation (26.2), we have thab, s) = 0
and thusf”(v,s) = 0. m (lemma)

We conclude that the summations in equation (26.6) equaltimmations in equa-
tion (26.7).

Solution to Exercise 26.2-8

Let G be the residual network just before an iteration ofitliele loop of FORD-
FULKERSON, and letE; be the set of residual edges 6f into s. We’'ll show
that the augmenting path chosen by BRD-FULKERSON does not include an
edge inE,. Thus, even if we redefin€é, to disallow edges irE;, the pathp still
remains an augmenting path in the redefined network. Simeenains unchanged,
an iteration of thevhile loop of FORD-FULKERSON updates the flow in the same
way as before the redefinition. Furthermore, by disallondngne edges, we do
not introduce any new augmenting paths. ThuBRB-FULKERSON still correctly
computes a maximum flow.

Now, we prove that BRD-FULKERSON never chooses an augmenting patthat
includes an edgév, s) € E;. Why? The pathp always starts frony, and if p
included an edgév, s), the vertexs would be repeated twice in the path. Thps,
would no longer be aimplepath. Since BRD-FULKERSON chooses only simple
paths,p cannot includgv, s).

Solution to Exercise 26.2-9

The augmented flow/ 1 f satisfies the flow conservation property but not the
capacity constraint property.

First, we prove thatf 1 f’ satisfies the flow conservation property. We note that
if edge (u,v) € E, then(v,u) € E and f'(v,u) = 0. Thus, we can rewrite the
definition of flow augmentation (equation (26.4)), when agapto two flows, as

,) fuv)+ f(u,v) if (uv) € E,
(1)) = 0 otherwise.

The definition implies that the new flow on each edge is simpdysum of the two
flows on that edge. We now prove that jfin? f”, the net incoming flow for each

Solutions for Chapter 26: Maximum Flow 26-19

vertex equals the net outgoing flow. Let? {s, ¢} be any vertex ofs. We have

S 0w

veV

= > (f.u)+ f(v.u)

veV
= Y fa)+ Y flvu)
veV veV
= Zf(u,v) + Zf’(u,v) (becausef, f’ obey flow conservation)
veV veV
= Y (f@.v)+ f'(uv))
veV

= Y (/).
veV
We conclude thay 1 f” satisfies flow conservation.

We now show thaif 1 f’ need not satisfy the capacity constraint by giving a sim-
ple counterexample. Let the flow netwaikhave just a source and a target vertex,
with a single edgds,) havingc(s,t) = 1. Define the flowsf and f’ to have
f(s,t) = f'(s,t) = 1. Then, we havé f 1 f')(s,t) = 2 > c(s,t). We conclude
that £ 1 f’ need not satisfy the capacity constraint.

Solution to Exercise 26.2-11
This solution is also posted publicly

For any two vertices andv in G, we can define a flow network,, consisting
of the directed version off with s = u, t+ = v, and all edge capacities set o
(The flow networkG,,, hasV vertices an@ | E| edges, so that it ha@(V') vertices
and O(F) edges, as required. We want all capacities to be 1 so thauthéer of
edges ofG crossing a cut equals the capacity of the cufijp.) Let f,, denote a
maximum flow inG,,,,.

We claim that for any: € V, the edge connectivity equals Vmi{n}{|fuv|}. We'll
veV —u
show below that this claim holds. Assuming that it holds, ae findk as follows:

EDGE-CONNECTIVITY (G)

k=00

select any vertex € G.V

for each vertew € G.V — {u}
set up the flow networks,,, as described above
find the maximum flowf,,, on G,,,,
k = min(k. | fuv|)

return k

The claim follows from the max-flow min-cut theorem and how etwse capac-
ities so that the capacity of a cut is the number of edges iagpss We prove

26-20 Solutions for Chapter 26: Maximum Flow

thatk = rIr/nr{] }{|fw|}, for anyu € V by showing separately thatis at least this
veEV —u

minimum and thak is at most this minimum.
* Proof thatk > min {| f,,,|}:
veV—{u}

Letm = r‘r/ur{l }{|fuv|}. Suppose we remove only — 1 edges fromG. For
veV —u

any vertexv, by the max-flow min-cut theoremy andv are still connected.
(The max flow fromu to v is at leastn, hence any cut separatimgfrom v has
capacity at least:, which means at least edges cross any such cut. Thus at
least one edge is left crossing the cut when we removd edges.) Thus every
vertex is connected te, which implies that the graph is still connected. So at
leastn edges must be removed to disconnect the graph—ki.ig.,erlr/]irg }{|fw|}.

% —U

* Proof thatk < min {| f,,,|}:
veV—{u}

Consider a vertex with the minimum| f,,,|. By the max-flow min-cut the-
orem, there is a cut of capacity,,| separating: andv. Since all edge ca-
pacities are 1, exactlyf,,| edges cross this cut. If these edges are removed,
there is no path fronw to v, and so our graph becomes disconnected. Hence

k < min }{Ifuvl}-

veV—{u

* Thus, the claim that = r‘r/nr{] }{|fuv|}, for anyu € V is true.
vEV —uU

Solution to Exercise 26.2-12

The idea of the proof is that if (v, s) = 1, then there must exist a cycle containing
the edge(v, s) and for which each edge carries one unit of flow. If we reduee th
flow on each edge in the cycle by one unit, we can redfite s) to 0 without
affecting the value of the flow.

Given the flow networkG and the flowf, we say that vertey is flow-connected
to vertexz if there exists a patlp from y to z such that each edge ¢f has a
positive flow on it. We also defing to be flow-connected to itself. In particular,
is flow-connected ta.

We start by proving the following lemma:

Lemma
LetG = (V, E) be aflow network ang’ be a flow inG. If s is not flow-connected
tov, then f(v,s) = 0.

Proof The idea is that sinceis not flow-connected to, there cannot be any flow
from s to v. By using flow conservation, we will prove that there cannetany
flow from v to s either, and thus thaf (v, s) = 0.

Let Y be the set of all verticeg such thats is flow-connected ty. By applying
flow conservation to vertices ii — Y and taking the sum, we obtain

Yo fx= Y Y fax).

zZ€V-Y xe€V zeV-Y xeV

Solutions for Chapter 26: Maximum Flow 26-21

PartitioningV into Y andV — Y gives

Yo fEa+ Y Y fx2)

zeV-Y xeV-Y zeV-Y xe€Y
= Y Y f@o+ Y D fax). ()
zeV-Y xeV-Y zeV-Y xe€Y
But we have
Yo fea=), Y fzx),
ZeV-Y xeV-Y zeV-Y xeV-Y

since the left-hand side is the same as the right-hand stdepefor a change of
variable names andz. We also have

Y. Y fxa)=0,
ZEV-Y x€Y

since the flow from any vertex ii¥ to any vertex inV — Y must be0. Thus,
equation t) simplifies to

> Y fx)=0.

zeV-Y xeY
The above equation implies thd{(z, x) = 0 foreachz e V —Y andx € Y. In
particular, since € V — Y ands € Y, we have thatf (v, s) = 0.]

Now, we show how to construct the required flgWt. By the contrapositive of the
lemma, f(v,s) > 0 implies thats is flow-connected ta through some patip.

Let path p’ be the paths % v — 5. Pathp’ is a cycle that has positive flow
on each edge. Because we assume that all edge capacitiegegers, the flow
on each edge op’ is at leastl. If we subtractl from each edge of the cycle to
obtain a flow f’, then f” still satisfies the properties of a flow network and has the
same value agf|. Because edgéy, s) is in the cycle, we have that’(v,s) =

f(v,s)—1=0.

Solution to Exercise 26.2-13

Let (S,7) and(X,Y) be two cuts inG (andG’). Let¢’ be the capacity function
of G’. One way to define’ is to add a small amoutto the capacity of each edge
in G. That s, ifu andv are two vertices, we set

c'(u,v) =c(u,v)+96.

Thus, if ¢(S,T) = c(X,Y) and (S,T) has fewer edges tha@X,Y), then
we would havec'(S,T) < ¢(X,Y). We have to be careful and choose a
small §, lest we change the relative ordering of two unequal cajeacitThat is,

if c(S,T) < c(X,Y), then no matter many more eddges 7') has than(X, Y), we
still need to have’(S,T) < ¢/(X,Y). With this definition ofc’, a minimum cut

in G’ will be a minimum cut inG that has the minimum number of edges.

How should we choose the value &% Letm be the minimum difference between
capacities of two unequal-capacity cutsGn Choosed = m/(2|E|). For any
cut (S, T), since the cut can have at m¢&t| edges, we can bound(S, T') by

26-22 Solutions for Chapter 26: Maximum Flow

¢(S,T) <c'(S,T) <c(S,T)+|E|-§.

Letc(S,T) < c(X,Y). We need to prove that(S,T) < ¢'(X,Y). We have
(S, Ty < ¢S, T)+|E|-S

= ¢(S,T)+m/2
< ¢(X,Y) (sincec(X,Y)—c(S,T) = m)
< JX,Y).

Because all capacities are integral, we can cheose 1, obtainings = 1/2 |E]|.
To avoid dealing with fractional values, we can scale allacites by2 |E| to
obtain

c'(u,v) =2|E|-c(u,v)+1.

Solution to Exercise 26.3-3
This solution is also posted publicly

By definition, an augmenting path is a simple path- ¢ in the residual net-
work G;. SinceG has no edges between verticeslinand no edges between
vertices inR, neither does the flow netwoi®’ and hence neither do€s;. Also,
the only edges involving or ¢ connects to L andR to z. Note that although edges
in G’ can go only fromL to R, edges irG} can also go fronR to L.

Thus any augmenting path must go
s—>L—>R—>--+-—>L—>R-—>t,

crossing back and forth betwedn and R at most as many times as it can do
so without using a vertex twice. It contains ¢, and equal numbers of dis-
tinct vertices fromL and R—at most2 4 2 - min(|L|, |R|) vertices in all. The
length of an augmenting path (i.e., its number of edges)us bounded above by
2-min(|L|,|R]|) + 1.

Solution to Exercise 26.4-1

We apply the definition of excess flow (equation (26.14)) withtial preflow f
created by MITIALIZE -PREFLOW (equation (26.15)) to obtain

els) = Y fL.9)=) flsv)

veV veV

= O—Zc(s,v)

veV
= — Z c(s,v) .
veV
Now,

=1 = DY) =) fr(s)

veV veV

Solutions for Chapter 26: Maximum Flow 26-23

A%

0— Zc(s, V) (since f*(v,s) = 0and f*(s,v) < c(s,v))

veV

= e(s).

Solution to Exercise 26.4-3

Each time we call RLABEL (1), we examine all edgeg:,v) € Ey. Since the
number of relabel operations is at magt’| — 1 per vertex, edgéu, v) will be
examined during relabel operations at mést’| — 2 = O(V) times (at most
2|V| — 1 times during calls to RLABEL (#) and at mos® || — 1 times during
calls to RELABEL (v)). Summing up over all the possible residual edges, of which
there are at moX|E| = O(E), we see that the total time spent relabeling vertices
is O(VE).

Solution to Exercise 26.4-4

We can find a minimum cut, given a maximum flow foundGn_ (v, E) by a
push-relabel algorithm, i@ (V) time. Flrst find a helghh such thad < h < V|

and there is no vertex whose height eqt}ahst termination of the algorithm. We
need consider only¥’ | — 2 vertices, sinca.h = |V | andt.h = 0. Becausé: can

be one of at mogtV’| — 1 possible values, we know that for at least one number in
1,2,...,]V| — 1, there will be no vertex of that height. Hend%is well defined,
and it is easy to find irO(V) time by using a simple boolean array indexed by
heightsl,2,...,|V|— 1.

LetS ={ueV:uh> if} and7 = {veV:vh< }?} Because we know that

s.h=1V]| > h, we haves € S, and becauseh = 0 < /, we haver € T, as
required for a cut.

We need to show that(u,v) = c(u,v), i.e., that(u,v) & Ef, forallu € S and

v € T. Once we do that, we have thatS,T) = ¢(S, T), and by Corollary 26.5,
(S, T) is a minimum cut.

Suppose for the purpose of contradiction that there exisicesu € S andv € T
such that(u,v) € Ey. Becauseh is always maintained as a height function
(Lemma 26.16), we have thath < v.h + 1. But we also have.h < h < u.h,
and because all values are integeh < u.h—2. Thus, we havee.h <v.h+1 <
u.h—2+1 = u.h—1, which gives the contradiction thatheight < u.height—1.
Thus,(S, T) is a minimum cut.

Solution to Exercise 26.4-7

If we sets.h = || — 2, we have to change our definition of a height function to
allow s.h = |V | — 2, rather thars.h = |VV|. The only change we need to make to

26-24 Solutions for Chapter 26: Maximum Flow

the proof of correctness is to update the proof of Lemma 26Ihé original proof
derives the contradiction thath < k£ < |V|, which is at odds witks.h = |V].
Whens.h = |V| — 2, there is no contradiction.

As in the original proof, let us suppose that we have a simptgreenting path
{(vo, v1,..., Vi), Wherev, = s andv, = ¢, so thatk < |V|. How could(s, v,) be
aresidual edge? It had been saturatedvimihLIZE -PREFLOW, which means that
we had to have pushed some flow fremto s. In order for that to have happened,
we must have had;.h = s.h + 1. If we sets.h = |V | — 2, thenv,.hwas|V| — 1
at the time. Since theny;.h did not decrease, and so we hayeh > |V| — 1.
Working backwards over our augmenting path, we hayg.h < ¢t.h 4+ i for
i = 0,1,...,k. As before, because the augmenting path is simples |V]|.
Lettingi = k — 1, we havev,.h <th+k—1 <0+ |V|— 1. We now have
the contradiction that,.h > |V| — 1 andv;.h < |V| — 1, which shows that
Lemma 26.17 still holds.

Nothing in the analysis changes asymptotically.

Solution to Problem 26-2

a. The idea is to use a maximum-flow algorithm to find a maximumatige
matching that selects the edges to use in a minimum path.ddeemust show
how to formulate the max-flow problem and how to constructghth cover
from the resulting matching, and we must prove that the #tgarindeed finds
a minimum path cover.

DefineG’ as suggested, with directed edges. Makénto a flow network with
sourcex, and sinky, by defining all edge capacities to be &' is the flow
network corresponding to a bipartite graptf in which L = {x,...,x,},

R = {y1,...,y.}, and the edges are the (undirected version of the) subset
of E’ that doesn't involvex, or y,.

The relationship ofG to the bipartite graplG” is that every vertex in G is
represented by two vertices;, andy;, in G”. Edge(i, j) in G corresponds to
edge(x;,y;) in G”. That is, an edgéx;, y;) in G” means that an edge G
leavesi and enterg . Vertexx; tells us about edges leaviigand y; tells us
about edges entering

The edges in a bipartite matching @’ can be used in a path cover Gf for
the following reasons:

* In a bipartite matching, no vertex is used more than once. lipartite
matching inG”, since nax; is used more than once, at most one edge in the
matching leaves any vertéxn G. Similarly, since noy; is used more than
once, at most one edge in the matching enters any vériexG.

* In a path cover, since no vertex appears in more than one giathgst one
path edge enters each vertex and at most one path edge leahegeetex.

We can construct a path covéY from any bipartite matching/ (not just a
maximum matching) by moving from some to its matchingy; (if any), then
from x; to its matchingy,, and so on, as follows:

Solutions for Chapter 26: Maximum Flow 26-25

1. Start a new path containing a vertethat has not yet been placed in a path.
2. If x; is unmatched, the path can't go any farther; just add ® to

3. If x; is matched to somg;, add; to the current path. If has already been
placed in a path (i.e., though we've just enteredly processingy;, we've
already built a path that leavgsby processingg;), combine this path with
that one and go back to step 1. Otherwise go to step 2 to pragess

This algorithm constructs a path cover, for the followinggens:

* Every vertex is put into some path, because we keep pickingased vertex
from which to start a path until there are no unused vertices.

* No vertex is put into two paths, because evefyis matched to at most
oney;, and vice versa. That is, at most one candidate edge leacks ea
vertex, and at most one candidate edge enters each verteen Wiiding a
path, we start or enter a vertex and then leave it, buildirig@espath. If we
ever enter a vertex that was left earlier, it must have beestdrt of another
path, since there are no cycles, and we combine those patthatdbe vertex
is entered and left on a single path.

Every edge inM is used in some path because we visit everyand we incor-
porate the single edge, if any, from each visikedThus, there is a one-to-one
correspondence between edges in the matching and edges aornbktructed
path cover.

We now show that the path covér constructed above has the fewest possible
paths when the matching is maximum.

Let f be the flow corresonding to the bipartite matchivig

Vi = Z (# vertices inp) (every vertex is on exactly 1 path)
PEP

= Z (1 +# edges irp)

PEP

= > 1+) (#edgesirp)

PEP PEP
= |P|+|M| (by 1-to-1 correspondence)
= |P|+|f] (by Lemma 26.9) .

Thus, for the fixed sét’ in our graphG, | P | (the number of paths) is minimized
when the flowf is maximized.

The overall algorithm is as follows:

* Use FORD-FULKERSON to find a maximum flow inG’ and hence a maxi-
mum bipartite matching/ in G”.

* Construct the path cover as described above.

Time
O(VE) total:

* O(V + E) to setupG’,
* O(VE) to find the maximum bipartite matching,

26-26 Solutions for Chapter 26: Maximum Flow

* QO(E) to trace the paths, because each edgé is traversed only once and
there areO(E) edges inM .

b. The algorithm does not work if there are cycles.

Consider a graptt; with 4 vertices, consisting of a directed triangle and an
edge pointing to the triangle:

E={(1.2).(2.3).3.). (4. D)}

G can be covered with a single path:—> 1 — 2 — 3, but our algorithm might
find only a 2-path cover.

In the bipartite graplt;’, the edgesx;. y;) are

(X1, ¥2)s (X2, ¥3), (X3, ¥1), (x4, y1) -

There are 4 edges from anto ay;, but 2 of them lead tg,, so a maximum
bipartite matching can have only 3 edges (and the maximum ifto@ has
value 3). In fact, there are 2 possible maximum matchingss dtways pos-
sible to match(xy, y,) and(x,, y3), and then eithefxs, y;) or (x4, y;) can be
chosen, but not both.

The maximum flow found by one of our max-flow algorithms coulttfthe
flow corresponding to either of these matchings, since bmhneaximal. If
it finds the matching with edgéxs, x;), then the matching would not con-
tain (x4, x1); given that matching, our path algorithm is forced to prad@c
paths, one of which contains just the vertex 4.

Solution to Problem 26-3

a. Assume for the sake of contradiction thét ¢ T for someA; € R;. Since
A, € T, we must haved;, € S. On the other hand, we havge € T. Thus,
the edge(A4y, J;) crosses the cutS, 7). Butc(Ag, J;) = oo by construction,
which contradicts the assumption tl{at T') is afinite-capacity cut.

b. Let us define groject-planas a set of jobs to accept and experts to hire. Let
P be a project-plan. We assume thathas two attributes. The attribute. J
denotes the set of accepted jobs, & denotes the set of hired experts.

A valid project-plan is one in which we have hired all experts thatraguired
by the accepted jobs. Specifically, [Btbe a valid project plan. 1¥; € P.J,
thenA4, € P.Afor eachA; € R;. Note that Professor Gore might decide to
hire more experts than those that are actually required.

We define theevenueof a project-plan as the total profit from the accepted jobs
minus the total cost of the hired experts. The problem asks tisd a valid
project plan with maximum revenue.

We start by proving the following lemma, which establishies telationship
between the capacity of a cut in flow netwotk and the revenue of a valid
project-plan.

Solutions for Chapter 26: Maximum Flow 26-27

Lemma (Min-cut max-revenue)

There exists a finite-capacity c(f, T') of G with capacityc(S, T') if and only
if there exists a valid project-plan with net reverQ€, ., pi) — c(S. T).
Proof Let (S, T) be a finite-capacity cut af with capacityc(S, 7). We prove
one direction of the lemma by constructing the requiredgmtsplan.

Construct the project-pla® by including J; in P.Jifand only if J; € T
and includingAx in P.Aif and only if A, € T. From part (a),P is a valid
project-plan, since, for every; € P.J, we haved, € P.Afor eachA; € R;.

Since the capacity of the cut is finite, there cannot be anye®dy the
form (Ag, J;) crossing the cut, wherd, € S andJ; € T. All edges going
from a vertex inS to a vertex inT must be either of the forr(s, A;) or of the

form (J;,t). Let E4 be the set of edges of the fortn, A;) that cross the cut,
and letE; be the set of edges of the fori;, ¢) that cross the cut, so that

c(S.T)= > e A+ Y (o).
(s,Ax)€E 4 (Ji,t)eE
Consider edges of the for@m, A;). We have
(s,Ar) € E4 ifandonlyif A, eT
ifand only if Ay € P.A.

By constructiong (s, Ax) = ¢,. Taking summations ovef 4 and overP. A, we
obtain

Z c(s, Ay) = Z Ck -

(s,Ax)E€EA Ar€P.A
Similarly, consider edges of the for;, t). We have
(J;,t) e E; ifandonlyif J; €S

ifandonlyif J, T

ifandonlyif J; & P.J.

By constructionge(J;,t) = p;. Taking summations ovef ; and overP.J, we
obtain

S =Y n.
(Jit)EE, Ji¢P.J

Let v be the net revenue df. Then, we have

26-28

Solutions for Chapter 26: Maximum Flow

b= Y- Y«

J;eP.) AgeP.A
= (Zl’i— Z Pi)— Z Ck
JieJ JigP.J Ax€eP.A
= Zpi_<z pi + Z Ck)
JieJ J;¢P.J Ar€P.A
= ZP:’—(Z c(Ji 1) + Z C(S,Ak))
JieJ (Ji,t)eE (s,Ax)EEA
= (Z pi) —c(S,T).
JieJ

Now, we prove the other direction of the lemma by constrgctime required
cut from a valid project-plan.

Construct the cutS, T') as follows. For every; € P.J, let J; € T. For every
Ar € P.A, IetAk eT.

First, we prove that the cutS, T') is a finite-capacity cut. Since edges of the
form (Ag, J;) are the only infinite-capacity edges, it suffices to prov¢ tiware
are no edgeéA;, J;) such that4, € SandJ; € T.

For the purpose of contradiction, assume there is an édgeJ/;) such that
Ar € S andJ; € T. By our constuction, we must have € P.J and
A, € P.A. But since the edgéA,, J;) exists, we havel, € R;. SinceP is a
valid project-plan, we derive the contradiction thit must have been i®. A.

From here on, the analysis is the same as the previous dimedh particular,
the last equation from the previous analysis holds: the e#ruev equals

(Z]ieJ Pi)—C(S, T).)

We conclude that the problem of finding a maximum-revenugeptglan re-
duces to the problem of finding a minimum cutGn Let (S, 7') be a minimum
cut. From the lemma, the maximum net revenue is given by

(pi) —c(S, 7).
jied

. Construct the flow network: as shown in the problem statement. Obtain a

minimum cut (S, 7) by running any of the maximum-flow algorithms (say,
Edmonds-Karp). Construct the project pl&nas follows: add/; to P.J if and
onlyif J; e T. Add A, to P.Aifandonly if 4, € T.

First, we note that the number of verticesGhis |V | = m + n + 2, and the

number of edges 7 is |E| = r + m + n. ConstructingG and recovering
the project-plan from the minimum cut are clearly lineandi operations. The
running time of our algorithm is thus asymptotically the saas the running
time of the algorithm used to find the minimum cut. If we use Bdas-Karp

to find the minimum cut, the running time @(VE?).

Solutions for Chapter 26: Maximum Flow 26-29

Solution to Problem 26-4
This solution is also posted publicly

a. Just execute one iteration of the Ford-Fulkerson algorithihe edgdu, v) in £
with increased capacity ensures that the edge) is in the residual network.
So look for an augmenting path and update the flow if a pathusdo

Time
O(V + E) = O(E) if we find the augmenting path with either depth-first or
breadth-first search.

To see that only one iteration is needed, consider sepathtkcases in which
(u,v) is or is not an edge that crosses a minimum cutuJfv) does not cross a
minimum cut, then increasing its capacity does not changedipacity of any
minimum cut, and hence the value of the maximum flow does nabgé. If
(u, v) does cross a minimum cut, then increasing its capacity bgreases the
capacity of that minimum cut by 1, and hence possibly theesalithe maxi-
mum flow by 1. In this case, there is either no augmenting pattvifich case
there was some other minimum cut titat v) does not cross), or the augment-
ing path increases flow by 1. No matter what, one iterationastif-ulkerson
suffices.

b. Let f be the maximum flow before reducirgu, v).
If f(u,v) =0, we don't need to do anything.

If f(u,v) > 0, we will need to update the maximum flow. Assume from now
on thatf(u,v) > 0, which in turn implies thatf (u, v) > 1.

Definef'(x,y) = f(x,y)forallx,y € V, exceptthatf'(u,v) = f(u,v)—1.
Although f” obeys all capacity contraints, even aftén, v) has been reduced,
it is not a legal flow, as it violates flow conservationuafunlessu = s) andv
(unlessv = ¢). f’ has one more unit of flow enteringthan leavingu, and it
has one more unit of flow leavingthan entering .

The idea is to try to reroute this unit of flow so that it goes olutz and intov
via some other path. If that is not possible, we must redueddiv froms to u
and fromv to ¢ by one unit.

Look for an augmenting path fromto v (note: notfrom s to ¢).

 If there is such a path, augment the flow along that path.

 If there is no such path, reduce the flow frero u by augmenting the flow
from u to s. That is, find an augmenting path ~» s and augment the
flow along that path. (There definitely is such a path, bectu=e is flow
from s tou.) Similarly, reduce the flow from to ¢ by finding an augmenting
pathz ~ v and augmenting the flow along that path.

Time
O(V + E) = O(FE) if we find the paths with either DFS or BFS.

26-30

Solutions for Chapter 26: Maximum Flow

Solution to Problem 26-5

. The capacity of a cut is defined to be the sum of the capacifi¢iseoedges

crossing it. Since the number of such edges is at fifoistand the capacity of
each edge is at moét, the capacity oanycut of G is at mostC | E|.

. The capacity of an augmenting path is the minimum capacigngfedge on the

path, so we are looking for an augmenting path whose ealybave capacity at
leastK. Do a breadth-first search or depth-first-search as usualdatfe path,
considering only edges with residual capacity at leas{Treat lower-capacity
edges as though they don't exist.) This search tdk@s + E) = O(FE) time.
(Note that|V| = O(FE) in a flow network.)

. MAX-FLOw-BY-SCALING uses the Ford-Fulkerson method. It repeatedly aug-

ments the flow along an augmenting path until there are no aoting paths
with capacity at least. Since all the capacities are integers, and the capacity
of an augmenting path is positive, when there are no augneepéths with ca-
pacity at least, there must be no augmenting paths whatsoever in the résidua
network. Thus, by the max-flow min-cut theoremakFLOW-BY-SCALING
returns a maximum flow.

.+ The first time line 4 is executed, the capacity of any edgé inequals its

capacity inG, and by part (a) the capacity of a minimum cut @fis at
mostC |E|. Initially K = 219¢) and s;2K = 2-2l9¢) = ploCl+1 5

29€ = C. Thus, the capacity of a minimum cut 6% is initially less than
2K |E].

* The other times line 4 is executeff, has just been halved, and so the ca-
pacity of a cut ofG, is at most2K | E| at line 4 if and only if that capacity
was at mosK |E| when thewhile loop of lines 5-6 last terminated. Thus,
we want to show that when line 7 is reached, the capacity ofngnmim cut
of G is at mostK |E|.

Let Gs be the residual network when line 7 is reached. When we reach
line 7, Gy contains no augmenting path with capacity at ldasiTherefore,

a maximum flowf” in G, has valug f'| < K |E|. Then, by the max-flow
min-cut theorem, a minimum cut ii; has capacity less thaki |E|.

. By part (d), when line 4 is reached, the capacity of a minimuwmnaf G is

at most2K |E|, and thus the maximum flow i, is at most2K |E|. The
following lemma shows that the value of a maximum flowGnequals the
value of the current flows in G plus the value of a maximum flow iG.

Lemma

Let f/ be a flow in flow networkG, and /' be a maximum flow in the residual
networkG,. Thenf 1 f'is a maximum flow inG.

Proof By the max-flow min-cut theorenf’| = ¢, (S, T') for some cu(S, T)
of G, which is also a cut ofG. By Lemma 26.4,|f| = f(S.T). By
Lemma 26.1,f 1 /' is a flow in G with value |f 1 f'| = |f| + |f']. We

Solutions for Chapter 26: Maximum Flow 26-31

will show that| | + | /| = ¢(S, T') which, by the max-flow min-cut theorem,
will prove that f 1 f’ is a maximum flow inG.

We have
fI+1f'T = f(S.T)+¢(S,T)
= (ZZf(u,v) —ZZf(v,u)) + ZZcf(u,v)
ueS veT ueS veT ueS veT
= (> fuw) - Zf(v,u))
ueS,veT ueS,vel
4 Zc(u,v)—Zf(u,V)-i-Zf(V,”)
(R S A S S

Noting that(u, v) € E implies f(u,v) = 0, we have that

D Sy =" fu.v).

ueS,veT ueS,veT,
(u,v)eEE
Similarly,
D fawy =" fvu).
ueS,veT ueS,veT,
(v.u)eE

Thus, the summations of(u, v) cancel each other out, as do the summations
of f(v,u). Therefore,

FI+1FT = 3 e

ueS,veT,
(u,v)eE

= ZZc(u,v)

ueS veT

= ¢(S5, 7). m (lemma)

By this lemma, we see that the value of a maximum flowiis at mos K |E|
more than the value of the current flgtvin G. Every time the innewhile loop
finds an augmenting path of capacity at le&stthe flow inG increases by at
leastK. Since the flow cannot increase by more tB&h| E|, the loop executes
at most(2K |E|)/K = 2|E| times.

f. The time complexity is dominated by thehile loop of lines 4—-7. (The lines
outside the loop take&(E) time.) The outemwhile loop executex0(IgC)
times, sinceK is initially O(C) and is halved on each iteration, un&ll < 1.
By part (e), the innewhile loop execute®)(E) times for each value ok, and
by part (b), each iteration takeé®(E) time. Thus, the total time i© (E?Ig C).

Solutions for Chapter 27:
Multithreaded Algorithms

Solution to Exercise 27.1-1

There will be no change in the asymptotic work, span, or peisin of P-HB
even if we were to spawn the recursive call to B — 2). The serialization of
P-FiB under consideration would yield the same recurrence asahgts ; we can,
therefore, calculate the work d%(n) = ®(¢™). Similarly, because the spawned
calls to P-kB(n — 1) and P-FB(n — 2) can run in parallel, we can calculate the
span in exactly the same way as in the t&t,(n) = ©(n), resulting in®(¢"/n)
parallelism.

Solution to Exercise 27.1-5

By the work law forP = 4, we have80 = T, > T;/4, or T} < 320. By the span
law for P = 64, we haveT,, < Ts, = 10. Now we will use inequality (27.5) from
Exercise 27.1-3 to derive a contradiction. Bbr= 10, we have

42 - T10
320 — T
< —+4T
= 10 + I
9
= 324 —T.
AT
or, equivalently,
10
Too > 3-10
> 10,

which contradictsl,, < 10.
Therefore, the running times reported by the professoruspisious.

27-2 Solutions for Chapter 27: Multithreaded Algorithms

Solution to Exercise 27.1-6

FAST-MAT-VEC(4, x)

n = A.rows
let y be a new vector of length
parallel for i = 1ton

yi=20
parallel for i = 1ton

y; = MAT-SUB-LOOP(A, x,i, 1,n)
return y

MAT-SUB-LOOP(A, x,1, J, j')

if j==j’
return a;jXx;

elsemid = |(j +j)/2]
lhalf = spawnMAT-SUB-LOOP(A4, x, i, j, mid)
uhalf = MAT-SUB-LOOP(A, x,i,mid+ 1, j')
sync
return lhalf + uhalf

We calculate the world’; (n) of FAST-MAT-VEC by computing the running time
of its serialization, i.e., by replacing thparallel for loop by an ordinaryor loop.
Therefore, we havé) (n) = n T|(n), whereT; (n) denotes the work of Mr-SuB-
LooPto compute a given output entsy. The work of MAT-SUB-LOOPs given
by the recurrence

T/(n) =2T/(n/2) + ©(1) .

By applying case 1 of the master theorem, we h&{#) = ®(n). Therefore,
Ti(n) = ©(n?).

To calculate the span, we use

To(n) = 0O(gn) + 1m'ax itero (i) .

Note that each iteration of the secopdrallel for loop calls procedure kr-
SuB-Looprwith the same parameters, except for the indeRecause MT-SuB-
Loorrecursively halves the space between its last two param@tandn), does
constant-time work in the base case, and spawns one of thesiexcalls in paral-
lel with the other, it has spa®(lgn). The procedure AT-MAT-VEC, therefore,
has a span aP(Ign) and®(n2/Ig n) parallelism.

Solution to Exercise 27.1-7

We analyze the work of P-RANSPOSE as usual, by computing the running time
of its serialization, where we replace both therallel for loops with simplefor

Solutions for Chapter 27: Multithreaded Algorithms 27-3

loops. We can compute the work of FRANSPOSEUSINg the summation

Ti(n) = @(Z(j—l))

()

= 0O@m?).

The span of P-RANSPOSEis determined by the span of the doubly negiachllel

for loops. Although the number of iterations of the inner loopet®ls on the value
of the variable; of the outer loop, each iteration of the inner loop does @onist
work. Letiter,(j) denote the span of thgth iteration of the outer loop and
iter’ (i) denote the span of thih iteration of the inner loop. We characterize the
spanT,,(n) of P-TRANSPOSEas

Too(n) = ©(Ign) + max itero (/) .
<jszn

The maximum occurs wheh = n, and in this case,

itero.(n) = ©(gn) + max. iter (i) .

As we noted, each iteration of the inner loop does constamk,wand therefore
iter’ (i) = ©(1) for all i. Thus, we have

Tw(n) = ©(gn)+ O(gn) + O(1)
= O(gn).

Since the work P-RANSPOSEIs ©(n?) and its span i®(Ign), the parallelism of
P-TRANSPOSEIs ®(n2/Ign).

Solution to Exercise 27.1-8

If we were to replace the inngarallel for loop of P-TRANSPOSEWith an ordinary
for loop, the work would still remai®(n?). The span, however, would increase
to ®(n) because the last iteration of tiparallel for loop, which dominates the
span of the computation, would lead (@ — 1) iterations of the inner, seridibr
loop. The parallelism, therefore, would reduceit(:?)/©(n) = O(n).

Solution to Exercise 27.1-9

Based on the values of work and span given for the two versibrthe chess
program, we solve foP using

2048+1_ 1024+8
P P ’

The solution givesP betweenl46 and147.

27-4 Solutions for Chapter 27: Multithreaded Algorithms

Solution to Exercise 27.2-3

P-FAST-MATRIX-MULTIPLY (A4, B)

n = A.rows
let C be a new: x n matrix
parallel for i = 1ton
parallel for j = 1ton
¢ij = MATRIX-MULT-SUBLOOP(A4, B, i, j,1,n)
return C

MATRIX-MULT-SUBLOOP(A, B, i, j, k,k')

if k ==k’
return a;iby;

elsemid = |(k + k')/2]
lhalf = spawnMATRIX-MULT-SUBLOOP(A, B, i, j, k, mid)
uhalf = MATRIX-MULT-SUBLOOP(A, B,i, j,mid+ 1,k")
sync
return lhalf + uhalf

We calculate the worll’; (n) of P-FAST-MATRIX-MULTIPLY by computing the
running time of its serialization, i.e., by replacing trerallel for loops by ordinary
for loops. Therefore, we havE (n) = n? T|(n), whereT/(n) denotes the work
of MATRIX-MULT-SUBLOOP to compute a given output entey;. The work of

MATRIX-MULT-SUBLOOP is given by the recurrence

T/(n) =2T/(n/2) + O(1) .

By applying case 1 of the master theorem, we h#{g:) = ©(n). Therefore,
Ti(n) = O(n?).

To calculate the span, we use

Tw(n) = 06(gn) + lrgiei)é itero (i) .

Note that each iteration of the outparallel for loop does the same amount of
work: it calls the innemarallel for loop. Similarly, each iteration of the inner
parallel for loop calls procedure MrrRix-MuULT-SUBLOOP with the same pa-
rameters, except for the indicésand j. Because MTRIX-MULT-SUBLOOP re-
cursively halves the space between its last two paramdtarsd:), does constant-
time work in the base case, and spawns one of the recurslgdrcphrallel with the
other, it has spa®(lg n). Since each iteration of the inngarallel for loop, which
hasn iterations, has spa®(Ign), the innerparallel for loop has spa®(lgn). By
similar logic, the outeparallel for loop, and hence procedure RST-MATRIX -
MULTIPLY, has spa®(Ilgn) and®(n3/Ign) parallelism.

Solution to Exercise 27.2-4

We can efficiently multiply gp x g matrix by ag x r matrix in parallel by using
the solution to Exercise 27.2-3 as a base. We will replacaipiper limits of the

Solutions for Chapter 27: Multithreaded Algorithms 27-5

nestedparallel for loops with p andr respectively and we will pasg as the last
argument to the call of MTRIX-MULT-SUBLOOP. We present the pseudocode for
a multithreaded algorithm for multiplying ax ¢ matrix by ag x r matrix in proce-
dure P-G&EN-MATRIX-MULTIPLY below. Because the pseudocode for procedure
MATRIX-MULT-SUBLOOP (which P-GEN-MATRIX-MULTIPLY calls) remains the
same as was presented in the solution to Exercise 27.2-3pwetdepeat it here.

P-GEN-MATRIX-MULTIPLY (A4, B)

p = A.rows
g = A.columns
r = B.columns
let C be a newp x r matrix
parallel for i = 1to p

parallel for j = 1tor

¢ij = MATRIX-MULT-SUBLOOP(4, B, i, j,1,q)

return C

To calculate the work for P-&N-MATRIX-MULTIPLY, we replace thearallel for
loops with ordinaryfor loops. As before, we can calculate the work oAT&IX -
MuLT-SUBLOOP to be ®(g) (because the input size to the procedure tsere).
Therefore, the work of P-&N-MATRIX-MULTIPLY is T} = O(pgr).

We can analyze the span of PE&MATRIX-MULTIPLY as we did in the solution
to Exercise 27.2-3, but we must take into account the diftermimber of loop
iterations. Each of the iterations of the outegparallel for loop executes the inner
parallel for loop, and each of the iterations of the inneparallel for loop calls
MATRIX-MULT-SUBLOOP, whose span is given b§(lgg). We know that, in
general, the span of parallel for loop with n iterations, where théth iteration
has spatiter .. (i) is given by

Too = O(gn) + lm_ax iterso (i) .

Based on the above observations, we can calculate the sg&aGafN-MATRIX -
MULTIPLY as

Too = ©O(gp)+06(gr)+6(gq)

= 0(g(pgr)) .
The parallelism of the procedure is, therefore, given@pqgr/lg(pgr)). To
check whether this analysis is consistent with Exercis@-37.we note that if

p = q = r = n, then the parallelism of P-&J-MATRIX-MULTIPLY would
be®®3/lgn3®) = On3/Ign).

27-6 Solutions for Chapter 27: Multithreaded Algorithms

Solution to Exercise 27.2-5

P-MATRIX-TRANSPOSERECURSIVE(A, r, ¢, s)

/I Transpose the x s submatrix starting at,..

if s==1
return

elses’ = |s/2]
spawnP-MATRIX-TRANSPOSERECURSIVE(A, r, ¢, s')
spawnP-MATRIX-TRANSPOSERECURSIVE(A,r + s',¢c + §',5 — 5')
P-MATRIX-TRANSPOSESWAP(A,r,c +s',r +5',¢c,5,5 —5')
sync

P-MATRIX-TRANSPOSESWAP(A, r{,C1,¥2,C2,81,52)

/I Transpose the; x s, submatrix starting at,, ., with thes, x s; submatrix
/I starting ata,,, .
if 51 <s5
P-MATRIX-TRANSPOSESWAP(A, 15, ¢, F1,C1,52,51)
elseifs, ==1 /I sinces; > s,, must have that, equalsl
exchange,, ., witha,, .,
elses’ = |s51/2]
spawn P-MATRIX-TRANSPOSESWAP(A, r», ¢, F1,C1, 82, 58)
P-MATRIX-TRANSPOSESWAP (A, ry,¢co + 8,11 + 5", ¢1,52,51 — §)
sync

In order to transpose an x n matrix A, we call P-MATRIX-TRANSPOSE
RECURSIVHA, 1, 1, n).

Let us first calculate the work and span of PatlkiX-TRANSPOSESWAP so that
we can plug in these values into the work and span calcuatdrP-MATRIX -
TRANSPOSERECURSIVE The work 7| (N) of P-MATRIX-TRANSPOSESWAP
on anN -element matrix is the running time of its serialization. Weve the recur-

rence
T{(N) = 2T{(N/2)+©O()
= O(N).
The sparil’,_(N) is similarly described by the recurrence
To(N) = T(N/2)+6()
O(gN).

In order to calculate the work of P-MRIX-TRANSPOSERECURSIVE, we calcu-
late the running time of its serialization. L& (N) be the work of the algorithm

on anN -element matrix, wher&/ = n?, and assume for simplicity thatis an
exact power oR. Because the procedure makes two recursive calls with squar
submatrices of sizes/2 x n/2 = N/4 and because it do&3(n?) = ©(N) work

to swap all the elements of the other two submatrices ofisi2ex n/2, its work

is given by the recurrence

T'(N) = 2Ti(N/4)+ O(N)
O(N).

Solutions for Chapter 27: Multithreaded Algorithms 27-7

The two parallel recursive calls in P-MRIX-TRANSPOSERECURSIVE execute
on matrices of siza/2 x n/2. The span of the procedure is given by maximum of
the span of one of these two recursive calls andQliig N) span of P-MTRIX-
TRANSPOSESWAP, plus®(1). Since the recurrence

Too(N) = T (N/4) + O(1)

has the solutior?,(N) = ©(Ig N) by case 2 of Theorem 4.1, the span of the
recursive call is asymptotically the same as the span of &ARVK-TRANSPOSE
SwAP, and hence the span of PAVRIX-TRANSPOSERECURSIVEiIS ©(Ig N).
Thus, P-MATRIX-TRANSPOSERECURSIVE has parallelism®(N/IgN) =
On?/Ign).

Solution to Exercise 27.2-6

P-FLOYD-WARSHALL (W)

n = W.rows
parallel for i = 1ton
parallel for j = 1ton
dij = wy;
fork = 1ton
parallel for i = 1ton
parallel for j = 1ton
di; = min(d;;, dix + dij)
return D

By Exercise 25.2-4, we can compute all the values in parallel.

The work of P-FEOYD-WARSHALL is the same as the running time of its serializa-
tion, which we computed a3 (n?) in Section 25.2. The span of the doubly nested
parallel for loops, which do constant work inside,@lg). Note, however, that
the second set of doubly nestedrallel for loops is executed within each of the
iterations of the outermost serifalr loop. Therefore, P-EOYD-WARSHALL has
span®(nlgn) and®(n?/Ig n) parallelism.

Solution to Problem 27-1

a. Similar to MAT-VEC-MAIN-LOOP, the required procedure, which we name
NESTED-SUM-ARRAYS, will take parameters and j to specify the range of
the array that is being computed in parallel. In order to grenfthe pairwise
addition of twon-element arrayst and B and store the result into arrdy, we
call NESTED-SUM-ARRAYS(A, B, C, 1, A.length.

27-8

Solutions for Chapter 27: Multithreaded Algorithms

NESTED-SUM-ARRAYS(A, B, C,i, j)
ifi==j
Cli] = Ali] + BJi]
elsek = |(i + j)/2] spawnNESTED-SUM-ARRAYS(A, B, C,i,k)
NESTED-SUM-ARRAYS(A, B,C.k + 1,)
sync

The work of NESTED-SUM-ARRAYS is given by the recurrence
Ti(n) = 2Ti(n/2) +6(1)
O(n),

by case 1 of the master theorem. The span of the procedurges gy the
recurrence

To(n) = Ty@n/2)+ 6(1)

= 0(gn).
by case 2 of the master theorem. Therefore, the above dgohias® (/g n)
parallelism.

. Because AD-SUBARRAY is serial, we can calculate both its work and span to

be®(j —i + 1), which based on the arguments from the call iIMSARRAYS'
is ®©(grain-size, for all but the last call (which i€ (grain-size).

If grain-size = 1, the procedure $v-ARRAYS' calculates to ben, and each
of then iterations of the seridbr loop spawns AD-SUBARRAY with the same
value,k + 1, for the last two arguments. For example, wher= 0, the last
two arguments to AD-SUBARRAY arel, whenk = 1, the last two arguments
are2, and so on. That is, in each call tdA-SUBARRAY, its for loop iterates
once and calculates a single value in the atayWhengrain-size = 1, the
for loop in UM-ARRAYS' iteratesn times and each iteration takég1) time,
resulting in®(n) work.

Although thefor loop in SUM-ARRAYS' looks serial, note that each iteration
spawns the call to AD-SUBARRAY and the procedure waits for all its spawned
children at the end of thier loop. That is, all loop iterations of Bv-ARRAYS'
execute in parallel. Therefore, one might be tempted to lsaythe span of
SuM-ARRAYS' is equal to the span of a single call toA-SUBARRAY plus the
constant work done by the first three lines ioN&ARRAYS, giving ©(1) span
and®(n) parallelism. This calculation of span and parallelism widug wrong,
however, because there arspawns of AD-SUBARRAY in SUM-ARRAYS/,
wherer is not a constant. Hence, we must ad®é&) term to the span of
SuM-ARRAYS' in order to account for the overhead of spawningalls to
ADD-SUBARRAY.

Based on the above discussion, the span ofMS\RRAYS is O(r) +
O(grain-size 4+ ©(1). Whengrain-size = 1, we getr = n; therefore,
SUM-ARRAYS has®(n) span andd(1) parallelism.

. For a generagrain-sizeg each iteration of théor loop in SUM-ARRAYS' except

for the last results igrain-sizeiterations of thefor loop in ADD-SUBARRAY.
In the last iteration of 8M-ARRAYS', thefor loop in ADD-SUBARRAY iter-
atesn modgrain-sizetimes. Therefore, we can claim that the span afbA
SUBARRAY is ®(max(grain-size n modgrain-size) = ©(grain-size.

Solutions for Chapter 27: Multithreaded Algorithms 27-9

SuM-ARRAYS' achieves maximum parallelism when its span, give®ify) +
®(grain-size + O(1), is minimum. Since: = [r/grain-siz€], the minimum
occurs when ~ grain-size i.e., whengrain-size~ /n.

Solution to Problem 27-2

a. We initialize the output matrixC using doubly nestegarallel for loops and
then call P-MATRIX-MULTIPLY-RECURSIVE, defined below.

P-MATRIX-MULTIPLY-LESSMEM(C, A4, B)

n = A.rows
parallel for i = 1ton
parallel for j = 1ton
Cij = 0

P-MATRIX-MULTIPLY-RECURSIVE (C, A, B)

P-MATRIX-MULTIPLY-RECURSIVE (C, A4, B)

n = A.rows

if n==1
i1 = ¢ +anbn

elsepartition A, B, andC inton/2 x n/2 submatrices

A11, A1z, Az, Aga; Biy, Bia, By, By andCyy, Cra, Cop, Cpy

spawn P-MATRIX-MULTIPLY-RECURSIVE (Cy;, A1, By1)
spawn P-MATRIX-MULTIPLY-RECURSIVE (Ci,, 411, B12)
spawn P-MATRIX-MULTIPLY-RECURSIVE (Cy;, A1, By1)
P-MATRIX-MULTIPLY-RECURSIVE (Cys, 421, Bi2)
sync
spawn P-MATRIX-MULTIPLY-RECURSIVE (Cy1, A2, B>1)
spawn P-MATRIX-MULTIPLY-RECURSIVE (Ci,, A2, B»)
spawn P-MATRIX-MULTIPLY-RECURSIVE (C,1, A3y, By))
P-MATRIX-MULTIPLY-RECURSIVE (Cy,, A2y, Byy)
sync

b. The procedure P-MrRIX-MULTIPLY-LESSMEM performs ®(n?) work in
the doubly nestedparallel for loops, and then it calls the procedure
P-MATRIX-MULTIPLY-RECURSIVE. The recurrence for the workf| (n) of
P-MATRIX-MULTIPLY-RECURSIVE is 8M/(n/2) + ©(1), which gives us
M| (n) = ©(n?). ThereforeT;(n) = O(n>).

The span of the doubly nestguarallel for loops that initialize the out-
put arrayC is ®(Ign). In P-MATRIX-MULTIPLY-RECURSIVE, there are
two groups of spawned recursive calls; therefore, the spip(n) of
P-MATRIX-MULTIPLY-RECURSIVE is given by the recurrencdf/ (n) =
2M/ (n/2) + ©(1), which gives usM/ (n) = ©(n). Because the span(n)
of P-MATRIX-MULTIPLY-RECURSIVE dominates, we havé,,(n) = O (n).

27-10 Solutions for Chapter 27: Multithreaded Algorithms

c. The parallelism of P-MTRIX-MULTIPLY-LESSMEM is O(n/n) = O(n?).
Ignoring the constants in th@-notation, the parallelism for multiplying000 x
1000 matrices is1000?> = 10°, which is only a factor ofl0 less than that
of P-MATRIX-MULTIPLY-RECURSIVE Although the parallelism of the new
procedure is much less than that of PANRIX-MULTIPLY-RECURSIVE, the
algorithm still scales well for a large number of processors

Solution to Problem 27-4

a. Here is a multithreadeg-reduction algorithm:

P-REDUCE(x, 1, j)

ifi==j
return x[i]

elsemid = [(i + j)/2]
Ih = spawnP-REDUCE(x, i, mid)
rh = P-REDUCE(x, mid + 1, j)
sync
return lh ® rh

If we denote the length —i + 1 of the subarray[i .. j] by n, then the work for
the above algorithm is given by the recurrefGén) = 27,(n/2) + ©(1) =
®(n). Because one of the recursive calls to PBRCE is spawned and the
procedure does constant work following the recursive ealtsin the base case,
the span is given by the recurreng (n) = T (n/2) + ©(1) = O(lgn).

b. The work and span of P€3N-1-Aux dominate the work and span of P-
ScAN-1. We can calculate the work of PE&N-1-Aux by replacing thepar-
allel for loop with an ordinaryfor loop and noting that in each iteration, the
running time of P-RbucEe will be equal to®(/). Since P-8AN-1 calls P-
ScAN-1-Aux with 1 andr as the last two arguments, the running time of
P-ScAN-1, and hence its work, ®(1 + 2 + --- + n) = O(n?).

As we noted earlier, thparallel for loop in P-SAN-1-AuX undergoes: it-
erations; therefore, the span of R-8\-1-AuX is given by®(lgn) for the
recursive splitting of the loop iterations plus the spanhef iteration that has
maximum span. Among the loop iterations, the call to BBRCE in the last
iteration (when/ = n) has the maximum span, equal ®&(Ign). Thus, P-
ScaN-1 has®(lgn) span andd(n?/ Ign) parallelism.

c. In P-ScAN-2-Aux, before theparallel for loop in lines 7 and 8 executes,
the following invariant is satisfiedy[l]] = x[i] ® x[i + 1] ® --- ® x][/] for
I =ii+1,....kandy[l] = xk + 1] @ x[k +2]® --- @ x[l]for | =
k+1,k+2,...,j. Theparallel for loop need not updatg[i|, ..., y[k], since
they have the correct values after the call to €A8-2-Aux(x, y,i, k). For
l=k+1,k+2,...,j,theparallel for loop sets

vl = ylk]® y[l]
x[i]l®--- x[k]x[k+1]® - ® x[/]

Solutions for Chapter 27: Multithreaded Algorithms 27-11

= x[i]®---®x[/],
as desired. We can run this loop in parallel becausdithéeration depends
only on the values of [k], which is the same in all iterations, ampdl]. There-
fore, when the call to P-&N-2-Aux from P-SCAN-2 returns, array repre-
sents thex-prefix computation of array.

Because the work and span of R/\-2-Aux dominate the work and span
of P-ScAN-2, we will concentrate on calculating these values fordxig-2-
Aux working on an array of size. The work PS2A4,(n) of P-SCAN-2-AUX

is given by the recurrencBS2A4,(n) = 2PS2A4,(n/2) + ©(n), which equals
O(n Ign) by case 2 of the master theorem. The sp&i2 A, (n) of P-SCAN-2-
Aux is given by the recurrencBS2A4,,(n) = PS2A.(n/2)+ 0O(Ign), which
equals®(lg® n) per Exercise 4.6-2. That is, the work, span, and paralletism
P-SCAN-2 are®(n lgn), ©(Ig* n), and®(n/ Ign), respectively.

d. The missing expression in line 8 of Fe&N-UP is ¢[k] ® right. The missing
expressions in lines 5 and 6 of R=&\-DowN arev andv ® ¢[k], respectively.

As suggested in the hint, we will prove that the valwe passed to
P-SCAN-DOWN(v, x, ¢, y,i, j) satisfiesy = x[1] ® x[2] ® --- ® x[i — 1],
so that the value ® x[i] stored intoy[i] in the base case of PEAN-DOWN is
correct.

In order to compute the arguments that are passed toAN-DOWN, we must
first understand whatk|] holds as a result of the call to Pe&N-UP. A call to
P-SCAN-UP(x,t,i, j) returnsx[i] ® - -- ® x[j|; because k] stores the return
value of P-AN-UP(x, 1,1, k), we can say thatfk] = x[i] ® --- ® x[k].

The valuev = x[1] when P-&AN-DOWN(x[1], x,¢, y,2,n) is called from
P-SCcAN-3 clearly satisifiesy = x[1] ® --- ® x[i — 1]. Let us suppose that
v =x[1]®x[2] ® --- ® x[i — 1] in a call of P-&AN-DOWN(v, x,t, y,i, J).
Therefore,v meets the required condition in the first recursive call,hwit
and k as the last two arguments, in Fe&\N-DOwN. If we can prove that
the valuev ® ¢[k] passed to the second recursive call in ®A8-DowN equals
x[1] ® x[2] ® --- ® x[k], we would have proved the required condition.dior
all calls to P-SAN-DoOWN. Earlier, we proved thatfk] = x[i] ® --- ® x[k];
therefore,

vetk] = x[1]®x2]®@ - ®@x[i —1] ®x[i] ®---x[k]

= x[1]®x2]® - ® x[k] .
Thus, the value passed to P-&AN-DoOwWN(v, x, ¢, y, i, j) satisfiey = x[1]®
X2l ®--- @ x[i —1].

e. Let PSU,(n) and PSU,(n) denote the work and span of Re&\N-Up and
let PSD,(n) and PSD.,(n) denote the work and span of Rz&\N-DOwWN.
Then the expressiong (n) = PSU,(n) + PSD;(n) + ©(1) and Ty (n) =
PSUy(n) + PSD.(n) + V(1) characterize the work and span of BA83i-3.

The work PS U, (n) of P-SCAN-UP is given by the recurrence
PSU,(n) =2PSU,(n/2) + O(1),

and its span is defined by the recurrence

27-12 Solutions for Chapter 27: Multithreaded Algorithms

PSU,(n) = PSU,(n/2) + ©(1) .

Using the master theorem to solve these recurrences, weSjét(n) = 0(n)
andPSU.(n) = O(lgn).

Similarly, the recurrences

PSD(n) = 2PSD(n/2)+ 6(1), (%)
PSD.(n) = PSDy(n/2)+ 0O(1) @)
define the work and span of Pe8N-DoOwN, and they evaluate t8SD;(n) =
O(n)andPSDq(n) = O(lgn).

Applying the results for the work and span of R\-UpP and P-SAN-DOWN
obtained above in the expressions for the work and span o€/NS3, we
getTi(n) = O(n) andT,(n) = O(Ign). Hence, P-8AN-3 has®(n/Ign)
parallelism. P-8AN-3 performs less work than P€8N-1, but with the same
span, and it has the same parallelism asdA&2 with less work and a lower
span.

Solution to Problem 27-5

a. In this part of the problem, we will assume thais an exact power 02, so
that in a recursive step, when we divide the n matrix A into fourn/2 xn/2
matrices, we will be guaranteed that2 is an integer, for alk > 2. We
make this assumption simply to avoid introducing 2| and[r /2] terms in the
pseudocode and the analysis that follow. In the pseudoceldevbwe assume
that we have a procedureaABE-CASE available to us, which calculates the base
case of the stencil.

SIMPLE-STENCIL(A, i, j,n)

if n==
Ali, j] = BASE-CASE(A, 1,)

else// Calculate submatrixd ;.
SIMPLE-STENCIL(A, i, j,n/2)
/I Calculate submatriced;, and A, in parallel.
sSpawn SIMPLE-STENCIL(A,i,j +n/2,n/2)
SIMPLE-STENCIL(A,i +n/2,j,n/2)
sync
/I Calculate submatrid,,.
SIMPLE-STENCIL(A,i +n/2,j +n/2,n/2)

To perform a simple stencil calculation on anx n matrix A, we call
SIMPLE-STENCIL(A,1,1,n). The recurrence for the work i§,(n) =
4T, (n/2) + ©(1) = B(n?). Of the four recursive calls in the algorithm above,
only two run in parallel. Therefore, the recurrence for tharsisT,.(n) =
3T, (n/2) + O(1) = B(n'9?), and the parallelism i®(n2793) ~ O (n%*1%).

b. Similar to SMPLE-STENCIL of the previous part, we present R3iCIL-3,
which dividesA into nine submatrices, each of siz¢3 x n/3, and solves them

Solutions for Chapter 27: Multithreaded Algorithms 27-13

recursively. To perform a stencil calculation on mrx n matrix A, we call
P-STENCIL-3(4, 1, 1,n).

P-STENCIL-3(A, i, j,n)

if n==
Ali, j] = BASE-CASE(A, i, j)

else// Group 1: compute submatriz, ;.
P-STENCIL-3(A, 1, j,n/3)
/I Group 2: compute submatricets, andA,;.
spawnP-STENCIL-3(A,i, j +n/3,n/3)
P-STENCIL-3(A,i +1n/3, j,n/3)
sync
/I Group 3: compute submatricets s, 4,,, andAs;.
spawnP-STeENCIL-3(A,i,] +2n/3,n/3)
spawnP-STENCIL-3(A,i +n/3,j +n/3,n/3)
P-SrENCIL-3(A,i + 2n/3, j,n/3)
sync
/I Group 4: compute submatricets; andAs,.
spawnP-STENCIL-3(A,i +n/3,j +2n/3,n/3)
P-STENCIL-3(A,i +2n/3,j +n/3,n/3)
sync
/I Group 5: compute submatrifss.
P-STENCIL-3(A,i +2n/3,j +2n/3,n/3)

From the pseudocode, we can informally say that we can shivaine sub-
problems in five groups, as shown in the following matrix:

1 23
2 3 4.
3 45

Each entry in the above matrix specifies the group of the spardingrn /3 x

n/3 submatrix ofA; we can compute in parallel the entries of all submatrices
that fall in the same group. In general, for= 2,3,4,5, we can calculate
groupi after completing the computation of grotip- 1.

The recurrence for the work i&,(n) = 9T;(n/3) + ©(1) = O®?). The
recurrence for the span,(n) = 5T (n/3) + (1) = O(n'%3). Therefore,
the parallelism i€ (n27°% %) ~ @(n°5%).

c. Similar to the previous part, we can solve #ifesubproblems i2b — 1 groups:

I 2 3 e b—2 b-1 b
> 3 4 e b1 b bl
3 4 5 . b b+l b+2

b—2 b—1 b - 2b—5 2b—4 2b—3

b—1 b b4l - 2b6—4 2b—3 2b—2

b b+1 b+2 --- 2b-3 2b-2 2b—1

27-14 Solutions for Chapter 27: Multithreaded Algorithms

The recurrence for the work i&; (n) = b2Ty(n/b) + ©(1) = O(n?). The
recurrence for the spani,(n) = (2b—1)Two(n/b) +O(1) = O(n'°%6-D),
The parallelism i€ (n27109%2b-1))

As the hint suggests, in order to show that the parallelismatioeo (r) for any
choice ofb > 2, we need to show that— log, (26 — 1), which is the exponent
of n in the parallelism, is strictly less thainfor any choice ofb > 2. Since
b > 2, we know thalb —1 > b, which implies that log(2b—1) > log, b = 1.
Hence2 —log,(2b —1) <2—-1=1.

d. The idea behind achievin@(n/Ig n) parallelism is similar to that presented in
the previous part, except without recursive division. Wé eompute A[1, 1]
serially, which will enable us to compute entrig§l, 2] andA[2, 1] in parallel,
after which we can compute entrid$l, 3], A[2,2] and A[3, 1] in parallel, and
so on. Here is the pseudocode:

P-STENCIL(A)

n = A.rows
/I Calculate all entries on the antidiagonal and above it.
fori =1ton
parallel for j = 1toi
Ali —j +1,j] = BASE-CASE(A,i — j + 1,)
/I Calculate all entries below the antidiagonal.
fori =2ton
parallel for j =iton
Aln+i—j,j] = BASE-CASE(A,n +i — J,])

For each value of indexk of the first serialfor loop, the inner loop iterates
times, doing constant work in each iteration. Because indenges froml
to n in the firstfor loop, we require®(1 + 2 + --- + n) = O(n?) work to
calculate all entries on the antidiagonal and above it. Bohevalue of index
of the second seridbr loop, the inner loop iterates — i + 1 times, doing
constant work in each iteration. Because indevanges from2 to n in the
secondfor loop, we require®((n — 1) + (n —2) + --- + 1) = O(n?) work
to calculate all entries on the antidiagonal and above ier&fore, the work of
P-STENCIL is T} (n) = O(n?).

Note that bothfor loops in P-SENCIL, which executeparallel for loops
within, are serial. Therefore, in order to calculate thensp& P-SreNnciL,
we must add the spans of all tharallel for loops. Given that anparallel for
loop in P-STENCIL does constant work in each iteration, the span pdiallel
for loop withn’ iterations is®(Ign’). Hence,
To(m) = O((lgl+I1g2+4---+lgn)+(Ign—1)+---+1))

= O(gr!) +Ilgrn -1

= O(nlgn),
giving us®(n/ Ign) parallelism.

Index

This index covers exercises and problems from the textbloatkare solved in this
manual. The first page in the manual that has the solutiostedlihere.

Exercise 2.2-22-17 Exercise 5.3-35-13
Exercise 2.2-42-17 Exercise 5.3-45-14
Exercise 2.3-3,2-17 Exercise 5.3-75-14
Exercise 2.3-42-18 Exercise 5.4-65-16
Exercise 2.3-5,2-18 Exercise 6.1-1,6-10
Exercise 2.3-6,2-19 Exercise 6.1-2,6-10
Exercise 2.3-7,2-19 Exercise 6.1-3,6-10
Exercise 3.1-1,3-7 Exercise 6.2-6,6-11
Exercise 3.1-2,3-7 Exercise 6.3-3,6-11
Exercise 3.1-3,3-8 Exercise 6.4-16-14
Exercise 3.1-4,3-8 Exercise 6.5-2,6-15
Exercise 3.1-8,3-8 Exercise 6.5-6,6-15
Exercise 3.2-4,3-9 Exercise 7.2-3,7-9

Exercise 3.2-5,3-9 Exercise 7.2-5,7-9

Exercise 3.2-6,3-10 Exercise 7.3-1,7-10
Exercise 3.2-7,3-10 Exercise 7.4-2,7-10
Exercise 4.1-14-17 Exercise 8.1-38-10
Exercise 4.1-24-17 Exercise 8.1-48-10
Exercise 4.1-44-17 Exercise 8.2-28-11
Exercise 4.1-54-18 Exercise 8.2-38-11
Exercise 4.2-24-19 Exercise 8.2-48-11
Exercise 4.2-44-19 Exercise 8.3-28-12
Exercise 4.3-14-20 Exercise 8.3-38-12
Exercise 4.3-74-20 Exercise 8.3-4,8-13
Exercise 4.4-64-21 Exercise 8.4-28-13
Exercise 4.4-94-21 Exercise 9.1-1,9-10
Exercise 4.5-24-22 Exercise 9.3-1,9-10
Exercise 5.1-35-9 Exercise 9.3-39-11
Exercise 5.2-15-10 Exercise 9.3-5,9-12
Exercise 5.2-25-10 Exercise 9.3-8,9-13
Exercise 5.2-45-11 Exercise 9.3-99-14
Exercise 5.2-55-12 Exercise 11.1-411-16
Exercise 5.3-15-13 Exercise 11.2-111-17

Exercise 5.3-25-13 Exercise 11.2-411-17

Index

Exercise 11.2-611-18
Exercise 11.3-311-19
Exercise 11.3-511-20
Exercise 12.1-212-15
Exercise 12.2-512-15
Exercise 12.2-712-16
Exercise 12.3-312-17
Exercise 12.4-112-12
Exercise 12.4-212-17
Exercise 12.4-312-9

Exercise 12.4-412-18
Exercise 13.1-313-13
Exercise 13.1-413-13
Exercise 13.1-513-13
Exercise 13.2-413-14
Exercise 13.3-313-14
Exercise 13.3-413-15
Exercise 13.4-613-16
Exercise 13.4-713-16
Exercise 14.1-514-9

Exercise 14.1-614-9

Exercise 14.1-714-9

Exercise 14.2-214-10
Exercise 14.3-314-13
Exercise 14.3-6,14-14
Exercise 14.3-714-15
Exercise 15.1-115-21
Exercise 15.1-215-21
Exercise 15.1-315-22
Exercise 15.1-415-22
Exercise 15.1-515-23
Exercise 15.2-415-23
Exercise 15.2-515-24
Exercise 15.3-1,15-25
Exercise 15.3-515-26
Exercise 15.3-6,15-27
Exercise 15.4-415-28
Exercise 16.1-116-9

Exercise 16.1-216-10
Exercise 16.1-316-11
Exercise 16.1-416-11
Exercise 16.1-516-13
Exercise 16.2-216-14
Exercise 16.2-416-16
Exercise 16.2-616-16
Exercise 16.2-716-17
Exercise 16.3-116-17
Exercise 16.4-216-17

Exercise 16.4-3,16-18
Exercise 17.1-317-14
Exercise 17.2-117-15
Exercise 17.2-217-15
Exercise 17.2-317-16
Exercise 17.3-317-17
Exercise 21.2-321-6
Exercise 21.2-521-7
Exercise 21.2-621-7
Exercise 21.3-321-7
Exercise 21.3-421-8
Exercise 21.3-521-8
Exercise 21.4-421-9
Exercise 21.4-521-9
Exercise 21.4-621-9
Exercise 22.1-622-13
Exercise 22.1-722-15
Exercise 22.2-322-15
Exercise 22.2-522-15
Exercise 22.2-622-15
Exercise 22.2-722-16
Exercise 22.3-422-16
Exercise 22.3-522-16
Exercise 22.3-822-17
Exercise 22.3-922-17
Exercise 22.3-1122-17
Exercise 22.3-1222-18
Exercise 22.4-322-19
Exercise 22.4-522-20
Exercise 22.5-522-21
Exercise 22.5-622-22
Exercise 22.5-722-23
Exercise 23.1-123-8
Exercise 23.1-423-8
Exercise 23.1-623-8
Exercise 23.1-1023-9
Exercise 23.2-423-9
Exercise 23.2-523-10
Exercise 23.2-723-10
Exercise 24.1-324-13
Exercise 24.2-324-13
Exercise 24.3-324-14
Exercise 24.3-424-14
Exercise 24.3-524-15
Exercise 24.3-624-15
Exercise 24.3-824-16
Exercise 24.3-924-17
Exercise 24.4-424-17

Index

Exercise 24.4-724-18
Exercise 24.4-1024-18
Exercise 24.5-424-19
Exercise 24.5-724-19
Exercise 24.5-824-19
Exercise 25.1-325-9
Exercise 25.1-525-9
Exercise 25.1-1025-10
Exercise 25.2-425-13
Exercise 25.2-625-13
Exercise 25.3-425-14
Exercise 25.3-625-14
Exercise 26.1-126-12
Exercise 26.1-326-13
Exercise 26.1-426-15
Exercise 26.1-626-16
Exercise 26.1-726-16
Exercise 26.2-126-17
Exercise 26.2-826-18
Exercise 26.2-926-18
Exercise 26.2-1126-19
Exercise 26.2-1226-20
Exercise 26.2-1326-21
Exercise 26.3-326-22
Exercise 26.4-126-22
Exercise 26.4-326-23
Exercise 26.4-426-23
Exercise 26.4-726-23
Exercise 27.1-127-1
Exercise 27.1-527-1
Exercise 27.1-627-2
Exercise 27.1-727-2
Exercise 27.1-827-3
Exercise 27.1-927-3
Exercise 27.2-327-4
Exercise 27.2-427-4
Exercise 27.2-527-6
Exercise 27.2-627-7

Problem 2-1,2-20
Problem 2-2,2-21
Problem 2-4,2-22
Problem 3-3,3-10
Problem 4-1,4-22
Problem 4-3,4-24
Problem 5-1,5-17
Problem 6-1,6-15
Problem 6-2,6-16

Problem 7-2,7-11
Problem 7-4,7-12
Problem 8-1,8-13
Problem 8-3,8-16
Problem 8-4,8-17
Problem 8-7,8-20
Problem 9-1,9-15
Problem 9-2,9-16
Problem 9-3,9-19
Problem 9-4,9-21
Problem 11-1,11-21
Problem 11-2,11-22
Problem 11-3,11-24
Problem 12-2,12-19
Problem 12-3,12-20
Problem 13-1,13-16
Problem 14-1,14-15
Problem 14-2,14-17
Problem 15-1,15-29
Problem 15-2,15-31
Problem 15-3,15-34
Problem 15-4,15-36
Problem 15-5,15-39
Problem 15-8,15-42
Problem 15-9,15-45
Problem 15-11,15-47
Problem 15-12,15-50
Problem 16-1,16-20
Problem 16-5,16-23
Problem 17-2,17-19
Problem 17-4,17-20
Problem 21-1,21-10
Problem 21-2,21-11
Problem 22-1,22-24
Problem 22-3,22-24
Problem 22-4,22-27
Problem 23-1,23-12
Problem 24-1,24-20
Problem 24-2,24-21
Problem 24-3,24-22
Problem 24-4,24-23
Problem 24-6,24-24
Problem 25-1,25-14
Problem 26-2,26-24
Problem 26-3,26-26
Problem 26-4,26-29
Problem 26-5,26-30
Problem 27-1,27-7

Index

Problem 27-2,27-9
Problem 27-4,27-10
Problem 27-5,27-12

