
Divide and Conquer

Divide and Conquer

K. Subramani1

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

1, 6 September 2016

Divide and Conquer

Outline

Outline

1 Main Ideas

2 Binary Search

3 Merge Sort

4 Quick Sort

5 Integer Multiplication

6 Matrix Multiplication

Divide and Conquer

Outline

Outline

1 Main Ideas

2 Binary Search

3 Merge Sort

4 Quick Sort

5 Integer Multiplication

6 Matrix Multiplication

Divide and Conquer

Outline

Outline

1 Main Ideas

2 Binary Search

3 Merge Sort

4 Quick Sort

5 Integer Multiplication

6 Matrix Multiplication

Divide and Conquer

Outline

Outline

1 Main Ideas

2 Binary Search

3 Merge Sort

4 Quick Sort

5 Integer Multiplication

6 Matrix Multiplication

Divide and Conquer

Outline

Outline

1 Main Ideas

2 Binary Search

3 Merge Sort

4 Quick Sort

5 Integer Multiplication

6 Matrix Multiplication

Divide and Conquer

Outline

Outline

1 Main Ideas

2 Binary Search

3 Merge Sort

4 Quick Sort

5 Integer Multiplication

6 Matrix Multiplication

Divide and Conquer

Main Ideas

Main Ideas

Approach

1 Divide the problem into a number of subproblems that are smaller instances of
the problem.

2 Conquer the subproblems by solving them recursively. If the subproblems are
small enough, however, just solve the problems in a straightforward manner.

3 Combine the solutions to the subproblems into the solution for the original
problem.

Divide and Conquer

Main Ideas

Main Ideas

Approach

1 Divide the problem into a number of subproblems that are smaller instances of
the problem.

2 Conquer the subproblems by solving them recursively. If the subproblems are
small enough, however, just solve the problems in a straightforward manner.

3 Combine the solutions to the subproblems into the solution for the original
problem.

Divide and Conquer

Main Ideas

Main Ideas

Approach

1 Divide the problem into a number of subproblems that are smaller instances of
the problem.

2 Conquer the subproblems by solving them recursively. If the subproblems are
small enough, however, just solve the problems in a straightforward manner.

3 Combine the solutions to the subproblems into the solution for the original
problem.

Divide and Conquer

Main Ideas

Main Ideas

Approach

1 Divide the problem into a number of subproblems that are smaller instances of
the problem.

2 Conquer the subproblems by solving them recursively. If the subproblems are
small enough, however, just solve the problems in a straightforward manner.

3 Combine the solutions to the subproblems into the solution for the original
problem.

Divide and Conquer

Main Ideas

Main Ideas

Approach

1 Divide the problem into a number of subproblems that are smaller instances of
the problem.

2 Conquer the subproblems by solving them recursively.

If the subproblems are
small enough, however, just solve the problems in a straightforward manner.

3 Combine the solutions to the subproblems into the solution for the original
problem.

Divide and Conquer

Main Ideas

Main Ideas

Approach

1 Divide the problem into a number of subproblems that are smaller instances of
the problem.

2 Conquer the subproblems by solving them recursively. If the subproblems are
small enough, however, just solve the problems in a straightforward manner.

3 Combine the solutions to the subproblems into the solution for the original
problem.

Divide and Conquer

Main Ideas

Main Ideas

Approach

1 Divide the problem into a number of subproblems that are smaller instances of
the problem.

2 Conquer the subproblems by solving them recursively. If the subproblems are
small enough, however, just solve the problems in a straightforward manner.

3 Combine the solutions to the subproblems into the solution for the original
problem.

Divide and Conquer

Main Ideas

Main Ideas

Approach

1 Divide the problem into a number of subproblems that are smaller instances of
the problem.

2 Conquer the subproblems by solving them recursively. If the subproblems are
small enough, however, just solve the problems in a straightforward manner.

3 Combine the solutions to the subproblems into the solution for the original
problem.

Divide and Conquer

Binary Search

The Searching Problem

Statement of Problem

Given an array A[1 · ·n] of integers, sorted in ascending order, and a key r , check if
A[i] = r , for any 1 ≤ i ≤ n.

Divide and Conquer

Binary Search

The Searching Problem

Statement of Problem

Given an array A[1 · ·n] of integers, sorted in ascending order, and a key r , check if
A[i] = r , for any 1 ≤ i ≤ n.

Divide and Conquer

Binary Search

The Searching Problem

Statement of Problem

Given an array A[1 · ·n] of integers, sorted in ascending order,

and a key r , check if
A[i] = r , for any 1 ≤ i ≤ n.

Divide and Conquer

Binary Search

The Searching Problem

Statement of Problem

Given an array A[1 · ·n] of integers, sorted in ascending order, and a key r ,

check if
A[i] = r , for any 1 ≤ i ≤ n.

Divide and Conquer

Binary Search

The Searching Problem

Statement of Problem

Given an array A[1 · ·n] of integers, sorted in ascending order, and a key r , check if
A[i] = r , for any 1 ≤ i ≤ n.

Divide and Conquer

Binary Search

Linear Search

Algorithm

LINEAR-SEARCH(A, n, r)
1: if (n < 0) then
2: return (false)
3: else
4: if (A[n] = r) then
5: return (true)
6: else
7: return (LINEAR-SEARCH(A, (n − 1), r))
8: end if
9: end if

Analysis

Prove correctness and establish bounds on number of element to element
comparisons.

Divide and Conquer

Binary Search

Linear Search

Algorithm

LINEAR-SEARCH(A, n, r)
1: if (n < 0) then
2: return (false)
3: else
4: if (A[n] = r) then
5: return (true)
6: else
7: return (LINEAR-SEARCH(A, (n − 1), r))
8: end if
9: end if

Analysis

Prove correctness and establish bounds on number of element to element
comparisons.

Divide and Conquer

Binary Search

Linear Search

Algorithm

LINEAR-SEARCH(A, n, r)
1: if (n < 0) then
2: return (false)
3: else
4: if (A[n] = r) then
5: return (true)
6: else
7: return (LINEAR-SEARCH(A, (n − 1), r))
8: end if
9: end if

Analysis

Prove correctness and establish bounds on number of element to element
comparisons.

Divide and Conquer

Binary Search

Linear Search

Algorithm

LINEAR-SEARCH(A, n, r)
1: if (n < 0) then
2: return (false)
3: else
4: if (A[n] = r) then
5: return (true)
6: else
7: return (LINEAR-SEARCH(A, (n − 1), r))
8: end if
9: end if

Analysis

Prove correctness and establish bounds on number of element to element
comparisons.

Divide and Conquer

Binary Search

Linear Search

Algorithm

LINEAR-SEARCH(A, n, r)
1: if (n < 0) then
2: return (false)
3: else
4: if (A[n] = r) then
5: return (true)
6: else
7: return (LINEAR-SEARCH(A, (n − 1), r))
8: end if
9: end if

Analysis

Prove correctness and establish bounds on number of element to element
comparisons.

Divide and Conquer

Binary Search

Binary Search

Algorithm

BINARY-SEARCH(A, low , high, r)
1: {Initially low = 1, high = n.}
2: if (low ≤ high) then
3: mid = low+high

2 .
4: if (A[mid] = r) then
5: return (true)
6: end if
7: if (A[mid] > r) then
8: return (BINARY-SEARCH(A, low , mid − 1, r))
9: else

10: return (BINARY-SEARCH(A, mid + 1, high, r))
11: end if
12: else
13: return (false)
14: end if

Divide and Conquer

Binary Search

Binary Search

Algorithm

BINARY-SEARCH(A, low , high, r)
1: {Initially low = 1, high = n.}
2: if (low ≤ high) then
3: mid = low+high

2 .
4: if (A[mid] = r) then
5: return (true)
6: end if
7: if (A[mid] > r) then
8: return (BINARY-SEARCH(A, low , mid − 1, r))
9: else

10: return (BINARY-SEARCH(A, mid + 1, high, r))
11: end if
12: else
13: return (false)
14: end if

Divide and Conquer

Binary Search

Binary Search

Algorithm

BINARY-SEARCH(A, low , high, r)
1: {Initially low = 1, high = n.}
2: if (low ≤ high) then
3: mid = low+high

2 .
4: if (A[mid] = r) then
5: return (true)
6: end if
7: if (A[mid] > r) then
8: return (BINARY-SEARCH(A, low , mid − 1, r))
9: else

10: return (BINARY-SEARCH(A, mid + 1, high, r))
11: end if
12: else
13: return (false)
14: end if

Divide and Conquer

Binary Search

Binary Search (contd.)

Analysis

Prove correctness and establish bounds on number of element to element
comparisons.

Divide and Conquer

Binary Search

Binary Search (contd.)

Analysis

Prove correctness and establish bounds on number of element to element
comparisons.

Divide and Conquer

Binary Search

Binary Search (contd.)

Analysis

Prove correctness and establish bounds on number of element to element
comparisons.

Divide and Conquer

Merge Sort

The Sorting Problem

Statement of Problem

Given an array A[1 · ·n] of integers, produce an ascending-order permutation of A.

Divide and Conquer

Merge Sort

The Sorting Problem

Statement of Problem

Given an array A[1 · ·n] of integers, produce an ascending-order permutation of A.

Divide and Conquer

Merge Sort

The Sorting Problem

Statement of Problem

Given an array A[1 · ·n] of integers, produce an ascending-order permutation of A.

Divide and Conquer

Merge Sort

Merging Two Sorted Arrays

The Algorithm

MERGE(A, low , mid , high)
1: {We merge the arrays A[low · ·mid] and A[mid + 1 · ·high].}
2: Create a temporary array B of size (mid − low + 1) and copy the elements from

A[low · ·mid] into this array.
3: Create a temporary array C of size (high −mid) and copy the elements from

A[mid + 1 · ·high] into this array.
4: Set p = 1, q = 1, r = low .
5: while (p ≤ (mid − low + 1) and (q ≤ (high −mid)) do
6: if (B[p] ≤ C[q]) then
7: A[r] = B[p]. p ++.
8: else
9: A[r] = C[q]. q ++.

10: end if
11: r ++.
12: end while

Divide and Conquer

Merge Sort

Merging Two Sorted Arrays

The Algorithm

MERGE(A, low , mid , high)
1: {We merge the arrays A[low · ·mid] and A[mid + 1 · ·high].}
2: Create a temporary array B of size (mid − low + 1) and copy the elements from

A[low · ·mid] into this array.
3: Create a temporary array C of size (high −mid) and copy the elements from

A[mid + 1 · ·high] into this array.
4: Set p = 1, q = 1, r = low .
5: while (p ≤ (mid − low + 1) and (q ≤ (high −mid)) do
6: if (B[p] ≤ C[q]) then
7: A[r] = B[p]. p ++.
8: else
9: A[r] = C[q]. q ++.

10: end if
11: r ++.
12: end while

Divide and Conquer

Merge Sort

Merging Two Sorted Arrays

The Algorithm

MERGE(A, low , mid , high)
1: {We merge the arrays A[low · ·mid] and A[mid + 1 · ·high].}
2: Create a temporary array B of size (mid − low + 1) and copy the elements from

A[low · ·mid] into this array.
3: Create a temporary array C of size (high −mid) and copy the elements from

A[mid + 1 · ·high] into this array.
4: Set p = 1, q = 1, r = low .
5: while (p ≤ (mid − low + 1) and (q ≤ (high −mid)) do
6: if (B[p] ≤ C[q]) then
7: A[r] = B[p]. p ++.
8: else
9: A[r] = C[q]. q ++.

10: end if
11: r ++.
12: end while

Divide and Conquer

Merge Sort

Algorithm Merge (contd.)

The Algorithm (contd.)

MERGE(A, low , mid , high)
1: while (p ≤ (mid − low + 1)) do
2: A[r] = B[p]. p ++. r ++.
3: end while
4: while (q ≤ (high −mid)) do
5: A[r] = C[q]. q ++. r ++.
6: end while

Divide and Conquer

Merge Sort

Algorithm Merge (contd.)

The Algorithm (contd.)

MERGE(A, low , mid , high)
1: while (p ≤ (mid − low + 1)) do
2: A[r] = B[p]. p ++. r ++.
3: end while
4: while (q ≤ (high −mid)) do
5: A[r] = C[q]. q ++. r ++.
6: end while

Divide and Conquer

Merge Sort

Merge Sorting

The Algorithm

MERGE-SORT(A, low , high)
1: {Initially low = 1, high = n.}
2: if (low ≤ high) then
3: mid = low+high

2 .
4: MERGE-SORT(A, low , mid).
5: MERGE-SORT(A, mid + 1, high).
6: MERGE(A, low , mid , high).
7: end if

Analysis

Prove correctness and establish bounds on number of element to element
comparisons.

Divide and Conquer

Merge Sort

Merge Sorting

The Algorithm

MERGE-SORT(A, low , high)
1: {Initially low = 1, high = n.}
2: if (low ≤ high) then
3: mid = low+high

2 .
4: MERGE-SORT(A, low , mid).
5: MERGE-SORT(A, mid + 1, high).
6: MERGE(A, low , mid , high).
7: end if

Analysis

Prove correctness and establish bounds on number of element to element
comparisons.

Divide and Conquer

Merge Sort

Merge Sorting

The Algorithm

MERGE-SORT(A, low , high)
1: {Initially low = 1, high = n.}
2: if (low ≤ high) then
3: mid = low+high

2 .
4: MERGE-SORT(A, low , mid).
5: MERGE-SORT(A, mid + 1, high).
6: MERGE(A, low , mid , high).
7: end if

Analysis

Prove correctness and establish bounds on number of element to element
comparisons.

Divide and Conquer

Merge Sort

Merge Sorting

The Algorithm

MERGE-SORT(A, low , high)
1: {Initially low = 1, high = n.}
2: if (low ≤ high) then
3: mid = low+high

2 .
4: MERGE-SORT(A, low , mid).
5: MERGE-SORT(A, mid + 1, high).
6: MERGE(A, low , mid , high).
7: end if

Analysis

Prove correctness and establish bounds on number of element to element
comparisons.

Divide and Conquer

Merge Sort

Merge Sorting

The Algorithm

MERGE-SORT(A, low , high)
1: {Initially low = 1, high = n.}
2: if (low ≤ high) then
3: mid = low+high

2 .
4: MERGE-SORT(A, low , mid).
5: MERGE-SORT(A, mid + 1, high).
6: MERGE(A, low , mid , high).
7: end if

Analysis

Prove correctness and establish bounds on number of element to element
comparisons.

Divide and Conquer

Quick Sort

The Partition subroutine

Partitioning

Function PARTITION(A, p, q)
1: {We partition the sub-array A[p, p + 1, . . . , q] about A[p].}
2: for (i = (p + 1) to; q) do
3: if (A[i] < A[p]) then
4: Insert A[i] into bucket L.
5: else
6: if (A[i] > A[p]) then
7: Insert A[i] into bucket U.
8: end if
9: end if

10: end for
11: Copy A[p] into A[(|L|+ 1)].
12: Copy the elements of L into the first |L| entries of A[p · ·q].
13: Copy A[p] into A[(|L|+ 1)].
14: Copy the elements of U into the entries of A[(|L|+ 2) · ·q].
15: return (|L|+ 1).

Divide and Conquer

Quick Sort

The Partition subroutine

Partitioning

Function PARTITION(A, p, q)
1: {We partition the sub-array A[p, p + 1, . . . , q] about A[p].}
2: for (i = (p + 1) to; q) do
3: if (A[i] < A[p]) then
4: Insert A[i] into bucket L.
5: else
6: if (A[i] > A[p]) then
7: Insert A[i] into bucket U.
8: end if
9: end if

10: end for
11: Copy A[p] into A[(|L|+ 1)].
12: Copy the elements of L into the first |L| entries of A[p · ·q].
13: Copy A[p] into A[(|L|+ 1)].
14: Copy the elements of U into the entries of A[(|L|+ 2) · ·q].
15: return (|L|+ 1).

Divide and Conquer

Quick Sort

The Partition subroutine

Partitioning

Function PARTITION(A, p, q)
1: {We partition the sub-array A[p, p + 1, . . . , q] about A[p].}
2: for (i = (p + 1) to; q) do
3: if (A[i] < A[p]) then
4: Insert A[i] into bucket L.
5: else
6: if (A[i] > A[p]) then
7: Insert A[i] into bucket U.
8: end if
9: end if

10: end for
11: Copy A[p] into A[(|L|+ 1)].
12: Copy the elements of L into the first |L| entries of A[p · ·q].
13: Copy A[p] into A[(|L|+ 1)].
14: Copy the elements of U into the entries of A[(|L|+ 2) · ·q].
15: return (|L|+ 1).

Divide and Conquer

Quick Sort

The Partition subroutine

Partitioning

Function PARTITION(A, p, q)
1: {We partition the sub-array A[p, p + 1, . . . , q] about A[p].}
2: for (i = (p + 1) to; q) do
3: if (A[i] < A[p]) then
4: Insert A[i] into bucket L.
5: else
6: if (A[i] > A[p]) then
7: Insert A[i] into bucket U.
8: end if
9: end if

10: end for
11: Copy A[p] into A[(|L|+ 1)].
12: Copy the elements of L into the first |L| entries of A[p · ·q].
13: Copy A[p] into A[(|L|+ 1)].
14: Copy the elements of U into the entries of A[(|L|+ 2) · ·q].
15: return (|L|+ 1).

Divide and Conquer

Quick Sort

The Quick-sort Algorithm

Note

Partitioning an array can be achieved in linear time.

The Algorithm

Function QUICK-SORT(A, p, q)
1: if (p ≥ q) then
2: return
3: else
4: j =PARTITION(A, p, q).
5: Quicksort(A, p, j − 1).
6: Quicksort(A, j + 1, q).
7: end if

Note

The main program calls QUICK-SORT(A, 1, n).

Divide and Conquer

Quick Sort

The Quick-sort Algorithm

Note

Partitioning an array can be achieved in linear time.

The Algorithm

Function QUICK-SORT(A, p, q)
1: if (p ≥ q) then
2: return
3: else
4: j =PARTITION(A, p, q).
5: Quicksort(A, p, j − 1).
6: Quicksort(A, j + 1, q).
7: end if

Note

The main program calls QUICK-SORT(A, 1, n).

Divide and Conquer

Quick Sort

The Quick-sort Algorithm

Note

Partitioning an array can be achieved in linear time.

The Algorithm

Function QUICK-SORT(A, p, q)
1: if (p ≥ q) then
2: return
3: else
4: j =PARTITION(A, p, q).
5: Quicksort(A, p, j − 1).
6: Quicksort(A, j + 1, q).
7: end if

Note

The main program calls QUICK-SORT(A, 1, n).

Divide and Conquer

Quick Sort

The Quick-sort Algorithm

Note

Partitioning an array can be achieved in linear time.

The Algorithm

Function QUICK-SORT(A, p, q)
1: if (p ≥ q) then
2: return
3: else
4: j =PARTITION(A, p, q).
5: Quicksort(A, p, j − 1).
6: Quicksort(A, j + 1, q).
7: end if

Note

The main program calls QUICK-SORT(A, 1, n).

Divide and Conquer

Quick Sort

The Quick-sort Algorithm

Note

Partitioning an array can be achieved in linear time.

The Algorithm

Function QUICK-SORT(A, p, q)
1: if (p ≥ q) then
2: return
3: else
4: j =PARTITION(A, p, q).
5: Quicksort(A, p, j − 1).
6: Quicksort(A, j + 1, q).
7: end if

Note

The main program calls QUICK-SORT(A, 1, n).

Divide and Conquer

Quick Sort

The Quick-sort Algorithm

Note

Partitioning an array can be achieved in linear time.

The Algorithm

Function QUICK-SORT(A, p, q)
1: if (p ≥ q) then
2: return
3: else
4: j =PARTITION(A, p, q).
5: Quicksort(A, p, j − 1).
6: Quicksort(A, j + 1, q).
7: end if

Note

The main program calls QUICK-SORT(A, 1, n).

Divide and Conquer

Quick Sort

Worst-case analysis

Analysis

What is the worst-case input for QUICKSORT()?

How many comparisons in the worst
case? O(n2).

Intuition for randomized case

What sort of assumptions are reasonable in analysis?

Divide and Conquer

Quick Sort

Worst-case analysis

Analysis

What is the worst-case input for QUICKSORT()? How many comparisons in the worst
case?

O(n2).

Intuition for randomized case

What sort of assumptions are reasonable in analysis?

Divide and Conquer

Quick Sort

Worst-case analysis

Analysis

What is the worst-case input for QUICKSORT()? How many comparisons in the worst
case? O(n2).

Intuition for randomized case

What sort of assumptions are reasonable in analysis?

Divide and Conquer

Quick Sort

Worst-case analysis

Analysis

What is the worst-case input for QUICKSORT()? How many comparisons in the worst
case? O(n2).

Intuition for randomized case

What sort of assumptions are reasonable in analysis?

Divide and Conquer

Quick Sort

Randomized Quicksort

The Algorithm

Function RANDOMIZED-QUICKSORT(A, p, q)
1: if (p ≥ q) then
2: return
3: else
4: Choose a number, say r , uniformly and at random from the set {p, p + 1, . . . , q}.
5: Swap A[p] and A[r].
6: j =PARTITION(A, p, q).
7: Quicksort(A, p, j − 1).
8: Quicksort(A, j + 1, q).
9: end if

Note

Worst case running time? O(n2)! However, for a randomized algorithm we are not
interested in worst-case running time, but in expected running time.

Divide and Conquer

Quick Sort

Randomized Quicksort

The Algorithm

Function RANDOMIZED-QUICKSORT(A, p, q)
1: if (p ≥ q) then
2: return
3: else
4: Choose a number, say r , uniformly and at random from the set {p, p + 1, . . . , q}.
5: Swap A[p] and A[r].
6: j =PARTITION(A, p, q).
7: Quicksort(A, p, j − 1).
8: Quicksort(A, j + 1, q).
9: end if

Note

Worst case running time? O(n2)! However, for a randomized algorithm we are not
interested in worst-case running time, but in expected running time.

Divide and Conquer

Quick Sort

Randomized Quicksort

The Algorithm

Function RANDOMIZED-QUICKSORT(A, p, q)
1: if (p ≥ q) then
2: return
3: else
4: Choose a number, say r , uniformly and at random from the set {p, p + 1, . . . , q}.
5: Swap A[p] and A[r].
6: j =PARTITION(A, p, q).
7: Quicksort(A, p, j − 1).
8: Quicksort(A, j + 1, q).
9: end if

Note

Worst case running time? O(n2)! However, for a randomized algorithm we are not
interested in worst-case running time, but in expected running time.

Divide and Conquer

Quick Sort

Randomized Quicksort

The Algorithm

Function RANDOMIZED-QUICKSORT(A, p, q)
1: if (p ≥ q) then
2: return
3: else
4: Choose a number, say r , uniformly and at random from the set {p, p + 1, . . . , q}.
5: Swap A[p] and A[r].
6: j =PARTITION(A, p, q).
7: Quicksort(A, p, j − 1).
8: Quicksort(A, j + 1, q).
9: end if

Note

Worst case running time? O(n2)! However, for a randomized algorithm we are not
interested in worst-case running time, but in expected running time.

Divide and Conquer

Quick Sort

Randomized Quicksort

The Algorithm

Function RANDOMIZED-QUICKSORT(A, p, q)
1: if (p ≥ q) then
2: return
3: else
4: Choose a number, say r , uniformly and at random from the set {p, p + 1, . . . , q}.
5: Swap A[p] and A[r].
6: j =PARTITION(A, p, q).
7: Quicksort(A, p, j − 1).
8: Quicksort(A, j + 1, q).
9: end if

Note

Worst case running time?

O(n2)! However, for a randomized algorithm we are not
interested in worst-case running time, but in expected running time.

Divide and Conquer

Quick Sort

Randomized Quicksort

The Algorithm

Function RANDOMIZED-QUICKSORT(A, p, q)
1: if (p ≥ q) then
2: return
3: else
4: Choose a number, say r , uniformly and at random from the set {p, p + 1, . . . , q}.
5: Swap A[p] and A[r].
6: j =PARTITION(A, p, q).
7: Quicksort(A, p, j − 1).
8: Quicksort(A, j + 1, q).
9: end if

Note

Worst case running time? O(n2)!

However, for a randomized algorithm we are not
interested in worst-case running time, but in expected running time.

Divide and Conquer

Quick Sort

Randomized Quicksort

The Algorithm

Function RANDOMIZED-QUICKSORT(A, p, q)
1: if (p ≥ q) then
2: return
3: else
4: Choose a number, say r , uniformly and at random from the set {p, p + 1, . . . , q}.
5: Swap A[p] and A[r].
6: j =PARTITION(A, p, q).
7: Quicksort(A, p, j − 1).
8: Quicksort(A, j + 1, q).
9: end if

Note

Worst case running time? O(n2)! However, for a randomized algorithm we are not
interested in worst-case running time, but in expected running time.

Divide and Conquer

Quick Sort

Decision Tree Analysis

Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T ,
with a pivot being chosen at each internal node.

The elements in the node which are less than the pivot are shunted to the left subtree
and the rest of the elements (excluding the pivot) are shunted to the right subtree.

An in-order traversal of T focusing on the pivots, gives the sorted order.

What is the work done at each level of the tree? O(n).

Let h denote the height of T . Observe that h is a random variable and we are
interested in its expected value.

The rank of an element of A is its position in A, when A has been sorted.

When you pick an element at random, what is the probability that the rank of the
element chosen is between 1

4 · n and 3
4 · n, where n is the number of elements in the

array? 1
2 .

Divide and Conquer

Quick Sort

Decision Tree Analysis

Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T ,
with a pivot being chosen at each internal node.

The elements in the node which are less than the pivot are shunted to the left subtree
and the rest of the elements (excluding the pivot) are shunted to the right subtree.

An in-order traversal of T focusing on the pivots, gives the sorted order.

What is the work done at each level of the tree? O(n).

Let h denote the height of T . Observe that h is a random variable and we are
interested in its expected value.

The rank of an element of A is its position in A, when A has been sorted.

When you pick an element at random, what is the probability that the rank of the
element chosen is between 1

4 · n and 3
4 · n, where n is the number of elements in the

array? 1
2 .

Divide and Conquer

Quick Sort

Decision Tree Analysis

Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T ,
with a pivot being chosen at each internal node.

The elements in the node which are less than the pivot are shunted to the left subtree
and the rest of the elements (excluding the pivot) are shunted to the right subtree.

An in-order traversal of T focusing on the pivots, gives the sorted order.

What is the work done at each level of the tree? O(n).

Let h denote the height of T . Observe that h is a random variable and we are
interested in its expected value.

The rank of an element of A is its position in A, when A has been sorted.

When you pick an element at random, what is the probability that the rank of the
element chosen is between 1

4 · n and 3
4 · n, where n is the number of elements in the

array? 1
2 .

Divide and Conquer

Quick Sort

Decision Tree Analysis

Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T ,
with a pivot being chosen at each internal node.

The elements in the node which are less than the pivot are shunted to the left subtree
and the rest of the elements (excluding the pivot) are shunted to the right subtree.

An in-order traversal of T focusing on the pivots, gives the sorted order.

What is the work done at each level of the tree? O(n).

Let h denote the height of T . Observe that h is a random variable and we are
interested in its expected value.

The rank of an element of A is its position in A, when A has been sorted.

When you pick an element at random, what is the probability that the rank of the
element chosen is between 1

4 · n and 3
4 · n, where n is the number of elements in the

array? 1
2 .

Divide and Conquer

Quick Sort

Decision Tree Analysis

Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T ,
with a pivot being chosen at each internal node.

The elements in the node which are less than the pivot are shunted to the left subtree
and the rest of the elements (excluding the pivot) are shunted to the right subtree.

An in-order traversal of T focusing on the pivots, gives the sorted order.

What is the work done at each level of the tree? O(n).

Let h denote the height of T . Observe that h is a random variable and we are
interested in its expected value.

The rank of an element of A is its position in A, when A has been sorted.

When you pick an element at random, what is the probability that the rank of the
element chosen is between 1

4 · n and 3
4 · n, where n is the number of elements in the

array? 1
2 .

Divide and Conquer

Quick Sort

Decision Tree Analysis

Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T ,
with a pivot being chosen at each internal node.

The elements in the node which are less than the pivot are shunted to the left subtree
and the rest of the elements (excluding the pivot) are shunted to the right subtree.

An in-order traversal of T focusing on the pivots, gives the sorted order.

What is the work done at each level of the tree?

O(n).

Let h denote the height of T . Observe that h is a random variable and we are
interested in its expected value.

The rank of an element of A is its position in A, when A has been sorted.

When you pick an element at random, what is the probability that the rank of the
element chosen is between 1

4 · n and 3
4 · n, where n is the number of elements in the

array? 1
2 .

Divide and Conquer

Quick Sort

Decision Tree Analysis

Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T ,
with a pivot being chosen at each internal node.

The elements in the node which are less than the pivot are shunted to the left subtree
and the rest of the elements (excluding the pivot) are shunted to the right subtree.

An in-order traversal of T focusing on the pivots, gives the sorted order.

What is the work done at each level of the tree? O(n).

Let h denote the height of T . Observe that h is a random variable and we are
interested in its expected value.

The rank of an element of A is its position in A, when A has been sorted.

When you pick an element at random, what is the probability that the rank of the
element chosen is between 1

4 · n and 3
4 · n, where n is the number of elements in the

array? 1
2 .

Divide and Conquer

Quick Sort

Decision Tree Analysis

Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T ,
with a pivot being chosen at each internal node.

The elements in the node which are less than the pivot are shunted to the left subtree
and the rest of the elements (excluding the pivot) are shunted to the right subtree.

An in-order traversal of T focusing on the pivots, gives the sorted order.

What is the work done at each level of the tree? O(n).

Let h denote the height of T .

Observe that h is a random variable and we are
interested in its expected value.

The rank of an element of A is its position in A, when A has been sorted.

When you pick an element at random, what is the probability that the rank of the
element chosen is between 1

4 · n and 3
4 · n, where n is the number of elements in the

array? 1
2 .

Divide and Conquer

Quick Sort

Decision Tree Analysis

Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T ,
with a pivot being chosen at each internal node.

The elements in the node which are less than the pivot are shunted to the left subtree
and the rest of the elements (excluding the pivot) are shunted to the right subtree.

An in-order traversal of T focusing on the pivots, gives the sorted order.

What is the work done at each level of the tree? O(n).

Let h denote the height of T . Observe that h is a random variable and we are
interested in its expected value.

The rank of an element of A is its position in A, when A has been sorted.

When you pick an element at random, what is the probability that the rank of the
element chosen is between 1

4 · n and 3
4 · n, where n is the number of elements in the

array? 1
2 .

Divide and Conquer

Quick Sort

Decision Tree Analysis

Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T ,
with a pivot being chosen at each internal node.

The elements in the node which are less than the pivot are shunted to the left subtree
and the rest of the elements (excluding the pivot) are shunted to the right subtree.

An in-order traversal of T focusing on the pivots, gives the sorted order.

What is the work done at each level of the tree? O(n).

Let h denote the height of T . Observe that h is a random variable and we are
interested in its expected value.

The rank of an element of A is its position in A, when A has been sorted.

When you pick an element at random, what is the probability that the rank of the
element chosen is between 1

4 · n and 3
4 · n, where n is the number of elements in the

array? 1
2 .

Divide and Conquer

Quick Sort

Decision Tree Analysis

Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T ,
with a pivot being chosen at each internal node.

The elements in the node which are less than the pivot are shunted to the left subtree
and the rest of the elements (excluding the pivot) are shunted to the right subtree.

An in-order traversal of T focusing on the pivots, gives the sorted order.

What is the work done at each level of the tree? O(n).

Let h denote the height of T . Observe that h is a random variable and we are
interested in its expected value.

The rank of an element of A is its position in A, when A has been sorted.

When you pick an element at random, what is the probability that the rank of the
element chosen is between 1

4 · n and 3
4 · n, where n is the number of elements in the

array?

1
2 .

Divide and Conquer

Quick Sort

Decision Tree Analysis

Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T ,
with a pivot being chosen at each internal node.

The elements in the node which are less than the pivot are shunted to the left subtree
and the rest of the elements (excluding the pivot) are shunted to the right subtree.

An in-order traversal of T focusing on the pivots, gives the sorted order.

What is the work done at each level of the tree? O(n).

Let h denote the height of T . Observe that h is a random variable and we are
interested in its expected value.

The rank of an element of A is its position in A, when A has been sorted.

When you pick an element at random, what is the probability that the rank of the
element chosen is between 1

4 · n and 3
4 · n, where n is the number of elements in the

array? 1
2 .

Divide and Conquer

Quick Sort

Decision Tree Analysis (contd.)

Analysis

Consider the tree T .

We define an internal node o of the tree to be good, if both its children have at most
3
4 · |o| nodes, where |o| denotes the number of elements in the node o.

Given an internal node o of T , what is the probability that it is good? At least 1
2 !

Consider a root to leaf path in T .

How many good nodes can exist on such a path?

At most r = log 4
3

n.

What is the expected number of nodes on a root to leaf path before you see r good
nodes?

Divide and Conquer

Quick Sort

Decision Tree Analysis (contd.)

Analysis

Consider the tree T .

We define an internal node o of the tree to be good, if both its children have at most
3
4 · |o| nodes, where |o| denotes the number of elements in the node o.

Given an internal node o of T , what is the probability that it is good? At least 1
2 !

Consider a root to leaf path in T .

How many good nodes can exist on such a path?

At most r = log 4
3

n.

What is the expected number of nodes on a root to leaf path before you see r good
nodes?

Divide and Conquer

Quick Sort

Decision Tree Analysis (contd.)

Analysis

Consider the tree T .

We define an internal node o of the tree to be good, if both its children have at most
3
4 · |o| nodes, where |o| denotes the number of elements in the node o.

Given an internal node o of T , what is the probability that it is good? At least 1
2 !

Consider a root to leaf path in T .

How many good nodes can exist on such a path?

At most r = log 4
3

n.

What is the expected number of nodes on a root to leaf path before you see r good
nodes?

Divide and Conquer

Quick Sort

Decision Tree Analysis (contd.)

Analysis

Consider the tree T .

We define an internal node o of the tree to be good, if both its children have at most
3
4 · |o| nodes, where |o| denotes the number of elements in the node o.

Given an internal node o of T , what is the probability that it is good? At least 1
2 !

Consider a root to leaf path in T .

How many good nodes can exist on such a path?

At most r = log 4
3

n.

What is the expected number of nodes on a root to leaf path before you see r good
nodes?

Divide and Conquer

Quick Sort

Decision Tree Analysis (contd.)

Analysis

Consider the tree T .

We define an internal node o of the tree to be good, if both its children have at most
3
4 · |o| nodes, where |o| denotes the number of elements in the node o.

Given an internal node o of T , what is the probability that it is good?

At least 1
2 !

Consider a root to leaf path in T .

How many good nodes can exist on such a path?

At most r = log 4
3

n.

What is the expected number of nodes on a root to leaf path before you see r good
nodes?

Divide and Conquer

Quick Sort

Decision Tree Analysis (contd.)

Analysis

Consider the tree T .

We define an internal node o of the tree to be good, if both its children have at most
3
4 · |o| nodes, where |o| denotes the number of elements in the node o.

Given an internal node o of T , what is the probability that it is good? At least 1
2 !

Consider a root to leaf path in T .

How many good nodes can exist on such a path?

At most r = log 4
3

n.

What is the expected number of nodes on a root to leaf path before you see r good
nodes?

Divide and Conquer

Quick Sort

Decision Tree Analysis (contd.)

Analysis

Consider the tree T .

We define an internal node o of the tree to be good, if both its children have at most
3
4 · |o| nodes, where |o| denotes the number of elements in the node o.

Given an internal node o of T , what is the probability that it is good? At least 1
2 !

Consider a root to leaf path in T .

How many good nodes can exist on such a path?

At most r = log 4
3

n.

What is the expected number of nodes on a root to leaf path before you see r good
nodes?

Divide and Conquer

Quick Sort

Decision Tree Analysis (contd.)

Analysis

Consider the tree T .

We define an internal node o of the tree to be good, if both its children have at most
3
4 · |o| nodes, where |o| denotes the number of elements in the node o.

Given an internal node o of T , what is the probability that it is good? At least 1
2 !

Consider a root to leaf path in T .

How many good nodes can exist on such a path?

At most r = log 4
3

n.

What is the expected number of nodes on a root to leaf path before you see r good
nodes?

Divide and Conquer

Quick Sort

Decision Tree Analysis (contd.)

Analysis

Consider the tree T .

We define an internal node o of the tree to be good, if both its children have at most
3
4 · |o| nodes, where |o| denotes the number of elements in the node o.

Given an internal node o of T , what is the probability that it is good? At least 1
2 !

Consider a root to leaf path in T .

How many good nodes can exist on such a path?

At most r = log 4
3

n.

What is the expected number of nodes on a root to leaf path before you see r good
nodes?

Divide and Conquer

Quick Sort

Decision Tree Analysis (contd.)

Analysis

Consider the tree T .

We define an internal node o of the tree to be good, if both its children have at most
3
4 · |o| nodes, where |o| denotes the number of elements in the node o.

Given an internal node o of T , what is the probability that it is good? At least 1
2 !

Consider a root to leaf path in T .

How many good nodes can exist on such a path?

At most r = log 4
3

n.

What is the expected number of nodes on a root to leaf path before you see r good
nodes?

Divide and Conquer

Quick Sort

Decision Tree Analysis (contd.)

Lemma

Consider a coin for which the probability of “heads” turning up on a toss is p.

What is
the expected number of tosses to obtain k heads? k

p .

Decision Tree (contd.)

Thus the expected number of nodes on a root to leaf path is r
1
2
= 2 · r = 2 · log 4

3
n.

However, this is the expected height of T , i.e., E [h].

Therefore, the expected work undertaken by the algorithm

E [h]× work done per level = O(n · log n).

Divide and Conquer

Quick Sort

Decision Tree Analysis (contd.)

Lemma

Consider a coin for which the probability of “heads” turning up on a toss is p. What is
the expected number of tosses to obtain k heads?

k
p .

Decision Tree (contd.)

Thus the expected number of nodes on a root to leaf path is r
1
2
= 2 · r = 2 · log 4

3
n.

However, this is the expected height of T , i.e., E [h].

Therefore, the expected work undertaken by the algorithm

E [h]× work done per level = O(n · log n).

Divide and Conquer

Quick Sort

Decision Tree Analysis (contd.)

Lemma

Consider a coin for which the probability of “heads” turning up on a toss is p. What is
the expected number of tosses to obtain k heads? k

p .

Decision Tree (contd.)

Thus the expected number of nodes on a root to leaf path is r
1
2
= 2 · r = 2 · log 4

3
n.

However, this is the expected height of T , i.e., E [h].

Therefore, the expected work undertaken by the algorithm

E [h]× work done per level = O(n · log n).

Divide and Conquer

Quick Sort

Decision Tree Analysis (contd.)

Lemma

Consider a coin for which the probability of “heads” turning up on a toss is p. What is
the expected number of tosses to obtain k heads? k

p .

Decision Tree (contd.)

Thus the expected number of nodes on a root to leaf path is

r
1
2
= 2 · r = 2 · log 4

3
n.

However, this is the expected height of T , i.e., E [h].

Therefore, the expected work undertaken by the algorithm

E [h]× work done per level = O(n · log n).

Divide and Conquer

Quick Sort

Decision Tree Analysis (contd.)

Lemma

Consider a coin for which the probability of “heads” turning up on a toss is p. What is
the expected number of tosses to obtain k heads? k

p .

Decision Tree (contd.)

Thus the expected number of nodes on a root to leaf path is r
1
2
=

2 · r = 2 · log 4
3

n.

However, this is the expected height of T , i.e., E [h].

Therefore, the expected work undertaken by the algorithm

E [h]× work done per level = O(n · log n).

Divide and Conquer

Quick Sort

Decision Tree Analysis (contd.)

Lemma

Consider a coin for which the probability of “heads” turning up on a toss is p. What is
the expected number of tosses to obtain k heads? k

p .

Decision Tree (contd.)

Thus the expected number of nodes on a root to leaf path is r
1
2
= 2 · r =

2 · log 4
3

n.

However, this is the expected height of T , i.e., E [h].

Therefore, the expected work undertaken by the algorithm

E [h]× work done per level = O(n · log n).

Divide and Conquer

Quick Sort

Decision Tree Analysis (contd.)

Lemma

Consider a coin for which the probability of “heads” turning up on a toss is p. What is
the expected number of tosses to obtain k heads? k

p .

Decision Tree (contd.)

Thus the expected number of nodes on a root to leaf path is r
1
2
= 2 · r = 2 · log 4

3
n.

However, this is the expected height of T , i.e., E [h].

Therefore, the expected work undertaken by the algorithm

E [h]× work done per level = O(n · log n).

Divide and Conquer

Quick Sort

Decision Tree Analysis (contd.)

Lemma

Consider a coin for which the probability of “heads” turning up on a toss is p. What is
the expected number of tosses to obtain k heads? k

p .

Decision Tree (contd.)

Thus the expected number of nodes on a root to leaf path is r
1
2
= 2 · r = 2 · log 4

3
n.

However, this is the expected height of T , i.e., E [h].

Therefore, the expected work undertaken by the algorithm

E [h]× work done per level = O(n · log n).

Divide and Conquer

Quick Sort

Decision Tree Analysis (contd.)

Lemma

Consider a coin for which the probability of “heads” turning up on a toss is p. What is
the expected number of tosses to obtain k heads? k

p .

Decision Tree (contd.)

Thus the expected number of nodes on a root to leaf path is r
1
2
= 2 · r = 2 · log 4

3
n.

However, this is the expected height of T , i.e., E [h].

Therefore, the expected work undertaken by the algorithm

E [h]× work done per level = O(n · log n).

Divide and Conquer

Quick Sort

Decision Tree Analysis (contd.)

Lemma

Consider a coin for which the probability of “heads” turning up on a toss is p. What is
the expected number of tosses to obtain k heads? k

p .

Decision Tree (contd.)

Thus the expected number of nodes on a root to leaf path is r
1
2
= 2 · r = 2 · log 4

3
n.

However, this is the expected height of T , i.e., E [h].

Therefore, the expected work undertaken by the algorithm

E [h]× work done per level = O(n · log n).

Divide and Conquer

Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?

Divide and Conquer

Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?

Divide and Conquer

Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event,

and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?

Divide and Conquer

Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?

Divide and Conquer

Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?

Divide and Conquer

Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array.

Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?

Divide and Conquer

Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?

Divide and Conquer

Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?

Divide and Conquer

Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?

Divide and Conquer

Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?

Divide and Conquer

Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?

Divide and Conquer

Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Let Xij denote an indicator random variable, defined as follows:

Xij =

{
1, if S(i) and S(j) are compared during the course of the algorithm
0, otherwise

Let X denote the total number of comparisons made by the algorithm. Clearly,

X =

n−1∑
i=1

∑
j>i

Xij

=

n−1∑
i=1

n∑
j=i+1

Xij

How to compute X? We are not interested in X , but in E [X]!

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Let Xij denote an indicator random variable, defined as follows:

Xij =

{
1, if S(i) and S(j) are compared during the course of the algorithm
0, otherwise

Let X denote the total number of comparisons made by the algorithm. Clearly,

X =

n−1∑
i=1

∑
j>i

Xij

=

n−1∑
i=1

n∑
j=i+1

Xij

How to compute X? We are not interested in X , but in E [X]!

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Let Xij denote an indicator random variable, defined as follows:

Xij =

{
1, if S(i) and S(j) are compared during the course of the algorithm
0, otherwise

Let X denote the total number of comparisons made by the algorithm. Clearly,

X =

n−1∑
i=1

∑
j>i

Xij

=

n−1∑
i=1

n∑
j=i+1

Xij

How to compute X? We are not interested in X , but in E [X]!

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Let Xij denote an indicator random variable, defined as follows:

Xij =

{
1, if S(i) and S(j) are compared during the course of the algorithm
0, otherwise

Let X denote the total number of comparisons made by the algorithm. Clearly,

X =

n−1∑
i=1

∑
j>i

Xij

=

n−1∑
i=1

n∑
j=i+1

Xij

How to compute X? We are not interested in X , but in E [X]!

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Let Xij denote an indicator random variable, defined as follows:

Xij =

{
1, if S(i) and S(j) are compared during the course of the algorithm
0, otherwise

Let X denote the total number of comparisons made by the algorithm.

Clearly,

X =

n−1∑
i=1

∑
j>i

Xij

=

n−1∑
i=1

n∑
j=i+1

Xij

How to compute X? We are not interested in X , but in E [X]!

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Let Xij denote an indicator random variable, defined as follows:

Xij =

{
1, if S(i) and S(j) are compared during the course of the algorithm
0, otherwise

Let X denote the total number of comparisons made by the algorithm. Clearly,

X =

n−1∑
i=1

∑
j>i

Xij

=

n−1∑
i=1

n∑
j=i+1

Xij

How to compute X? We are not interested in X , but in E [X]!

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Let Xij denote an indicator random variable, defined as follows:

Xij =

{
1, if S(i) and S(j) are compared during the course of the algorithm
0, otherwise

Let X denote the total number of comparisons made by the algorithm. Clearly,

X =

n−1∑
i=1

∑
j>i

Xij

=

n−1∑
i=1

n∑
j=i+1

Xij

How to compute X? We are not interested in X , but in E [X]!

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Let Xij denote an indicator random variable, defined as follows:

Xij =

{
1, if S(i) and S(j) are compared during the course of the algorithm
0, otherwise

Let X denote the total number of comparisons made by the algorithm. Clearly,

X =

n−1∑
i=1

∑
j>i

Xij

=

n−1∑
i=1

n∑
j=i+1

Xij

How to compute X? We are not interested in X , but in E [X]!

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Let Xij denote an indicator random variable, defined as follows:

Xij =

{
1, if S(i) and S(j) are compared during the course of the algorithm
0, otherwise

Let X denote the total number of comparisons made by the algorithm. Clearly,

X =

n−1∑
i=1

∑
j>i

Xij

=

n−1∑
i=1

n∑
j=i+1

Xij

How to compute X? We are not interested in X , but in E [X]!

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Let Xij denote an indicator random variable, defined as follows:

Xij =

{
1, if S(i) and S(j) are compared during the course of the algorithm
0, otherwise

Let X denote the total number of comparisons made by the algorithm. Clearly,

X =

n−1∑
i=1

∑
j>i

Xij

=

n−1∑
i=1

n∑
j=i+1

Xij

How to compute X?

We are not interested in X , but in E [X]!

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Let Xij denote an indicator random variable, defined as follows:

Xij =

{
1, if S(i) and S(j) are compared during the course of the algorithm
0, otherwise

Let X denote the total number of comparisons made by the algorithm. Clearly,

X =

n−1∑
i=1

∑
j>i

Xij

=

n−1∑
i=1

n∑
j=i+1

Xij

How to compute X? We are not interested in X , but in E [X]!

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Let Xij denote an indicator random variable, defined as follows:

Xij =

{
1, if S(i) and S(j) are compared during the course of the algorithm
0, otherwise

Let X denote the total number of comparisons made by the algorithm. Clearly,

X =

n−1∑
i=1

∑
j>i

Xij

=

n−1∑
i=1

n∑
j=i+1

Xij

How to compute X? We are not interested in X , but in E [X]!

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Observe that,

E [X] = E [

n−1∑
i=1

n∑
j=i+1

Xij]

=

n−1∑
i=1

n∑
j=i+1

E [Xij]

Let pij denote the probability that S(i) and S(j) are compared.

Clearly, E [Xij] = pij .

How to compute pij ?

Let Sij = {S(i),S(i + 1), . . .S(j)}. S(i) and S(j) will be compared only if, either one
of them is picked before the other elements in Sij !

Since all choices are made uniformly and at random, the probability of either S(i) or
S(j) being picked before the other elements in Sij is exactly 2

j−i+1 .

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Observe that,

E [X] = E [

n−1∑
i=1

n∑
j=i+1

Xij]

=

n−1∑
i=1

n∑
j=i+1

E [Xij]

Let pij denote the probability that S(i) and S(j) are compared.

Clearly, E [Xij] = pij .

How to compute pij ?

Let Sij = {S(i),S(i + 1), . . .S(j)}. S(i) and S(j) will be compared only if, either one
of them is picked before the other elements in Sij !

Since all choices are made uniformly and at random, the probability of either S(i) or
S(j) being picked before the other elements in Sij is exactly 2

j−i+1 .

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Observe that,

E [X] = E [

n−1∑
i=1

n∑
j=i+1

Xij]

=

n−1∑
i=1

n∑
j=i+1

E [Xij]

Let pij denote the probability that S(i) and S(j) are compared.

Clearly, E [Xij] = pij .

How to compute pij ?

Let Sij = {S(i),S(i + 1), . . .S(j)}. S(i) and S(j) will be compared only if, either one
of them is picked before the other elements in Sij !

Since all choices are made uniformly and at random, the probability of either S(i) or
S(j) being picked before the other elements in Sij is exactly 2

j−i+1 .

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Observe that,

E [X] = E [

n−1∑
i=1

n∑
j=i+1

Xij]

=

n−1∑
i=1

n∑
j=i+1

E [Xij]

Let pij denote the probability that S(i) and S(j) are compared.

Clearly, E [Xij] = pij .

How to compute pij ?

Let Sij = {S(i),S(i + 1), . . .S(j)}. S(i) and S(j) will be compared only if, either one
of them is picked before the other elements in Sij !

Since all choices are made uniformly and at random, the probability of either S(i) or
S(j) being picked before the other elements in Sij is exactly 2

j−i+1 .

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Observe that,

E [X] = E [

n−1∑
i=1

n∑
j=i+1

Xij]

=

n−1∑
i=1

n∑
j=i+1

E [Xij]

Let pij denote the probability that S(i) and S(j) are compared.

Clearly, E [Xij] = pij .

How to compute pij ?

Let Sij = {S(i),S(i + 1), . . .S(j)}. S(i) and S(j) will be compared only if, either one
of them is picked before the other elements in Sij !

Since all choices are made uniformly and at random, the probability of either S(i) or
S(j) being picked before the other elements in Sij is exactly 2

j−i+1 .

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Observe that,

E [X] = E [

n−1∑
i=1

n∑
j=i+1

Xij]

=

n−1∑
i=1

n∑
j=i+1

E [Xij]

Let pij denote the probability that S(i) and S(j) are compared.

Clearly, E [Xij] = pij .

How to compute pij ?

Let Sij = {S(i),S(i + 1), . . .S(j)}. S(i) and S(j) will be compared only if, either one
of them is picked before the other elements in Sij !

Since all choices are made uniformly and at random, the probability of either S(i) or
S(j) being picked before the other elements in Sij is exactly 2

j−i+1 .

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Observe that,

E [X] = E [

n−1∑
i=1

n∑
j=i+1

Xij]

=

n−1∑
i=1

n∑
j=i+1

E [Xij]

Let pij denote the probability that S(i) and S(j) are compared.

Clearly, E [Xij] =

pij .

How to compute pij ?

Let Sij = {S(i),S(i + 1), . . .S(j)}. S(i) and S(j) will be compared only if, either one
of them is picked before the other elements in Sij !

Since all choices are made uniformly and at random, the probability of either S(i) or
S(j) being picked before the other elements in Sij is exactly 2

j−i+1 .

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Observe that,

E [X] = E [

n−1∑
i=1

n∑
j=i+1

Xij]

=

n−1∑
i=1

n∑
j=i+1

E [Xij]

Let pij denote the probability that S(i) and S(j) are compared.

Clearly, E [Xij] = pij .

How to compute pij ?

Let Sij = {S(i),S(i + 1), . . .S(j)}. S(i) and S(j) will be compared only if, either one
of them is picked before the other elements in Sij !

Since all choices are made uniformly and at random, the probability of either S(i) or
S(j) being picked before the other elements in Sij is exactly 2

j−i+1 .

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Observe that,

E [X] = E [

n−1∑
i=1

n∑
j=i+1

Xij]

=

n−1∑
i=1

n∑
j=i+1

E [Xij]

Let pij denote the probability that S(i) and S(j) are compared.

Clearly, E [Xij] = pij .

How to compute pij ?

Let Sij = {S(i),S(i + 1), . . .S(j)}. S(i) and S(j) will be compared only if, either one
of them is picked before the other elements in Sij !

Since all choices are made uniformly and at random, the probability of either S(i) or
S(j) being picked before the other elements in Sij is exactly 2

j−i+1 .

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Observe that,

E [X] = E [

n−1∑
i=1

n∑
j=i+1

Xij]

=

n−1∑
i=1

n∑
j=i+1

E [Xij]

Let pij denote the probability that S(i) and S(j) are compared.

Clearly, E [Xij] = pij .

How to compute pij ?

Let Sij = {S(i),S(i + 1), . . .S(j)}.

S(i) and S(j) will be compared only if, either one
of them is picked before the other elements in Sij !

Since all choices are made uniformly and at random, the probability of either S(i) or
S(j) being picked before the other elements in Sij is exactly 2

j−i+1 .

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Observe that,

E [X] = E [

n−1∑
i=1

n∑
j=i+1

Xij]

=

n−1∑
i=1

n∑
j=i+1

E [Xij]

Let pij denote the probability that S(i) and S(j) are compared.

Clearly, E [Xij] = pij .

How to compute pij ?

Let Sij = {S(i),S(i + 1), . . .S(j)}. S(i) and S(j) will be compared only if, either one
of them is picked before the other elements in Sij !

Since all choices are made uniformly and at random, the probability of either S(i) or
S(j) being picked before the other elements in Sij is exactly 2

j−i+1 .

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Observe that,

E [X] = E [

n−1∑
i=1

n∑
j=i+1

Xij]

=

n−1∑
i=1

n∑
j=i+1

E [Xij]

Let pij denote the probability that S(i) and S(j) are compared.

Clearly, E [Xij] = pij .

How to compute pij ?

Let Sij = {S(i),S(i + 1), . . .S(j)}. S(i) and S(j) will be compared only if, either one
of them is picked before the other elements in Sij !

Since all choices are made uniformly and at random, the probability of either S(i) or
S(j) being picked before the other elements in Sij is exactly

2
j−i+1 .

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Observe that,

E [X] = E [

n−1∑
i=1

n∑
j=i+1

Xij]

=

n−1∑
i=1

n∑
j=i+1

E [Xij]

Let pij denote the probability that S(i) and S(j) are compared.

Clearly, E [Xij] = pij .

How to compute pij ?

Let Sij = {S(i),S(i + 1), . . .S(j)}. S(i) and S(j) will be compared only if, either one
of them is picked before the other elements in Sij !

Since all choices are made uniformly and at random, the probability of either S(i) or
S(j) being picked before the other elements in Sij is exactly 2

j−i+1 .

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Observe that,

E [X] = E [

n−1∑
i=1

n∑
j=i+1

Xij]

=

n−1∑
i=1

n∑
j=i+1

E [Xij]

Let pij denote the probability that S(i) and S(j) are compared.

Clearly, E [Xij] = pij .

How to compute pij ?

Let Sij = {S(i),S(i + 1), . . .S(j)}. S(i) and S(j) will be compared only if, either one
of them is picked before the other elements in Sij !

Since all choices are made uniformly and at random, the probability of either S(i) or
S(j) being picked before the other elements in Sij is exactly 2

j−i+1 .

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Therefore,

E [X] =

n−1∑
i=1

n∑
j=i+1

E [Xij]

=

n−1∑
i=1

n∑
j=i+1

2
j − i + 1

=

n−1∑
i=1

n−i+1∑
k=2

2
k

≤
n∑

i=1

n∑
k=1

2
k

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Therefore,

E [X] =

n−1∑
i=1

n∑
j=i+1

E [Xij]

=

n−1∑
i=1

n∑
j=i+1

2
j − i + 1

=

n−1∑
i=1

n−i+1∑
k=2

2
k

≤
n∑

i=1

n∑
k=1

2
k

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Therefore,

E [X] =

n−1∑
i=1

n∑
j=i+1

E [Xij]

=

n−1∑
i=1

n∑
j=i+1

2
j − i + 1

=

n−1∑
i=1

n−i+1∑
k=2

2
k

≤
n∑

i=1

n∑
k=1

2
k

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Therefore,

E [X] =

n−1∑
i=1

n∑
j=i+1

E [Xij]

=

n−1∑
i=1

n∑
j=i+1

2
j − i + 1

=

n−1∑
i=1

n−i+1∑
k=2

2
k

≤
n∑

i=1

n∑
k=1

2
k

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Therefore,

E [X] =

n−1∑
i=1

n∑
j=i+1

E [Xij]

=

n−1∑
i=1

n∑
j=i+1

2
j − i + 1

=

n−1∑
i=1

n−i+1∑
k=2

2
k

≤
n∑

i=1

n∑
k=1

2
k

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Therefore,

E [X] =

n−1∑
i=1

n∑
j=i+1

E [Xij]

=

n−1∑
i=1

n∑
j=i+1

2
j − i + 1

=

n−1∑
i=1

n−i+1∑
k=2

2
k

≤
n∑

i=1

n∑
k=1

2
k

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Therefore,

E [X] =

n−1∑
i=1

n∑
j=i+1

E [Xij]

=

n−1∑
i=1

n∑
j=i+1

2
j − i + 1

=

n−1∑
i=1

n−i+1∑
k=2

2
k

≤
n∑

i=1

n∑
k=1

2
k

Divide and Conquer

Quick Sort

Indicator Variable Analysis (contd.)

Analysis (contd.)

Therefore,

E [X] =

n−1∑
i=1

n∑
j=i+1

E [Xij]

=

n−1∑
i=1

n∑
j=i+1

2
j − i + 1

=

n−1∑
i=1

n−i+1∑
k=2

2
k

≤
n∑

i=1

n∑
k=1

2
k

Divide and Conquer

Quick Sort

Final Steps

Concluding the analysis

E [X] ≤ 2 ·
n∑

i=1

n∑
k=1

1
k

= 2 ·
n∑

i=1

Hn

= 2 · n · Hn

∈ O(n · log n)

Divide and Conquer

Quick Sort

Final Steps

Concluding the analysis

E [X] ≤ 2 ·
n∑

i=1

n∑
k=1

1
k

= 2 ·
n∑

i=1

Hn

= 2 · n · Hn

∈ O(n · log n)

Divide and Conquer

Quick Sort

Final Steps

Concluding the analysis

E [X] ≤

2 ·
n∑

i=1

n∑
k=1

1
k

= 2 ·
n∑

i=1

Hn

= 2 · n · Hn

∈ O(n · log n)

Divide and Conquer

Quick Sort

Final Steps

Concluding the analysis

E [X] ≤ 2 ·
n∑

i=1

n∑
k=1

1
k

= 2 ·
n∑

i=1

Hn

= 2 · n · Hn

∈ O(n · log n)

Divide and Conquer

Quick Sort

Final Steps

Concluding the analysis

E [X] ≤ 2 ·
n∑

i=1

n∑
k=1

1
k

= 2 ·
n∑

i=1

Hn

= 2 · n · Hn

∈ O(n · log n)

Divide and Conquer

Quick Sort

Final Steps

Concluding the analysis

E [X] ≤ 2 ·
n∑

i=1

n∑
k=1

1
k

= 2 ·
n∑

i=1

Hn

= 2 · n · Hn

∈ O(n · log n)

Divide and Conquer

Quick Sort

Final Steps

Concluding the analysis

E [X] ≤ 2 ·
n∑

i=1

n∑
k=1

1
k

= 2 ·
n∑

i=1

Hn

= 2 · n · Hn

∈ O(n · log n)

Divide and Conquer

Integer Multiplication

Integer Multiplication

Main Issues

1 Two n-bit numbers I and J can be added and subtracted in O(n) time.
2 Standard multiplication takes O(n2) time. (Why?)
3 Can we do better? Observe that,

I = Ih · 2
n
2 + Il

J = Jh · 2
n
2 + Jl

4 It follows that,

I · J = (Ih · 2
n
2 + Il) · (Jh · 2

n
2 + Jl)

= Ih · Jh · 2n + Il · Jh · 2
n
2 + Ih · Jl · 2

n
2 + Il · Jl

5 So a natural divide and conquer algorithm suggests itself. (Can you design it?)

Divide and Conquer

Integer Multiplication

Integer Multiplication

Main Issues

1 Two n-bit numbers I and J can be added and subtracted in O(n) time.
2 Standard multiplication takes O(n2) time. (Why?)
3 Can we do better? Observe that,

I = Ih · 2
n
2 + Il

J = Jh · 2
n
2 + Jl

4 It follows that,

I · J = (Ih · 2
n
2 + Il) · (Jh · 2

n
2 + Jl)

= Ih · Jh · 2n + Il · Jh · 2
n
2 + Ih · Jl · 2

n
2 + Il · Jl

5 So a natural divide and conquer algorithm suggests itself. (Can you design it?)

Divide and Conquer

Integer Multiplication

Integer Multiplication

Main Issues

1 Two n-bit numbers I and J can be added and subtracted in O(n) time.
2 Standard multiplication takes O(n2) time. (Why?)
3 Can we do better? Observe that,

I = Ih · 2
n
2 + Il

J = Jh · 2
n
2 + Jl

4 It follows that,

I · J = (Ih · 2
n
2 + Il) · (Jh · 2

n
2 + Jl)

= Ih · Jh · 2n + Il · Jh · 2
n
2 + Ih · Jl · 2

n
2 + Il · Jl

5 So a natural divide and conquer algorithm suggests itself. (Can you design it?)

Divide and Conquer

Integer Multiplication

Integer Multiplication

Main Issues

1 Two n-bit numbers I and J can be added and subtracted in O(n) time.

2 Standard multiplication takes O(n2) time. (Why?)
3 Can we do better? Observe that,

I = Ih · 2
n
2 + Il

J = Jh · 2
n
2 + Jl

4 It follows that,

I · J = (Ih · 2
n
2 + Il) · (Jh · 2

n
2 + Jl)

= Ih · Jh · 2n + Il · Jh · 2
n
2 + Ih · Jl · 2

n
2 + Il · Jl

5 So a natural divide and conquer algorithm suggests itself. (Can you design it?)

Divide and Conquer

Integer Multiplication

Integer Multiplication

Main Issues

1 Two n-bit numbers I and J can be added and subtracted in O(n) time.
2 Standard multiplication takes O(n2) time.

(Why?)
3 Can we do better? Observe that,

I = Ih · 2
n
2 + Il

J = Jh · 2
n
2 + Jl

4 It follows that,

I · J = (Ih · 2
n
2 + Il) · (Jh · 2

n
2 + Jl)

= Ih · Jh · 2n + Il · Jh · 2
n
2 + Ih · Jl · 2

n
2 + Il · Jl

5 So a natural divide and conquer algorithm suggests itself. (Can you design it?)

Divide and Conquer

Integer Multiplication

Integer Multiplication

Main Issues

1 Two n-bit numbers I and J can be added and subtracted in O(n) time.
2 Standard multiplication takes O(n2) time. (Why?)

3 Can we do better? Observe that,

I = Ih · 2
n
2 + Il

J = Jh · 2
n
2 + Jl

4 It follows that,

I · J = (Ih · 2
n
2 + Il) · (Jh · 2

n
2 + Jl)

= Ih · Jh · 2n + Il · Jh · 2
n
2 + Ih · Jl · 2

n
2 + Il · Jl

5 So a natural divide and conquer algorithm suggests itself. (Can you design it?)

Divide and Conquer

Integer Multiplication

Integer Multiplication

Main Issues

1 Two n-bit numbers I and J can be added and subtracted in O(n) time.
2 Standard multiplication takes O(n2) time. (Why?)
3 Can we do better?

Observe that,

I = Ih · 2
n
2 + Il

J = Jh · 2
n
2 + Jl

4 It follows that,

I · J = (Ih · 2
n
2 + Il) · (Jh · 2

n
2 + Jl)

= Ih · Jh · 2n + Il · Jh · 2
n
2 + Ih · Jl · 2

n
2 + Il · Jl

5 So a natural divide and conquer algorithm suggests itself. (Can you design it?)

Divide and Conquer

Integer Multiplication

Integer Multiplication

Main Issues

1 Two n-bit numbers I and J can be added and subtracted in O(n) time.
2 Standard multiplication takes O(n2) time. (Why?)
3 Can we do better? Observe that,

I = Ih · 2
n
2 + Il

J = Jh · 2
n
2 + Jl

4 It follows that,

I · J = (Ih · 2
n
2 + Il) · (Jh · 2

n
2 + Jl)

= Ih · Jh · 2n + Il · Jh · 2
n
2 + Ih · Jl · 2

n
2 + Il · Jl

5 So a natural divide and conquer algorithm suggests itself. (Can you design it?)

Divide and Conquer

Integer Multiplication

Integer Multiplication

Main Issues

1 Two n-bit numbers I and J can be added and subtracted in O(n) time.
2 Standard multiplication takes O(n2) time. (Why?)
3 Can we do better? Observe that,

I = Ih · 2
n
2 + Il

J = Jh · 2
n
2 + Jl

4 It follows that,

I · J = (Ih · 2
n
2 + Il) · (Jh · 2

n
2 + Jl)

= Ih · Jh · 2n + Il · Jh · 2
n
2 + Ih · Jl · 2

n
2 + Il · Jl

5 So a natural divide and conquer algorithm suggests itself. (Can you design it?)

Divide and Conquer

Integer Multiplication

Integer Multiplication

Main Issues

1 Two n-bit numbers I and J can be added and subtracted in O(n) time.
2 Standard multiplication takes O(n2) time. (Why?)
3 Can we do better? Observe that,

I = Ih · 2
n
2 + Il

J = Jh · 2
n
2 + Jl

4 It follows that,

I · J = (Ih · 2
n
2 + Il) · (Jh · 2

n
2 + Jl)

= Ih · Jh · 2n + Il · Jh · 2
n
2 + Ih · Jl · 2

n
2 + Il · Jl

5 So a natural divide and conquer algorithm suggests itself. (Can you design it?)

Divide and Conquer

Integer Multiplication

Integer Multiplication

Main Issues

1 Two n-bit numbers I and J can be added and subtracted in O(n) time.
2 Standard multiplication takes O(n2) time. (Why?)
3 Can we do better? Observe that,

I = Ih · 2
n
2 + Il

J = Jh · 2
n
2 + Jl

4 It follows that,

I · J = (Ih · 2
n
2 + Il) · (Jh · 2

n
2 + Jl)

= Ih · Jh · 2n + Il · Jh · 2
n
2 + Ih · Jl · 2

n
2 + Il · Jl

5 So a natural divide and conquer algorithm suggests itself. (Can you design it?)

Divide and Conquer

Integer Multiplication

Integer Multiplication

Main Issues

1 Two n-bit numbers I and J can be added and subtracted in O(n) time.
2 Standard multiplication takes O(n2) time. (Why?)
3 Can we do better? Observe that,

I = Ih · 2
n
2 + Il

J = Jh · 2
n
2 + Jl

4 It follows that,

I · J =

(Ih · 2
n
2 + Il) · (Jh · 2

n
2 + Jl)

= Ih · Jh · 2n + Il · Jh · 2
n
2 + Ih · Jl · 2

n
2 + Il · Jl

5 So a natural divide and conquer algorithm suggests itself. (Can you design it?)

Divide and Conquer

Integer Multiplication

Integer Multiplication

Main Issues

1 Two n-bit numbers I and J can be added and subtracted in O(n) time.
2 Standard multiplication takes O(n2) time. (Why?)
3 Can we do better? Observe that,

I = Ih · 2
n
2 + Il

J = Jh · 2
n
2 + Jl

4 It follows that,

I · J = (Ih · 2
n
2 + Il) · (Jh · 2

n
2 + Jl)

=

Ih · Jh · 2n + Il · Jh · 2
n
2 + Ih · Jl · 2

n
2 + Il · Jl

5 So a natural divide and conquer algorithm suggests itself. (Can you design it?)

Divide and Conquer

Integer Multiplication

Integer Multiplication

Main Issues

1 Two n-bit numbers I and J can be added and subtracted in O(n) time.
2 Standard multiplication takes O(n2) time. (Why?)
3 Can we do better? Observe that,

I = Ih · 2
n
2 + Il

J = Jh · 2
n
2 + Jl

4 It follows that,

I · J = (Ih · 2
n
2 + Il) · (Jh · 2

n
2 + Jl)

= Ih · Jh · 2n + Il · Jh · 2
n
2 + Ih · Jl · 2

n
2 + Il · Jl

5 So a natural divide and conquer algorithm suggests itself. (Can you design it?)

Divide and Conquer

Integer Multiplication

Integer Multiplication

Main Issues

1 Two n-bit numbers I and J can be added and subtracted in O(n) time.
2 Standard multiplication takes O(n2) time. (Why?)
3 Can we do better? Observe that,

I = Ih · 2
n
2 + Il

J = Jh · 2
n
2 + Jl

4 It follows that,

I · J = (Ih · 2
n
2 + Il) · (Jh · 2

n
2 + Jl)

= Ih · Jh · 2n + Il · Jh · 2
n
2 + Ih · Jl · 2

n
2 + Il · Jl

5 So a natural divide and conquer algorithm suggests itself.

(Can you design it?)

Divide and Conquer

Integer Multiplication

Integer Multiplication

Main Issues

1 Two n-bit numbers I and J can be added and subtracted in O(n) time.
2 Standard multiplication takes O(n2) time. (Why?)
3 Can we do better? Observe that,

I = Ih · 2
n
2 + Il

J = Jh · 2
n
2 + Jl

4 It follows that,

I · J = (Ih · 2
n
2 + Il) · (Jh · 2

n
2 + Jl)

= Ih · Jh · 2n + Il · Jh · 2
n
2 + Ih · Jl · 2

n
2 + Il · Jl

5 So a natural divide and conquer algorithm suggests itself. (Can you design it?)

Divide and Conquer

Integer Multiplication

Integer Multiplication

Analysis

Let T (n) denote the running time to multiply two n-bit numbers. It follows that,

T (n) =

{
O(1), if n=1
4 · T (n

2) + b · n, otherwise

It follows that T (n) ∈ O(n2)!

Divide and Conquer

Integer Multiplication

Integer Multiplication

Analysis

Let T (n) denote the running time to multiply two n-bit numbers. It follows that,

T (n) =

{
O(1), if n=1
4 · T (n

2) + b · n, otherwise

It follows that T (n) ∈ O(n2)!

Divide and Conquer

Integer Multiplication

Integer Multiplication

Analysis

Let T (n) denote the running time to multiply two n-bit numbers.

It follows that,

T (n) =

{
O(1), if n=1
4 · T (n

2) + b · n, otherwise

It follows that T (n) ∈ O(n2)!

Divide and Conquer

Integer Multiplication

Integer Multiplication

Analysis

Let T (n) denote the running time to multiply two n-bit numbers. It follows that,

T (n) =

{
O(1), if n=1
4 · T (n

2) + b · n, otherwise

It follows that T (n) ∈ O(n2)!

Divide and Conquer

Integer Multiplication

Integer Multiplication

Analysis

Let T (n) denote the running time to multiply two n-bit numbers. It follows that,

T (n) =

{
O(1), if n=1
4 · T (n

2) + b · n, otherwise

It follows that T (n) ∈ O(n2)!

Divide and Conquer

Integer Multiplication

Integer Multiplication

Analysis

Let T (n) denote the running time to multiply two n-bit numbers. It follows that,

T (n) =

{
O(1), if n=1

4 · T (n
2) + b · n, otherwise

It follows that T (n) ∈ O(n2)!

Divide and Conquer

Integer Multiplication

Integer Multiplication

Analysis

Let T (n) denote the running time to multiply two n-bit numbers. It follows that,

T (n) =

{
O(1), if n=1
4 · T (n

2) + b · n, otherwise

It follows that T (n) ∈ O(n2)!

Divide and Conquer

Integer Multiplication

Integer Multiplication

Analysis

Let T (n) denote the running time to multiply two n-bit numbers. It follows that,

T (n) =

{
O(1), if n=1
4 · T (n

2) + b · n, otherwise

It follows that T (n) ∈ O(n2)!

Divide and Conquer

Integer Multiplication

New Approach

Insights

Observe that,

(Ih − Il) · (Jl − Jh) = Ih · Jl − Il · Jl − Ih · Jh + Il · Jh

Next note that,

I · J = Ih · Jh · 2n + [(Ih − Il) · (Jl − Jh) + Ih · Jh + Il · Jl] · 2
n
2 + Il · Jl .

Let T (n) denote the running time to multiply two n-bit numbers. It follows that,

T (n) =

{
O(1), if n=1

3 · T (n
2) + b · n, otherwise

It follows that T (n) ∈ O(nlog2 3) = O(n1.585).

Divide and Conquer

Integer Multiplication

New Approach

Insights

Observe that,

(Ih − Il) · (Jl − Jh) = Ih · Jl − Il · Jl − Ih · Jh + Il · Jh

Next note that,

I · J = Ih · Jh · 2n + [(Ih − Il) · (Jl − Jh) + Ih · Jh + Il · Jl] · 2
n
2 + Il · Jl .

Let T (n) denote the running time to multiply two n-bit numbers. It follows that,

T (n) =

{
O(1), if n=1

3 · T (n
2) + b · n, otherwise

It follows that T (n) ∈ O(nlog2 3) = O(n1.585).

Divide and Conquer

Integer Multiplication

New Approach

Insights

Observe that,

(Ih − Il) · (Jl − Jh) = Ih · Jl − Il · Jl − Ih · Jh + Il · Jh

Next note that,

I · J = Ih · Jh · 2n + [(Ih − Il) · (Jl − Jh) + Ih · Jh + Il · Jl] · 2
n
2 + Il · Jl .

Let T (n) denote the running time to multiply two n-bit numbers. It follows that,

T (n) =

{
O(1), if n=1

3 · T (n
2) + b · n, otherwise

It follows that T (n) ∈ O(nlog2 3) = O(n1.585).

Divide and Conquer

Integer Multiplication

New Approach

Insights

Observe that,

(Ih − Il) · (Jl − Jh) =

Ih · Jl − Il · Jl − Ih · Jh + Il · Jh

Next note that,

I · J = Ih · Jh · 2n + [(Ih − Il) · (Jl − Jh) + Ih · Jh + Il · Jl] · 2
n
2 + Il · Jl .

Let T (n) denote the running time to multiply two n-bit numbers. It follows that,

T (n) =

{
O(1), if n=1

3 · T (n
2) + b · n, otherwise

It follows that T (n) ∈ O(nlog2 3) = O(n1.585).

Divide and Conquer

Integer Multiplication

New Approach

Insights

Observe that,

(Ih − Il) · (Jl − Jh) = Ih · Jl − Il · Jl − Ih · Jh + Il · Jh

Next note that,

I · J = Ih · Jh · 2n + [(Ih − Il) · (Jl − Jh) + Ih · Jh + Il · Jl] · 2
n
2 + Il · Jl .

Let T (n) denote the running time to multiply two n-bit numbers. It follows that,

T (n) =

{
O(1), if n=1

3 · T (n
2) + b · n, otherwise

It follows that T (n) ∈ O(nlog2 3) = O(n1.585).

Divide and Conquer

Integer Multiplication

New Approach

Insights

Observe that,

(Ih − Il) · (Jl − Jh) = Ih · Jl − Il · Jl − Ih · Jh + Il · Jh

Next note that,

I · J =

Ih · Jh · 2n + [(Ih − Il) · (Jl − Jh) + Ih · Jh + Il · Jl] · 2
n
2 + Il · Jl .

Let T (n) denote the running time to multiply two n-bit numbers. It follows that,

T (n) =

{
O(1), if n=1

3 · T (n
2) + b · n, otherwise

It follows that T (n) ∈ O(nlog2 3) = O(n1.585).

Divide and Conquer

Integer Multiplication

New Approach

Insights

Observe that,

(Ih − Il) · (Jl − Jh) = Ih · Jl − Il · Jl − Ih · Jh + Il · Jh

Next note that,

I · J = Ih · Jh · 2n + [(Ih − Il) · (Jl − Jh) + Ih · Jh + Il · Jl] · 2
n
2 + Il · Jl .

Let T (n) denote the running time to multiply two n-bit numbers.

It follows that,

T (n) =

{
O(1), if n=1

3 · T (n
2) + b · n, otherwise

It follows that T (n) ∈ O(nlog2 3) = O(n1.585).

Divide and Conquer

Integer Multiplication

New Approach

Insights

Observe that,

(Ih − Il) · (Jl − Jh) = Ih · Jl − Il · Jl − Ih · Jh + Il · Jh

Next note that,

I · J = Ih · Jh · 2n + [(Ih − Il) · (Jl − Jh) + Ih · Jh + Il · Jl] · 2
n
2 + Il · Jl .

Let T (n) denote the running time to multiply two n-bit numbers. It follows that,

T (n) =

{
O(1), if n=1

3 · T (n
2) + b · n, otherwise

It follows that T (n) ∈ O(nlog2 3) = O(n1.585).

Divide and Conquer

Integer Multiplication

New Approach

Insights

Observe that,

(Ih − Il) · (Jl − Jh) = Ih · Jl − Il · Jl − Ih · Jh + Il · Jh

Next note that,

I · J = Ih · Jh · 2n + [(Ih − Il) · (Jl − Jh) + Ih · Jh + Il · Jl] · 2
n
2 + Il · Jl .

Let T (n) denote the running time to multiply two n-bit numbers. It follows that,

T (n) =

{
O(1), if n=1

3 · T (n
2) + b · n, otherwise

It follows that T (n) ∈ O(nlog2 3) = O(n1.585).

Divide and Conquer

Integer Multiplication

New Approach

Insights

Observe that,

(Ih − Il) · (Jl − Jh) = Ih · Jl − Il · Jl − Ih · Jh + Il · Jh

Next note that,

I · J = Ih · Jh · 2n + [(Ih − Il) · (Jl − Jh) + Ih · Jh + Il · Jl] · 2
n
2 + Il · Jl .

Let T (n) denote the running time to multiply two n-bit numbers. It follows that,

T (n) =

{
O(1), if n=1

3 · T (n
2) + b · n, otherwise

It follows that T (n) ∈ O(nlog2 3) = O(n1.585).

Divide and Conquer

Integer Multiplication

New Approach

Insights

Observe that,

(Ih − Il) · (Jl − Jh) = Ih · Jl − Il · Jl − Ih · Jh + Il · Jh

Next note that,

I · J = Ih · Jh · 2n + [(Ih − Il) · (Jl − Jh) + Ih · Jh + Il · Jl] · 2
n
2 + Il · Jl .

Let T (n) denote the running time to multiply two n-bit numbers. It follows that,

T (n) =

{
O(1), if n=1

3 · T (n
2) + b · n, otherwise

It follows that T (n) ∈ O(nlog2 3) = O(n1.585).

Divide and Conquer

Integer Multiplication

New Approach

Insights

Observe that,

(Ih − Il) · (Jl − Jh) = Ih · Jl − Il · Jl − Ih · Jh + Il · Jh

Next note that,

I · J = Ih · Jh · 2n + [(Ih − Il) · (Jl − Jh) + Ih · Jh + Il · Jl] · 2
n
2 + Il · Jl .

Let T (n) denote the running time to multiply two n-bit numbers. It follows that,

T (n) =

{
O(1), if n=1

3 · T (n
2) + b · n, otherwise

It follows that T (n) ∈ O(nlog2 3) = O(n1.585).

Divide and Conquer

Matrix Multiplication

Matrix Multiplication

Issues

1 Assume that we are given two n × n matrices X and Y.
2 The goal is to compute Z = X · Y. Recall that Z [i, j] =

∑n
k=1 X [i, k] · Y [k , j].

3 The naive algorithm requires n3 scalar multiplications and n3 scalar additions.

Divide and Conquer

Matrix Multiplication

Matrix Multiplication

Issues

1 Assume that we are given two n × n matrices X and Y.
2 The goal is to compute Z = X · Y. Recall that Z [i, j] =

∑n
k=1 X [i, k] · Y [k , j].

3 The naive algorithm requires n3 scalar multiplications and n3 scalar additions.

Divide and Conquer

Matrix Multiplication

Matrix Multiplication

Issues

1 Assume that we are given two n × n matrices X and Y.
2 The goal is to compute Z = X · Y. Recall that Z [i, j] =

∑n
k=1 X [i, k] · Y [k , j].

3 The naive algorithm requires n3 scalar multiplications and n3 scalar additions.

Divide and Conquer

Matrix Multiplication

Matrix Multiplication

Issues

1 Assume that we are given two n × n matrices X and Y.

2 The goal is to compute Z = X · Y. Recall that Z [i, j] =
∑n

k=1 X [i, k] · Y [k , j].
3 The naive algorithm requires n3 scalar multiplications and n3 scalar additions.

Divide and Conquer

Matrix Multiplication

Matrix Multiplication

Issues

1 Assume that we are given two n × n matrices X and Y.
2 The goal is to compute Z = X · Y.

Recall that Z [i, j] =
∑n

k=1 X [i, k] · Y [k , j].
3 The naive algorithm requires n3 scalar multiplications and n3 scalar additions.

Divide and Conquer

Matrix Multiplication

Matrix Multiplication

Issues

1 Assume that we are given two n × n matrices X and Y.
2 The goal is to compute Z = X · Y. Recall that Z [i, j] =

∑n
k=1 X [i, k] · Y [k , j].

3 The naive algorithm requires n3 scalar multiplications and n3 scalar additions.

Divide and Conquer

Matrix Multiplication

Matrix Multiplication

Issues

1 Assume that we are given two n × n matrices X and Y.
2 The goal is to compute Z = X · Y. Recall that Z [i, j] =

∑n
k=1 X [i, k] · Y [k , j].

3 The naive algorithm requires n3 scalar multiplications and n3 scalar additions.

Divide and Conquer

Matrix Multiplication

Divide and Conquer Approach

Approach

1 Break each matrix into four parts as shown below:(
I J
K L

)
=

(
A B
C D

)
·
(

E F
G H

)
2 The following equations follow immediately:

I = A · E + B · G
J = A · F + B · H
K = C · E + D · G
L = C · F + D · H.

3 The running time is captured by the recurrence:

T (n) = 8 · T (
n
2
) + b · n2

4 It follows that T (n) ∈ O(n3).

Divide and Conquer

Matrix Multiplication

Divide and Conquer Approach

Approach

1 Break each matrix into four parts as shown below:(
I J
K L

)
=

(
A B
C D

)
·
(

E F
G H

)
2 The following equations follow immediately:

I = A · E + B · G
J = A · F + B · H
K = C · E + D · G
L = C · F + D · H.

3 The running time is captured by the recurrence:

T (n) = 8 · T (
n
2
) + b · n2

4 It follows that T (n) ∈ O(n3).

Divide and Conquer

Matrix Multiplication

Divide and Conquer Approach

Approach

1 Break each matrix into four parts as shown below:(
I J
K L

)
=

(
A B
C D

)
·
(

E F
G H

)
2 The following equations follow immediately:

I = A · E + B · G
J = A · F + B · H
K = C · E + D · G
L = C · F + D · H.

3 The running time is captured by the recurrence:

T (n) = 8 · T (
n
2
) + b · n2

4 It follows that T (n) ∈ O(n3).

Divide and Conquer

Matrix Multiplication

Divide and Conquer Approach

Approach

1 Break each matrix into four parts as shown below:

(
I J
K L

)
=

(
A B
C D

)
·
(

E F
G H

)
2 The following equations follow immediately:

I = A · E + B · G
J = A · F + B · H
K = C · E + D · G
L = C · F + D · H.

3 The running time is captured by the recurrence:

T (n) = 8 · T (
n
2
) + b · n2

4 It follows that T (n) ∈ O(n3).

Divide and Conquer

Matrix Multiplication

Divide and Conquer Approach

Approach

1 Break each matrix into four parts as shown below:(
I J
K L

)
=

(
A B
C D

)
·
(

E F
G H

)

2 The following equations follow immediately:

I = A · E + B · G
J = A · F + B · H
K = C · E + D · G
L = C · F + D · H.

3 The running time is captured by the recurrence:

T (n) = 8 · T (
n
2
) + b · n2

4 It follows that T (n) ∈ O(n3).

Divide and Conquer

Matrix Multiplication

Divide and Conquer Approach

Approach

1 Break each matrix into four parts as shown below:(
I J
K L

)
=

(
A B
C D

)
·
(

E F
G H

)
2 The following equations follow immediately:

I = A · E + B · G
J = A · F + B · H
K = C · E + D · G
L = C · F + D · H.

3 The running time is captured by the recurrence:

T (n) = 8 · T (
n
2
) + b · n2

4 It follows that T (n) ∈ O(n3).

Divide and Conquer

Matrix Multiplication

Divide and Conquer Approach

Approach

1 Break each matrix into four parts as shown below:(
I J
K L

)
=

(
A B
C D

)
·
(

E F
G H

)
2 The following equations follow immediately:

I = A · E + B · G
J = A · F + B · H
K = C · E + D · G
L = C · F + D · H.

3 The running time is captured by the recurrence:

T (n) = 8 · T (
n
2
) + b · n2

4 It follows that T (n) ∈ O(n3).

Divide and Conquer

Matrix Multiplication

Divide and Conquer Approach

Approach

1 Break each matrix into four parts as shown below:(
I J
K L

)
=

(
A B
C D

)
·
(

E F
G H

)
2 The following equations follow immediately:

I = A · E + B · G
J = A · F + B · H
K = C · E + D · G
L = C · F + D · H.

3 The running time is captured by the recurrence:

T (n) = 8 · T (
n
2
) + b · n2

4 It follows that T (n) ∈ O(n3).

Divide and Conquer

Matrix Multiplication

Divide and Conquer Approach

Approach

1 Break each matrix into four parts as shown below:(
I J
K L

)
=

(
A B
C D

)
·
(

E F
G H

)
2 The following equations follow immediately:

I = A · E + B · G
J = A · F + B · H
K = C · E + D · G
L = C · F + D · H.

3 The running time is captured by the recurrence:

T (n) = 8 · T (
n
2
) + b · n2

4 It follows that T (n) ∈ O(n3).

Divide and Conquer

Matrix Multiplication

Divide and Conquer Approach

Approach

1 Break each matrix into four parts as shown below:(
I J
K L

)
=

(
A B
C D

)
·
(

E F
G H

)
2 The following equations follow immediately:

I = A · E + B · G
J = A · F + B · H
K = C · E + D · G
L = C · F + D · H.

3 The running time is captured by the recurrence:

T (n) = 8 · T (
n
2
) + b · n2

4 It follows that T (n) ∈ O(n3).

Divide and Conquer

Matrix Multiplication

Strassen’s Algorithm

Approach

1 Compute the following products:

S1 = A · (F − H)

S2 = (A + B) · H
S3 = (C + D) · E
S4 = D · (G − E)

S5 = (A + D) · (E + H)

S6 = (B − D) · (G + H)

S7 = (A− C) · (E + F)

2 Verify the following identities:

I = S5 + S6 + S4 − S2

J = S1 + S2

K = S3 + S4

L = S1 − S7 − S3 + S5

Divide and Conquer

Matrix Multiplication

Strassen’s Algorithm

Approach

1 Compute the following products:

S1 = A · (F − H)

S2 = (A + B) · H
S3 = (C + D) · E
S4 = D · (G − E)

S5 = (A + D) · (E + H)

S6 = (B − D) · (G + H)

S7 = (A− C) · (E + F)

2 Verify the following identities:

I = S5 + S6 + S4 − S2

J = S1 + S2

K = S3 + S4

L = S1 − S7 − S3 + S5

Divide and Conquer

Matrix Multiplication

Strassen’s Algorithm

Approach

1 Compute the following products:

S1 = A · (F − H)

S2 = (A + B) · H
S3 = (C + D) · E
S4 = D · (G − E)

S5 = (A + D) · (E + H)

S6 = (B − D) · (G + H)

S7 = (A− C) · (E + F)

2 Verify the following identities:

I = S5 + S6 + S4 − S2

J = S1 + S2

K = S3 + S4

L = S1 − S7 − S3 + S5

Divide and Conquer

Matrix Multiplication

Strassen’s Algorithm

Approach

1 Compute the following products:

S1 = A · (F − H)

S2 = (A + B) · H
S3 = (C + D) · E
S4 = D · (G − E)

S5 = (A + D) · (E + H)

S6 = (B − D) · (G + H)

S7 = (A− C) · (E + F)

2 Verify the following identities:

I = S5 + S6 + S4 − S2

J = S1 + S2

K = S3 + S4

L = S1 − S7 − S3 + S5

Divide and Conquer

Matrix Multiplication

Strassen’s Algorithm

Approach

1 Compute the following products:

S1 = A · (F − H)

S2 = (A + B) · H
S3 = (C + D) · E
S4 = D · (G − E)

S5 = (A + D) · (E + H)

S6 = (B − D) · (G + H)

S7 = (A− C) · (E + F)

2 Verify the following identities:

I = S5 + S6 + S4 − S2

J = S1 + S2

K = S3 + S4

L = S1 − S7 − S3 + S5

Divide and Conquer

Matrix Multiplication

Strassen’s Algorithm

Approach

1 Compute the following products:

S1 = A · (F − H)

S2 = (A + B) · H
S3 = (C + D) · E
S4 = D · (G − E)

S5 = (A + D) · (E + H)

S6 = (B − D) · (G + H)

S7 = (A− C) · (E + F)

2 Verify the following identities:

I = S5 + S6 + S4 − S2

J = S1 + S2

K = S3 + S4

L = S1 − S7 − S3 + S5

Divide and Conquer

Matrix Multiplication

Analysis of Strassen’s algorithm

Analysis

Let T (n) denote the running time of Strassen’s algorithm. It follows that,

T (n) = 7 · T (
n
2
) + b · n2.

It follows that T (n) ∈ O(nlog3 7) = O(n2.376).

Divide and Conquer

Matrix Multiplication

Analysis of Strassen’s algorithm

Analysis

Let T (n) denote the running time of Strassen’s algorithm. It follows that,

T (n) = 7 · T (
n
2
) + b · n2.

It follows that T (n) ∈ O(nlog3 7) = O(n2.376).

Divide and Conquer

Matrix Multiplication

Analysis of Strassen’s algorithm

Analysis

Let T (n) denote the running time of Strassen’s algorithm.

It follows that,

T (n) = 7 · T (
n
2
) + b · n2.

It follows that T (n) ∈ O(nlog3 7) = O(n2.376).

Divide and Conquer

Matrix Multiplication

Analysis of Strassen’s algorithm

Analysis

Let T (n) denote the running time of Strassen’s algorithm. It follows that,

T (n) = 7 · T (
n
2
) + b · n2.

It follows that T (n) ∈ O(nlog3 7) = O(n2.376).

Divide and Conquer

Matrix Multiplication

Analysis of Strassen’s algorithm

Analysis

Let T (n) denote the running time of Strassen’s algorithm. It follows that,

T (n) =

7 · T (
n
2
) + b · n2.

It follows that T (n) ∈ O(nlog3 7) = O(n2.376).

Divide and Conquer

Matrix Multiplication

Analysis of Strassen’s algorithm

Analysis

Let T (n) denote the running time of Strassen’s algorithm. It follows that,

T (n) = 7 · T (
n
2
) + b · n2.

It follows that T (n) ∈ O(nlog3 7) = O(n2.376).

Divide and Conquer

Matrix Multiplication

Analysis of Strassen’s algorithm

Analysis

Let T (n) denote the running time of Strassen’s algorithm. It follows that,

T (n) = 7 · T (
n
2
) + b · n2.

It follows that T (n) ∈ O(nlog3 7) = O(n2.376).

	Main Ideas
	Binary Search
	Merge Sort
	Quick Sort
	Integer Multiplication
	Matrix Multiplication

