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Approach

1 Divide the problem into a number of subproblems that are smaller instances of
the problem.

2 Conquer the subproblems by solving them recursively. If the subproblems are
small enough, however, just solve the problems in a straightforward manner.

3 Combine the solutions to the subproblems into the solution for the original
problem.
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A[i] = r , for any 1 ≤ i ≤ n.
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Binary Search

Linear Search

Algorithm

LINEAR-SEARCH(A, n, r )
1: if (n < 0) then
2: return (false)
3: else
4: if (A[n] = r ) then
5: return (true)
6: else
7: return (LINEAR-SEARCH(A, (n − 1), r ))
8: end if
9: end if

Analysis

Prove correctness and establish bounds on number of element to element
comparisons.
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Algorithm

BINARY-SEARCH(A, low , high, r )
1: {Initially low = 1, high = n.}
2: if (low ≤ high) then
3: mid = low+high

2 .
4: if (A[mid ] = r ) then
5: return (true)
6: end if
7: if (A[mid ] > r ) then
8: return (BINARY-SEARCH(A, low , mid − 1, r ))
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10: return (BINARY-SEARCH(A, mid + 1, high, r ))
11: end if
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13: return (false)
14: end if
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Prove correctness and establish bounds on number of element to element
comparisons.
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Given an array A[1 · ·n] of integers, produce an ascending-order permutation of A.
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Merge Sort

Merging Two Sorted Arrays

The Algorithm

MERGE(A, low , mid , high)
1: {We merge the arrays A[low · ·mid ] and A[mid + 1 · ·high].}
2: Create a temporary array B of size (mid − low + 1) and copy the elements from

A[low · ·mid ] into this array.
3: Create a temporary array C of size (high −mid) and copy the elements from

A[mid + 1 · ·high] into this array.
4: Set p = 1, q = 1, r = low .
5: while (p ≤ (mid − low + 1) and (q ≤ (high −mid)) do
6: if (B[p] ≤ C[q]) then
7: A[r ] = B[p]. p ++.
8: else
9: A[r ] = C[q]. q ++.

10: end if
11: r ++.
12: end while



Divide and Conquer

Merge Sort

Merging Two Sorted Arrays

The Algorithm

MERGE(A, low , mid , high)
1: {We merge the arrays A[low · ·mid ] and A[mid + 1 · ·high].}
2: Create a temporary array B of size (mid − low + 1) and copy the elements from

A[low · ·mid ] into this array.
3: Create a temporary array C of size (high −mid) and copy the elements from

A[mid + 1 · ·high] into this array.
4: Set p = 1, q = 1, r = low .
5: while (p ≤ (mid − low + 1) and (q ≤ (high −mid)) do
6: if (B[p] ≤ C[q]) then
7: A[r ] = B[p]. p ++.
8: else
9: A[r ] = C[q]. q ++.

10: end if
11: r ++.
12: end while



Divide and Conquer

Merge Sort

Merging Two Sorted Arrays

The Algorithm

MERGE(A, low , mid , high)
1: {We merge the arrays A[low · ·mid ] and A[mid + 1 · ·high].}
2: Create a temporary array B of size (mid − low + 1) and copy the elements from

A[low · ·mid ] into this array.
3: Create a temporary array C of size (high −mid) and copy the elements from

A[mid + 1 · ·high] into this array.
4: Set p = 1, q = 1, r = low .
5: while (p ≤ (mid − low + 1) and (q ≤ (high −mid)) do
6: if (B[p] ≤ C[q]) then
7: A[r ] = B[p]. p ++.
8: else
9: A[r ] = C[q]. q ++.

10: end if
11: r ++.
12: end while



Divide and Conquer

Merge Sort

Algorithm Merge (contd.)

The Algorithm (contd.)

MERGE(A, low , mid , high)
1: while (p ≤ (mid − low + 1)) do
2: A[r ] = B[p]. p ++. r ++.
3: end while
4: while (q ≤ (high −mid)) do
5: A[r ] = C[q]. q ++. r ++.
6: end while



Divide and Conquer

Merge Sort

Algorithm Merge (contd.)

The Algorithm (contd.)

MERGE(A, low , mid , high)
1: while (p ≤ (mid − low + 1)) do
2: A[r ] = B[p]. p ++. r ++.
3: end while
4: while (q ≤ (high −mid)) do
5: A[r ] = C[q]. q ++. r ++.
6: end while



Divide and Conquer

Merge Sort

Merge Sorting

The Algorithm

MERGE-SORT(A, low , high)
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2: if (low ≤ high) then
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2 .
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7: end if
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Prove correctness and establish bounds on number of element to element
comparisons.
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Quick Sort

The Partition subroutine

Partitioning

Function PARTITION(A, p, q)
1: {We partition the sub-array A[p, p + 1, . . . , q] about A[p].}
2: for (i = (p + 1) to; q) do
3: if (A[i] < A[p]) then
4: Insert A[i] into bucket L.
5: else
6: if (A[i] > A[p]) then
7: Insert A[i] into bucket U.
8: end if
9: end if

10: end for
11: Copy A[p] into A[(|L|+ 1)].
12: Copy the elements of L into the first |L| entries of A[p · ·q].
13: Copy A[p] into A[(|L|+ 1)].
14: Copy the elements of U into the entries of A[(|L|+ 2) · ·q].
15: return (|L|+ 1).
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The Quick-sort Algorithm

Note

Partitioning an array can be achieved in linear time.

The Algorithm

Function QUICK-SORT(A, p, q)
1: if (p ≥ q) then
2: return
3: else
4: j =PARTITION(A, p, q).
5: Quicksort(A, p, j − 1).
6: Quicksort(A, j + 1, q).
7: end if

Note

The main program calls QUICK-SORT(A, 1, n).
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case? O(n2).

Intuition for randomized case

What sort of assumptions are reasonable in analysis?
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Quick Sort

Randomized Quicksort

The Algorithm

Function RANDOMIZED-QUICKSORT(A, p, q)
1: if (p ≥ q) then
2: return
3: else
4: Choose a number, say r , uniformly and at random from the set {p, p + 1, . . . , q}.
5: Swap A[p] and A[r ].
6: j =PARTITION(A, p, q).
7: Quicksort(A, p, j − 1).
8: Quicksort(A, j + 1, q).
9: end if

Note

Worst case running time? O(n2)! However, for a randomized algorithm we are not
interested in worst-case running time, but in expected running time.
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Quick Sort

Decision Tree Analysis

Decision Tree

The operation of RANDOMIZED QUICKSORT() can be thought of as a binary tree, say T ,
with a pivot being chosen at each internal node.

The elements in the node which are less than the pivot are shunted to the left subtree
and the rest of the elements (excluding the pivot) are shunted to the right subtree.

An in-order traversal of T focusing on the pivots, gives the sorted order.

What is the work done at each level of the tree? O(n).

Let h denote the height of T . Observe that h is a random variable and we are
interested in its expected value.

The rank of an element of A is its position in A, when A has been sorted.

When you pick an element at random, what is the probability that the rank of the
element chosen is between 1

4 · n and 3
4 · n, where n is the number of elements in the

array? 1
2 .
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Analysis

Consider the tree T .

We define an internal node o of the tree to be good, if both its children have at most
3
4 · |o| nodes, where |o| denotes the number of elements in the node o.

Given an internal node o of T , what is the probability that it is good? At least 1
2 !

Consider a root to leaf path in T .

How many good nodes can exist on such a path?

At most r = log 4
3

n.

What is the expected number of nodes on a root to leaf path before you see r good
nodes?
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Lemma

Consider a coin for which the probability of “heads” turning up on a toss is p.

What is
the expected number of tosses to obtain k heads? k

p .

Decision Tree (contd.)

Thus the expected number of nodes on a root to leaf path is r
1
2
= 2 · r = 2 · log 4

3
n.

However, this is the expected height of T , i.e., E [h].

Therefore, the expected work undertaken by the algorithm

E [h]× work done per level = O(n · log n).
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Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?



Divide and Conquer

Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?



Divide and Conquer

Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event,

and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?



Divide and Conquer

Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?



Divide and Conquer

Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?



Divide and Conquer

Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array.

Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?



Divide and Conquer

Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?



Divide and Conquer

Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?



Divide and Conquer

Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?



Divide and Conquer

Quick Sort

Indicator Variable Analysis

Definition

A random variable is an indicator variable, if it assumes the value 1, for the occurrence
of some event, and 0 otherwise.

Note

We recall that the rank of an array element is its position in the sorted array. Every
element of A has a unique rank in the set {1, 2, . . . , n}.

Analysis

Let S(i) denote the element in A, whose rank is i .

We wish to compute the number of comparisons between A[i] and the other elements
of A, for each i = 1, 2 . . . n.

Instead, we will compute the number of comparisons between S(i) and the elements of
other ranks, for each i = 1, 2, . . . , n.

Are the two computations equivalent?
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Indicator Variable Analysis (contd.)

Analysis (contd.)

Let Xij denote an indicator random variable, defined as follows:

Xij =

{
1, if S(i) and S(j) are compared during the course of the algorithm
0, otherwise

Let X denote the total number of comparisons made by the algorithm. Clearly,

X =

n−1∑
i=1

∑
j>i

Xij

=

n−1∑
i=1

n∑
j=i+1

Xij

How to compute X? We are not interested in X , but in E [X ]!
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Observe that,

E [X ] = E [

n−1∑
i=1

n∑
j=i+1

Xij ]

=

n−1∑
i=1

n∑
j=i+1

E [Xij ]

Let pij denote the probability that S(i) and S(j) are compared.

Clearly, E [Xij ] = pij .

How to compute pij ?

Let Sij = {S(i),S(i + 1), . . .S(j)}. S(i) and S(j) will be compared only if, either one
of them is picked before the other elements in Sij !

Since all choices are made uniformly and at random, the probability of either S(i) or
S(j) being picked before the other elements in Sij is exactly 2

j−i+1 .
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Therefore,

E [X ] =

n−1∑
i=1

n∑
j=i+1

E [Xij ]

=

n−1∑
i=1

n∑
j=i+1

2
j − i + 1

=

n−1∑
i=1

n−i+1∑
k=2

2
k

≤
n∑

i=1

n∑
k=1

2
k
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Concluding the analysis

E [X ] ≤ 2 ·
n∑

i=1

n∑
k=1

1
k

= 2 ·
n∑

i=1

Hn

= 2 · n · Hn

∈ O(n · log n)
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Integer Multiplication

Main Issues

1 Two n-bit numbers I and J can be added and subtracted in O(n) time.
2 Standard multiplication takes O(n2) time. (Why?)
3 Can we do better? Observe that,

I = Ih · 2
n
2 + Il

J = Jh · 2
n
2 + Jl

4 It follows that,

I · J = (Ih · 2
n
2 + Il ) · (Jh · 2
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Matrix Multiplication

Issues

1 Assume that we are given two n × n matrices X and Y.
2 The goal is to compute Z = X · Y. Recall that Z [i, j] =

∑n
k=1 X [i, k ] · Y [k , j].

3 The naive algorithm requires n3 scalar multiplications and n3 scalar additions.
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Approach

1 Break each matrix into four parts as shown below:(
I J
K L

)
=

(
A B
C D

)
·
(

E F
G H

)
2 The following equations follow immediately:

I = A · E + B · G
J = A · F + B · H
K = C · E + D · G
L = C · F + D · H.

3 The running time is captured by the recurrence:

T (n) = 8 · T (
n
2
) + b · n2

4 It follows that T (n) ∈ O(n3).
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