
Outline

Formal Logic - Revision

K. Subramani1

1Lane Department of Computer Science and Electrical Engineering
West Virginia University

28 January 2016

Subramani CS 220 - Discrete Mathematics



Outline

Outline

1 Recap

Subramani CS 220 - Discrete Mathematics



Recap

Recap

Notions

Propositions, connectives, truth-tables, tautologies, arguments and valid arguments,
rules of derivation.

Definition

The argument
(P1 ∧ P2 ∧ . . .Pn) → Q

is said to be valid, if it is a tautology.

Subramani CS 220 - Discrete Mathematics



Recap

Recap

Notions

Propositions, connectives, truth-tables, tautologies, arguments and valid arguments,
rules of derivation.

Definition

The argument
(P1 ∧ P2 ∧ . . .Pn) → Q

is said to be valid, if it is a tautology.

Subramani CS 220 - Discrete Mathematics



Recap

Recap

Notions

Propositions, connectives, truth-tables, tautologies, arguments and valid arguments,
rules of derivation.

Definition

The argument
(P1 ∧ P2 ∧ . . .Pn) → Q

is said to be valid, if it is a tautology.

Subramani CS 220 - Discrete Mathematics



Recap

Recap

Notions

Propositions, connectives, truth-tables, tautologies, arguments and valid arguments,
rules of derivation.

Definition

The argument
(P1 ∧ P2 ∧ . . .Pn) → Q

is said to be valid, if it is a tautology.

Subramani CS 220 - Discrete Mathematics



Recap

Recap

Notions

Propositions, connectives, truth-tables, tautologies, arguments and valid arguments,
rules of derivation.

Definition

The argument
(P1 ∧ P2 ∧ . . .Pn) → Q

is said to be valid, if it is a tautology.

Subramani CS 220 - Discrete Mathematics



Recap

Simplifications

Reducing Complexity

1 (A ∨ true) ⇔ true.
(A ∨ false) ⇔ A.

2 (A ∧ true) ⇔ A.
(A ∧ false) ⇔ false.

1 (A ∨ A′) ⇔ true.
(A ∧ A′) ⇔ false.

2 (A → true) ⇔ true.
(true → A) ⇔ A.

3 (A → false) ⇔ A′.
(false → A) ⇔ true.

Subramani CS 220 - Discrete Mathematics



Recap

Simplifications

Reducing Complexity

1 (A ∨ true) ⇔ true.
(A ∨ false) ⇔ A.

2 (A ∧ true) ⇔ A.
(A ∧ false) ⇔ false.

1 (A ∨ A′) ⇔ true.
(A ∧ A′) ⇔ false.

2 (A → true) ⇔ true.
(true → A) ⇔ A.

3 (A → false) ⇔ A′.
(false → A) ⇔ true.

Subramani CS 220 - Discrete Mathematics



Recap

Establishing validity of arguments

Proof Techniques

1 Truth-tables (always works!)
2 Rules of Derivation viz., Equivalence Rules and Inference Rules (works quite often

but is less expensive than truth-tables).
3 Intuitive argument (works all the time and is often times less expensive than using

Rules of Derivation).
4 The tautology algorithm (works in most cases).

Subramani CS 220 - Discrete Mathematics



Recap

Establishing validity of arguments

Proof Techniques

1 Truth-tables

(always works!)
2 Rules of Derivation viz., Equivalence Rules and Inference Rules (works quite often

but is less expensive than truth-tables).
3 Intuitive argument (works all the time and is often times less expensive than using

Rules of Derivation).
4 The tautology algorithm (works in most cases).

Subramani CS 220 - Discrete Mathematics



Recap

Establishing validity of arguments

Proof Techniques

1 Truth-tables (always works!)

2 Rules of Derivation viz., Equivalence Rules and Inference Rules (works quite often
but is less expensive than truth-tables).

3 Intuitive argument (works all the time and is often times less expensive than using
Rules of Derivation).

4 The tautology algorithm (works in most cases).

Subramani CS 220 - Discrete Mathematics



Recap

Establishing validity of arguments

Proof Techniques

1 Truth-tables (always works!)
2 Rules of Derivation viz., Equivalence Rules and Inference Rules

(works quite often
but is less expensive than truth-tables).

3 Intuitive argument (works all the time and is often times less expensive than using
Rules of Derivation).

4 The tautology algorithm (works in most cases).

Subramani CS 220 - Discrete Mathematics



Recap

Establishing validity of arguments

Proof Techniques

1 Truth-tables (always works!)
2 Rules of Derivation viz., Equivalence Rules and Inference Rules (works quite often

but is less expensive than truth-tables).

3 Intuitive argument (works all the time and is often times less expensive than using
Rules of Derivation).

4 The tautology algorithm (works in most cases).

Subramani CS 220 - Discrete Mathematics



Recap

Establishing validity of arguments

Proof Techniques

1 Truth-tables (always works!)
2 Rules of Derivation viz., Equivalence Rules and Inference Rules (works quite often

but is less expensive than truth-tables).
3 Intuitive argument

(works all the time and is often times less expensive than using
Rules of Derivation).

4 The tautology algorithm (works in most cases).

Subramani CS 220 - Discrete Mathematics



Recap

Establishing validity of arguments

Proof Techniques

1 Truth-tables (always works!)
2 Rules of Derivation viz., Equivalence Rules and Inference Rules (works quite often

but is less expensive than truth-tables).
3 Intuitive argument (works all the time and is often times less expensive than using

Rules of Derivation).

4 The tautology algorithm (works in most cases).

Subramani CS 220 - Discrete Mathematics



Recap

Establishing validity of arguments

Proof Techniques

1 Truth-tables (always works!)
2 Rules of Derivation viz., Equivalence Rules and Inference Rules (works quite often

but is less expensive than truth-tables).
3 Intuitive argument (works all the time and is often times less expensive than using

Rules of Derivation).
4 The tautology algorithm

(works in most cases).

Subramani CS 220 - Discrete Mathematics



Recap

Establishing validity of arguments

Proof Techniques

1 Truth-tables (always works!)
2 Rules of Derivation viz., Equivalence Rules and Inference Rules (works quite often

but is less expensive than truth-tables).
3 Intuitive argument (works all the time and is often times less expensive than using

Rules of Derivation).
4 The tautology algorithm (works in most cases).

Subramani CS 220 - Discrete Mathematics



Recap

Applying the Methods

Example

Consider the argument:

[(A → B) ∧ (B → C)] → (A → C) (1)

In Argument 1, (A → B) and (B → C) are called the hypotheses, while (A → C) is
called the conclusion.

Subramani CS 220 - Discrete Mathematics



Recap

The Truth-table method

Truth-table method

Let G denote the proposition [(A → B) ∧ (B → C)] → (A → C). We construct a
truth-table for Argument 1 as follows:

A B C A → B B → C (A → B) ∧ (B → C) A → C G
T T T T T T T T
T T F T F F F T
T F T F T F T T
T F F F T F F T
F T T T T T T T
F T F T F F T T
F F T T T T T T
F F F T T T T T

Subramani CS 220 - Discrete Mathematics



Recap

The Truth-table method

Truth-table method

Let G denote the proposition [(A → B) ∧ (B → C)] → (A → C). We construct a
truth-table for Argument 1 as follows:

A B C A → B B → C (A → B) ∧ (B → C) A → C G
T T T T T T T T
T T F T F F F T
T F T F T F T T
T F F F T F F T
F T T T T T T T
F T F T F F T T
F F T T T T T T
F F F T T T T T

Subramani CS 220 - Discrete Mathematics



Recap

The Truth-table method

Truth-table method

Let G denote the proposition [(A → B) ∧ (B → C)] → (A → C).

We construct a
truth-table for Argument 1 as follows:

A B C A → B B → C (A → B) ∧ (B → C) A → C G
T T T T T T T T
T T F T F F F T
T F T F T F T T
T F F F T F F T
F T T T T T T T
F T F T F F T T
F F T T T T T T
F F F T T T T T

Subramani CS 220 - Discrete Mathematics



Recap

The Truth-table method

Truth-table method

Let G denote the proposition [(A → B) ∧ (B → C)] → (A → C). We construct a
truth-table for Argument 1 as follows:

A B C A → B B → C (A → B) ∧ (B → C) A → C G
T T T T T T T T
T T F T F F F T
T F T F T F T T
T F F F T F F T
F T T T T T T T
F T F T F F T T
F F T T T T T T
F F F T T T T T

Subramani CS 220 - Discrete Mathematics



Recap

The Truth-table method

Truth-table method

Let G denote the proposition [(A → B) ∧ (B → C)] → (A → C). We construct a
truth-table for Argument 1 as follows:

A B C A → B B → C (A → B) ∧ (B → C) A → C G

T T T T T T T T
T T F T F F F T
T F T F T F T T
T F F F T F F T
F T T T T T T T
F T F T F F T T
F F T T T T T T
F F F T T T T T

Subramani CS 220 - Discrete Mathematics



Recap

The Truth-table method

Truth-table method

Let G denote the proposition [(A → B) ∧ (B → C)] → (A → C). We construct a
truth-table for Argument 1 as follows:

A B C A → B B → C (A → B) ∧ (B → C) A → C G
T T T T T T T T

T T F T F F F T
T F T F T F T T
T F F F T F F T
F T T T T T T T
F T F T F F T T
F F T T T T T T
F F F T T T T T

Subramani CS 220 - Discrete Mathematics



Recap

The Truth-table method

Truth-table method

Let G denote the proposition [(A → B) ∧ (B → C)] → (A → C). We construct a
truth-table for Argument 1 as follows:

A B C A → B B → C (A → B) ∧ (B → C) A → C G
T T T T T T T T
T T F T F F F T

T F T F T F T T
T F F F T F F T
F T T T T T T T
F T F T F F T T
F F T T T T T T
F F F T T T T T

Subramani CS 220 - Discrete Mathematics



Recap

The Truth-table method

Truth-table method

Let G denote the proposition [(A → B) ∧ (B → C)] → (A → C). We construct a
truth-table for Argument 1 as follows:

A B C A → B B → C (A → B) ∧ (B → C) A → C G
T T T T T T T T
T T F T F F F T
T F T F T F T T

T F F F T F F T
F T T T T T T T
F T F T F F T T
F F T T T T T T
F F F T T T T T

Subramani CS 220 - Discrete Mathematics



Recap

The Truth-table method

Truth-table method

Let G denote the proposition [(A → B) ∧ (B → C)] → (A → C). We construct a
truth-table for Argument 1 as follows:

A B C A → B B → C (A → B) ∧ (B → C) A → C G
T T T T T T T T
T T F T F F F T
T F T F T F T T
T F F F T F F T
F T T T T T T T
F T F T F F T T
F F T T T T T T
F F F T T T T T

Subramani CS 220 - Discrete Mathematics



Recap

Derivation Rules

Rules of Derivation

Observe that using the Deduction Rule, we can rewrite Argument 1 as:

[(A → B) ∧ (B → C) ∧ A] → C

Now consider the following proof sequence:

(i) A hypothesis.

(ii) A → B hypothesis.

(iii) B (i), (ii) and Modus Ponens.

(iv) B → C hypothesis.

(v) C (iii), (iv) Modus Ponens.

Subramani CS 220 - Discrete Mathematics



Recap

Derivation Rules

Rules of Derivation

Observe that using the Deduction Rule, we can rewrite Argument 1 as:

[(A → B) ∧ (B → C) ∧ A] → C

Now consider the following proof sequence:

(i) A hypothesis.

(ii) A → B hypothesis.

(iii) B (i), (ii) and Modus Ponens.

(iv) B → C hypothesis.

(v) C (iii), (iv) Modus Ponens.

Subramani CS 220 - Discrete Mathematics



Recap

Derivation Rules

Rules of Derivation

Observe that using the Deduction Rule, we can rewrite Argument 1 as:

[(A → B) ∧ (B → C) ∧ A] → C

Now consider the following proof sequence:

(i) A hypothesis.

(ii) A → B hypothesis.

(iii) B (i), (ii) and Modus Ponens.

(iv) B → C hypothesis.

(v) C (iii), (iv) Modus Ponens.

Subramani CS 220 - Discrete Mathematics



Recap

Derivation Rules

Rules of Derivation

Observe that using the Deduction Rule, we can rewrite Argument 1 as:

[(A → B) ∧ (B → C) ∧ A] → C

Now consider the following proof sequence:

(i) A hypothesis.

(ii) A → B hypothesis.

(iii) B (i), (ii) and Modus Ponens.

(iv) B → C hypothesis.

(v) C (iii), (iv) Modus Ponens.

Subramani CS 220 - Discrete Mathematics



Recap

Derivation Rules

Rules of Derivation

Observe that using the Deduction Rule, we can rewrite Argument 1 as:

[(A → B) ∧ (B → C) ∧ A] → C

Now consider the following proof sequence:

(i) A hypothesis.

(ii) A → B hypothesis.

(iii) B (i), (ii) and Modus Ponens.

(iv) B → C hypothesis.

(v) C (iii), (iv) Modus Ponens.

Subramani CS 220 - Discrete Mathematics



Recap

Derivation Rules

Rules of Derivation

Observe that using the Deduction Rule, we can rewrite Argument 1 as:

[(A → B) ∧ (B → C) ∧ A] → C

Now consider the following proof sequence:

(i) A hypothesis.

(ii) A → B hypothesis.

(iii) B (i), (ii) and Modus Ponens.

(iv) B → C hypothesis.

(v) C (iii), (iv) Modus Ponens.

Subramani CS 220 - Discrete Mathematics



Recap

Derivation Rules

Rules of Derivation

Observe that using the Deduction Rule, we can rewrite Argument 1 as:

[(A → B) ∧ (B → C) ∧ A] → C

Now consider the following proof sequence:

(i) A hypothesis.

(ii) A → B hypothesis.

(iii) B (i), (ii) and Modus Ponens.

(iv) B → C hypothesis.

(v) C (iii), (iv) Modus Ponens.

Subramani CS 220 - Discrete Mathematics



Recap

Derivation Rules

Rules of Derivation

Observe that using the Deduction Rule, we can rewrite Argument 1 as:

[(A → B) ∧ (B → C) ∧ A] → C

Now consider the following proof sequence:

(i) A hypothesis.

(ii) A → B hypothesis.

(iii) B (i), (ii) and Modus Ponens.

(iv) B → C hypothesis.

(v) C (iii), (iv) Modus Ponens.

Subramani CS 220 - Discrete Mathematics



Recap

Derivation Rules

Rules of Derivation

Observe that using the Deduction Rule, we can rewrite Argument 1 as:

[(A → B) ∧ (B → C) ∧ A] → C

Now consider the following proof sequence:

(i) A hypothesis.

(ii) A → B hypothesis.

(iii) B (i), (ii) and Modus Ponens.

(iv) B → C hypothesis.

(v) C (iii), (iv) Modus Ponens.

Subramani CS 220 - Discrete Mathematics



Recap

Derivation Rules

Rules of Derivation

Observe that using the Deduction Rule, we can rewrite Argument 1 as:

[(A → B) ∧ (B → C) ∧ A] → C

Now consider the following proof sequence:

(i) A hypothesis.

(ii) A → B hypothesis.

(iii) B (i), (ii) and Modus Ponens.

(iv) B → C hypothesis.

(v) C (iii), (iv) Modus Ponens.

Subramani CS 220 - Discrete Mathematics



Recap

Tree Method

Intuitive Reasoning

(i) Once again, we use the Deduction Method to rewrite the argument as:

[(A → B) ∧ (B → C) ∧ A] → C

(ii) Observe that A is either true or false.

(iii) If A is false, the hypothesis of the argument is false and hence the argument itself
is trivially true.

(iv) Now, consider the case in which A is true.

(v) Then the hypothesis of Argument 1 becomes (true → B) ∧ (B → C) ∧ true which
can be simplified to B ∧ (B → C), since P ∧ true ⇔ P and (true → B) ⇔ B.

(vi) In other words, when A is true, the given argument reduces to:
B ∧ (B → C) → C, which follows directly from Modus Ponens.

(vii) Thus the argument holds, whether or not A is true.

(viii) Since we have covered all the cases, it follows that the argument is a tautology,
i.e., valid.

Subramani CS 220 - Discrete Mathematics



Recap

Tree Method

Intuitive Reasoning

(i) Once again, we use the Deduction Method to rewrite the argument as:

[(A → B) ∧ (B → C) ∧ A] → C

(ii) Observe that A is either true or false.

(iii) If A is false, the hypothesis of the argument is false and hence the argument itself
is trivially true.

(iv) Now, consider the case in which A is true.

(v) Then the hypothesis of Argument 1 becomes (true → B) ∧ (B → C) ∧ true which
can be simplified to B ∧ (B → C), since P ∧ true ⇔ P and (true → B) ⇔ B.

(vi) In other words, when A is true, the given argument reduces to:
B ∧ (B → C) → C, which follows directly from Modus Ponens.

(vii) Thus the argument holds, whether or not A is true.

(viii) Since we have covered all the cases, it follows that the argument is a tautology,
i.e., valid.

Subramani CS 220 - Discrete Mathematics



Recap

Tree Method

Intuitive Reasoning

(i) Once again, we use the Deduction Method to rewrite the argument as:

[(A → B) ∧ (B → C) ∧ A] → C

(ii) Observe that A is either true or false.

(iii) If A is false, the hypothesis of the argument is false and hence the argument itself
is trivially true.

(iv) Now, consider the case in which A is true.

(v) Then the hypothesis of Argument 1 becomes (true → B) ∧ (B → C) ∧ true which
can be simplified to B ∧ (B → C), since P ∧ true ⇔ P and (true → B) ⇔ B.

(vi) In other words, when A is true, the given argument reduces to:
B ∧ (B → C) → C, which follows directly from Modus Ponens.

(vii) Thus the argument holds, whether or not A is true.

(viii) Since we have covered all the cases, it follows that the argument is a tautology,
i.e., valid.

Subramani CS 220 - Discrete Mathematics



Recap

Tree Method

Intuitive Reasoning

(i) Once again, we use the Deduction Method to rewrite the argument as:

[(A → B) ∧ (B → C) ∧ A] → C

(ii) Observe that A is either true or false.

(iii) If A is false, the hypothesis of the argument is false and hence the argument itself
is trivially true.

(iv) Now, consider the case in which A is true.

(v) Then the hypothesis of Argument 1 becomes (true → B) ∧ (B → C) ∧ true which
can be simplified to B ∧ (B → C), since P ∧ true ⇔ P and (true → B) ⇔ B.

(vi) In other words, when A is true, the given argument reduces to:
B ∧ (B → C) → C, which follows directly from Modus Ponens.

(vii) Thus the argument holds, whether or not A is true.

(viii) Since we have covered all the cases, it follows that the argument is a tautology,
i.e., valid.

Subramani CS 220 - Discrete Mathematics



Recap

Tree Method

Intuitive Reasoning

(i) Once again, we use the Deduction Method to rewrite the argument as:

[(A → B) ∧ (B → C) ∧ A] → C

(ii) Observe that A is either true or false.

(iii) If A is false, the hypothesis of the argument is false and hence the argument itself
is trivially true.

(iv) Now, consider the case in which A is true.

(v) Then the hypothesis of Argument 1 becomes (true → B) ∧ (B → C) ∧ true which
can be simplified to B ∧ (B → C), since P ∧ true ⇔ P and (true → B) ⇔ B.

(vi) In other words, when A is true, the given argument reduces to:
B ∧ (B → C) → C, which follows directly from Modus Ponens.

(vii) Thus the argument holds, whether or not A is true.

(viii) Since we have covered all the cases, it follows that the argument is a tautology,
i.e., valid.

Subramani CS 220 - Discrete Mathematics



Recap

Tree Method

Intuitive Reasoning

(i) Once again, we use the Deduction Method to rewrite the argument as:

[(A → B) ∧ (B → C) ∧ A] → C

(ii) Observe that A is either true or false.

(iii) If A is false, the hypothesis of the argument is false and hence the argument itself
is trivially true.

(iv) Now, consider the case in which A is true.

(v) Then the hypothesis of Argument 1 becomes (true → B) ∧ (B → C) ∧ true which
can be simplified to B ∧ (B → C), since P ∧ true ⇔ P and (true → B) ⇔ B.

(vi) In other words, when A is true, the given argument reduces to:
B ∧ (B → C) → C, which follows directly from Modus Ponens.

(vii) Thus the argument holds, whether or not A is true.

(viii) Since we have covered all the cases, it follows that the argument is a tautology,
i.e., valid.

Subramani CS 220 - Discrete Mathematics



Recap

Tree Method

Intuitive Reasoning

(i) Once again, we use the Deduction Method to rewrite the argument as:

[(A → B) ∧ (B → C) ∧ A] → C

(ii) Observe that A is either true or false.

(iii) If A is false, the hypothesis of the argument is false and hence the argument itself
is trivially true.

(iv) Now, consider the case in which A is true.

(v) Then the hypothesis of Argument 1 becomes (true → B) ∧ (B → C) ∧ true which
can be simplified to B ∧ (B → C), since P ∧ true ⇔ P and (true → B) ⇔ B.

(vi) In other words, when A is true, the given argument reduces to:
B ∧ (B → C) → C, which follows directly from Modus Ponens.

(vii) Thus the argument holds, whether or not A is true.

(viii) Since we have covered all the cases, it follows that the argument is a tautology,
i.e., valid.

Subramani CS 220 - Discrete Mathematics



Recap

Tree Method

Intuitive Reasoning

(i) Once again, we use the Deduction Method to rewrite the argument as:

[(A → B) ∧ (B → C) ∧ A] → C

(ii) Observe that A is either true or false.

(iii) If A is false, the hypothesis of the argument is false and hence the argument itself
is trivially true.

(iv) Now, consider the case in which A is true.

(v) Then the hypothesis of Argument 1 becomes (true → B) ∧ (B → C) ∧ true which
can be simplified to B ∧ (B → C), since P ∧ true ⇔ P and (true → B) ⇔ B.

(vi) In other words, when A is true, the given argument reduces to:
B ∧ (B → C) → C, which follows directly from Modus Ponens.

(vii) Thus the argument holds, whether or not A is true.

(viii) Since we have covered all the cases, it follows that the argument is a tautology,
i.e., valid.

Subramani CS 220 - Discrete Mathematics



Recap

Tree Method

Intuitive Reasoning

(i) Once again, we use the Deduction Method to rewrite the argument as:

[(A → B) ∧ (B → C) ∧ A] → C

(ii) Observe that A is either true or false.

(iii) If A is false, the hypothesis of the argument is false and hence the argument itself
is trivially true.

(iv) Now, consider the case in which A is true.

(v) Then the hypothesis of Argument 1 becomes (true → B) ∧ (B → C) ∧ true

which
can be simplified to B ∧ (B → C), since P ∧ true ⇔ P and (true → B) ⇔ B.

(vi) In other words, when A is true, the given argument reduces to:
B ∧ (B → C) → C, which follows directly from Modus Ponens.

(vii) Thus the argument holds, whether or not A is true.

(viii) Since we have covered all the cases, it follows that the argument is a tautology,
i.e., valid.

Subramani CS 220 - Discrete Mathematics



Recap

Tree Method

Intuitive Reasoning

(i) Once again, we use the Deduction Method to rewrite the argument as:

[(A → B) ∧ (B → C) ∧ A] → C

(ii) Observe that A is either true or false.

(iii) If A is false, the hypothesis of the argument is false and hence the argument itself
is trivially true.

(iv) Now, consider the case in which A is true.

(v) Then the hypothesis of Argument 1 becomes (true → B) ∧ (B → C) ∧ true which
can be simplified to B ∧ (B → C), since P ∧ true ⇔ P and (true → B) ⇔ B.

(vi) In other words, when A is true, the given argument reduces to:
B ∧ (B → C) → C, which follows directly from Modus Ponens.

(vii) Thus the argument holds, whether or not A is true.

(viii) Since we have covered all the cases, it follows that the argument is a tautology,
i.e., valid.

Subramani CS 220 - Discrete Mathematics



Recap

Tree Method

Intuitive Reasoning

(i) Once again, we use the Deduction Method to rewrite the argument as:

[(A → B) ∧ (B → C) ∧ A] → C

(ii) Observe that A is either true or false.

(iii) If A is false, the hypothesis of the argument is false and hence the argument itself
is trivially true.

(iv) Now, consider the case in which A is true.

(v) Then the hypothesis of Argument 1 becomes (true → B) ∧ (B → C) ∧ true which
can be simplified to B ∧ (B → C), since P ∧ true ⇔ P and (true → B) ⇔ B.

(vi) In other words, when A is true, the given argument reduces to:

B ∧ (B → C) → C, which follows directly from Modus Ponens.

(vii) Thus the argument holds, whether or not A is true.

(viii) Since we have covered all the cases, it follows that the argument is a tautology,
i.e., valid.

Subramani CS 220 - Discrete Mathematics



Recap

Tree Method

Intuitive Reasoning

(i) Once again, we use the Deduction Method to rewrite the argument as:

[(A → B) ∧ (B → C) ∧ A] → C

(ii) Observe that A is either true or false.

(iii) If A is false, the hypothesis of the argument is false and hence the argument itself
is trivially true.

(iv) Now, consider the case in which A is true.

(v) Then the hypothesis of Argument 1 becomes (true → B) ∧ (B → C) ∧ true which
can be simplified to B ∧ (B → C), since P ∧ true ⇔ P and (true → B) ⇔ B.

(vi) In other words, when A is true, the given argument reduces to:
B ∧ (B → C) → C, which follows directly from Modus Ponens.

(vii) Thus the argument holds, whether or not A is true.

(viii) Since we have covered all the cases, it follows that the argument is a tautology,
i.e., valid.

Subramani CS 220 - Discrete Mathematics



Recap

Tree Method

Intuitive Reasoning

(i) Once again, we use the Deduction Method to rewrite the argument as:

[(A → B) ∧ (B → C) ∧ A] → C

(ii) Observe that A is either true or false.

(iii) If A is false, the hypothesis of the argument is false and hence the argument itself
is trivially true.

(iv) Now, consider the case in which A is true.

(v) Then the hypothesis of Argument 1 becomes (true → B) ∧ (B → C) ∧ true which
can be simplified to B ∧ (B → C), since P ∧ true ⇔ P and (true → B) ⇔ B.

(vi) In other words, when A is true, the given argument reduces to:
B ∧ (B → C) → C, which follows directly from Modus Ponens.

(vii) Thus the argument holds, whether or not A is true.

(viii) Since we have covered all the cases, it follows that the argument is a tautology,
i.e., valid.

Subramani CS 220 - Discrete Mathematics



Recap

Tree Method

Intuitive Reasoning

(i) Once again, we use the Deduction Method to rewrite the argument as:

[(A → B) ∧ (B → C) ∧ A] → C

(ii) Observe that A is either true or false.

(iii) If A is false, the hypothesis of the argument is false and hence the argument itself
is trivially true.

(iv) Now, consider the case in which A is true.

(v) Then the hypothesis of Argument 1 becomes (true → B) ∧ (B → C) ∧ true which
can be simplified to B ∧ (B → C), since P ∧ true ⇔ P and (true → B) ⇔ B.

(vi) In other words, when A is true, the given argument reduces to:
B ∧ (B → C) → C, which follows directly from Modus Ponens.

(vii) Thus the argument holds, whether or not A is true.

(viii) Since we have covered all the cases, it follows that the argument is a tautology,
i.e., valid.

Subramani CS 220 - Discrete Mathematics



Recap

Algorithmic Approach

Tautology Checking Algorithm

(i) In order to make the given argument false, we have to make the antecedent true,
and the consequent false.

(ii) To make the consequent (A → C) false, we must set A to true and C to false.

(iii) Since A is true, (A → B) simplifies to B.

(iv) Since C is false, (B → C) simplifies to B′.

(v) Thus, in order to make the antecedent true, we have to make B ∧ B′ true, which
is not possible.

(vi) It follows that the given argument is valid.

Subramani CS 220 - Discrete Mathematics



Recap

Algorithmic Approach

Tautology Checking Algorithm

(i) In order to make the given argument false, we have to make the antecedent true,
and the consequent false.

(ii) To make the consequent (A → C) false, we must set A to true and C to false.

(iii) Since A is true, (A → B) simplifies to B.

(iv) Since C is false, (B → C) simplifies to B′.

(v) Thus, in order to make the antecedent true, we have to make B ∧ B′ true, which
is not possible.

(vi) It follows that the given argument is valid.

Subramani CS 220 - Discrete Mathematics



Recap

Algorithmic Approach

Tautology Checking Algorithm

(i) In order to make the given argument false, we have to make the antecedent true,
and the consequent false.

(ii) To make the consequent (A → C) false, we must set A to true and C to false.

(iii) Since A is true, (A → B) simplifies to B.

(iv) Since C is false, (B → C) simplifies to B′.

(v) Thus, in order to make the antecedent true, we have to make B ∧ B′ true, which
is not possible.

(vi) It follows that the given argument is valid.

Subramani CS 220 - Discrete Mathematics



Recap

Algorithmic Approach

Tautology Checking Algorithm

(i) In order to make the given argument false,

we have to make the antecedent true,
and the consequent false.

(ii) To make the consequent (A → C) false, we must set A to true and C to false.

(iii) Since A is true, (A → B) simplifies to B.

(iv) Since C is false, (B → C) simplifies to B′.

(v) Thus, in order to make the antecedent true, we have to make B ∧ B′ true, which
is not possible.

(vi) It follows that the given argument is valid.

Subramani CS 220 - Discrete Mathematics



Recap

Algorithmic Approach

Tautology Checking Algorithm

(i) In order to make the given argument false, we have to make the antecedent true,

and the consequent false.

(ii) To make the consequent (A → C) false, we must set A to true and C to false.

(iii) Since A is true, (A → B) simplifies to B.

(iv) Since C is false, (B → C) simplifies to B′.

(v) Thus, in order to make the antecedent true, we have to make B ∧ B′ true, which
is not possible.

(vi) It follows that the given argument is valid.

Subramani CS 220 - Discrete Mathematics



Recap

Algorithmic Approach

Tautology Checking Algorithm

(i) In order to make the given argument false, we have to make the antecedent true,
and the consequent false.

(ii) To make the consequent (A → C) false, we must set A to true and C to false.

(iii) Since A is true, (A → B) simplifies to B.

(iv) Since C is false, (B → C) simplifies to B′.

(v) Thus, in order to make the antecedent true, we have to make B ∧ B′ true, which
is not possible.

(vi) It follows that the given argument is valid.

Subramani CS 220 - Discrete Mathematics



Recap

Algorithmic Approach

Tautology Checking Algorithm

(i) In order to make the given argument false, we have to make the antecedent true,
and the consequent false.

(ii) To make the consequent (A → C) false,

we must set A to true and C to false.

(iii) Since A is true, (A → B) simplifies to B.

(iv) Since C is false, (B → C) simplifies to B′.

(v) Thus, in order to make the antecedent true, we have to make B ∧ B′ true, which
is not possible.

(vi) It follows that the given argument is valid.

Subramani CS 220 - Discrete Mathematics



Recap

Algorithmic Approach

Tautology Checking Algorithm

(i) In order to make the given argument false, we have to make the antecedent true,
and the consequent false.

(ii) To make the consequent (A → C) false, we must set A to true and C to false.

(iii) Since A is true, (A → B) simplifies to B.

(iv) Since C is false, (B → C) simplifies to B′.

(v) Thus, in order to make the antecedent true, we have to make B ∧ B′ true, which
is not possible.

(vi) It follows that the given argument is valid.

Subramani CS 220 - Discrete Mathematics



Recap

Algorithmic Approach

Tautology Checking Algorithm

(i) In order to make the given argument false, we have to make the antecedent true,
and the consequent false.

(ii) To make the consequent (A → C) false, we must set A to true and C to false.

(iii) Since A is true,

(A → B) simplifies to B.

(iv) Since C is false, (B → C) simplifies to B′.

(v) Thus, in order to make the antecedent true, we have to make B ∧ B′ true, which
is not possible.

(vi) It follows that the given argument is valid.

Subramani CS 220 - Discrete Mathematics



Recap

Algorithmic Approach

Tautology Checking Algorithm

(i) In order to make the given argument false, we have to make the antecedent true,
and the consequent false.

(ii) To make the consequent (A → C) false, we must set A to true and C to false.

(iii) Since A is true, (A → B) simplifies to

B.

(iv) Since C is false, (B → C) simplifies to B′.

(v) Thus, in order to make the antecedent true, we have to make B ∧ B′ true, which
is not possible.

(vi) It follows that the given argument is valid.

Subramani CS 220 - Discrete Mathematics



Recap

Algorithmic Approach

Tautology Checking Algorithm

(i) In order to make the given argument false, we have to make the antecedent true,
and the consequent false.

(ii) To make the consequent (A → C) false, we must set A to true and C to false.

(iii) Since A is true, (A → B) simplifies to B.

(iv) Since C is false, (B → C) simplifies to B′.

(v) Thus, in order to make the antecedent true, we have to make B ∧ B′ true, which
is not possible.

(vi) It follows that the given argument is valid.

Subramani CS 220 - Discrete Mathematics



Recap

Algorithmic Approach

Tautology Checking Algorithm

(i) In order to make the given argument false, we have to make the antecedent true,
and the consequent false.

(ii) To make the consequent (A → C) false, we must set A to true and C to false.

(iii) Since A is true, (A → B) simplifies to B.

(iv) Since C is false,

(B → C) simplifies to B′.

(v) Thus, in order to make the antecedent true, we have to make B ∧ B′ true, which
is not possible.

(vi) It follows that the given argument is valid.

Subramani CS 220 - Discrete Mathematics



Recap

Algorithmic Approach

Tautology Checking Algorithm

(i) In order to make the given argument false, we have to make the antecedent true,
and the consequent false.

(ii) To make the consequent (A → C) false, we must set A to true and C to false.

(iii) Since A is true, (A → B) simplifies to B.

(iv) Since C is false, (B → C) simplifies to

B′.

(v) Thus, in order to make the antecedent true, we have to make B ∧ B′ true, which
is not possible.

(vi) It follows that the given argument is valid.

Subramani CS 220 - Discrete Mathematics



Recap

Algorithmic Approach

Tautology Checking Algorithm

(i) In order to make the given argument false, we have to make the antecedent true,
and the consequent false.

(ii) To make the consequent (A → C) false, we must set A to true and C to false.

(iii) Since A is true, (A → B) simplifies to B.

(iv) Since C is false, (B → C) simplifies to B′.

(v) Thus, in order to make the antecedent true, we have to make B ∧ B′ true, which
is not possible.

(vi) It follows that the given argument is valid.

Subramani CS 220 - Discrete Mathematics



Recap

Algorithmic Approach

Tautology Checking Algorithm

(i) In order to make the given argument false, we have to make the antecedent true,
and the consequent false.

(ii) To make the consequent (A → C) false, we must set A to true and C to false.

(iii) Since A is true, (A → B) simplifies to B.

(iv) Since C is false, (B → C) simplifies to B′.

(v) Thus, in order to make the antecedent true, we have to make B ∧ B′ true, which
is not possible.

(vi) It follows that the given argument is valid.

Subramani CS 220 - Discrete Mathematics



Recap

Algorithmic Approach

Tautology Checking Algorithm

(i) In order to make the given argument false, we have to make the antecedent true,
and the consequent false.

(ii) To make the consequent (A → C) false, we must set A to true and C to false.

(iii) Since A is true, (A → B) simplifies to B.

(iv) Since C is false, (B → C) simplifies to B′.

(v) Thus, in order to make the antecedent true, we have to make B ∧ B′ true, which
is not possible.

(vi) It follows that the given argument is valid.

Subramani CS 220 - Discrete Mathematics



Recap

One More Example

Example

Establish that the argument A → (B → A) is valid.

Proof.

Assume A is true. The argument becomes (B → true) which is true.
Assume A is false; the entire argument is trivially true!

Alternative Proof

Using the Deduction Method, we can rewrite the above argument as:

(A ∧ B) → A

However, from A ∧ B, we can derive A, using rules of inference (Simplification)!

Subramani CS 220 - Discrete Mathematics



Recap

One More Example

Example

Establish that the argument A → (B → A) is valid.

Proof.

Assume A is true. The argument becomes (B → true) which is true.
Assume A is false; the entire argument is trivially true!

Alternative Proof

Using the Deduction Method, we can rewrite the above argument as:

(A ∧ B) → A

However, from A ∧ B, we can derive A, using rules of inference (Simplification)!

Subramani CS 220 - Discrete Mathematics



Recap

One More Example

Example

Establish that the argument A → (B → A) is valid.

Proof.

Assume A is true. The argument becomes (B → true) which is true.
Assume A is false; the entire argument is trivially true!

Alternative Proof

Using the Deduction Method, we can rewrite the above argument as:

(A ∧ B) → A

However, from A ∧ B, we can derive A, using rules of inference (Simplification)!

Subramani CS 220 - Discrete Mathematics



Recap

One More Example

Example

Establish that the argument A → (B → A) is valid.

Proof.

Assume A is true. The argument becomes (B → true) which is true.
Assume A is false; the entire argument is trivially true!

Alternative Proof

Using the Deduction Method, we can rewrite the above argument as:

(A ∧ B) → A

However, from A ∧ B, we can derive A, using rules of inference (Simplification)!

Subramani CS 220 - Discrete Mathematics



Recap

One More Example

Example

Establish that the argument A → (B → A) is valid.

Proof.

Assume A is true.

The argument becomes (B → true) which is true.
Assume A is false; the entire argument is trivially true!

Alternative Proof

Using the Deduction Method, we can rewrite the above argument as:

(A ∧ B) → A

However, from A ∧ B, we can derive A, using rules of inference (Simplification)!

Subramani CS 220 - Discrete Mathematics



Recap

One More Example

Example

Establish that the argument A → (B → A) is valid.

Proof.

Assume A is true. The argument becomes (B → true) which is true.

Assume A is false; the entire argument is trivially true!

Alternative Proof

Using the Deduction Method, we can rewrite the above argument as:

(A ∧ B) → A

However, from A ∧ B, we can derive A, using rules of inference (Simplification)!

Subramani CS 220 - Discrete Mathematics



Recap

One More Example

Example

Establish that the argument A → (B → A) is valid.

Proof.

Assume A is true. The argument becomes (B → true) which is true.
Assume A is false; the entire argument is trivially true!

Alternative Proof

Using the Deduction Method, we can rewrite the above argument as:

(A ∧ B) → A

However, from A ∧ B, we can derive A, using rules of inference (Simplification)!

Subramani CS 220 - Discrete Mathematics



Recap

One More Example

Example

Establish that the argument A → (B → A) is valid.

Proof.

Assume A is true. The argument becomes (B → true) which is true.
Assume A is false; the entire argument is trivially true!

Alternative Proof

Using the Deduction Method, we can rewrite the above argument as:

(A ∧ B) → A

However, from A ∧ B, we can derive A, using rules of inference (Simplification)!

Subramani CS 220 - Discrete Mathematics



Recap

One More Example

Example

Establish that the argument A → (B → A) is valid.

Proof.

Assume A is true. The argument becomes (B → true) which is true.
Assume A is false; the entire argument is trivially true!

Alternative Proof

Using the Deduction Method, we can rewrite the above argument as:

(A ∧ B) → A

However, from A ∧ B, we can derive A, using rules of inference (Simplification)!

Subramani CS 220 - Discrete Mathematics



Recap

One More Example

Example

Establish that the argument A → (B → A) is valid.

Proof.

Assume A is true. The argument becomes (B → true) which is true.
Assume A is false; the entire argument is trivially true!

Alternative Proof

Using the Deduction Method, we can rewrite the above argument as:

(A ∧ B) → A

However, from A ∧ B, we can derive A, using rules of inference (Simplification)!

Subramani CS 220 - Discrete Mathematics



Recap

Exercises

Exercise

Prove the validity of the following arguments using as many techniques as you can:
1 [A → (B → C)] → [B → (A → C)].
2 [(A → C) ∧ (C → B′) ∧ A] → A′.
3 A′ → (A → B).
4 [(A′ → B′) ∧ (A → C)] → (B → C).
5 If security is a problem, then regulation will be increased.

If security is not a problem, then business on the Web will grow.

Therefore if regulation is not increased, then business on the Web will grow.

Subramani CS 220 - Discrete Mathematics



Recap

Exercises

Exercise

Prove the validity of the following arguments using as many techniques as you can:
1 [A → (B → C)] → [B → (A → C)].
2 [(A → C) ∧ (C → B′) ∧ A] → A′.
3 A′ → (A → B).
4 [(A′ → B′) ∧ (A → C)] → (B → C).
5 If security is a problem, then regulation will be increased.

If security is not a problem, then business on the Web will grow.

Therefore if regulation is not increased, then business on the Web will grow.

Subramani CS 220 - Discrete Mathematics



Recap

Predicate Logic

Motivation

Limited expressive power of propositional logic.

Important Notions

(i) Expressions involve predicates and not propositions.

(ii) Expressions are prefixed with quantifiers (∀x) or (∃x).

Order of Quantification is important in determining the semantics of the
expression.

(iii) The truth of an expression depends upon the domain of interpretation. A given
statement could be true in one interpretation and false in another, e.g.,
(∀x)[P(x) ∨ Q(x)].

(iv) A predicate expression is valid if it is true in all possible interpretations. Given that
the number of interpretations is infinite, there is no algorithm for testing validity.
However, there are some useful rules, which help us most of the time.

(v) A predicate expression without quantifiers can be treated as a propositional
expression, e.g., P(x) → (Q(x) → P(x)) can be thought of as P → (Q → P).

(vi) Converting English to predicate logic is both difficult and confusing. Practice helps
(and so does prayer!)

Subramani CS 220 - Discrete Mathematics



Recap

Predicate Logic

Motivation

Limited expressive power of propositional logic.

Important Notions

(i) Expressions involve predicates and not propositions.

(ii) Expressions are prefixed with quantifiers (∀x) or (∃x).

Order of Quantification is important in determining the semantics of the
expression.

(iii) The truth of an expression depends upon the domain of interpretation. A given
statement could be true in one interpretation and false in another, e.g.,
(∀x)[P(x) ∨ Q(x)].

(iv) A predicate expression is valid if it is true in all possible interpretations. Given that
the number of interpretations is infinite, there is no algorithm for testing validity.
However, there are some useful rules, which help us most of the time.

(v) A predicate expression without quantifiers can be treated as a propositional
expression, e.g., P(x) → (Q(x) → P(x)) can be thought of as P → (Q → P).

(vi) Converting English to predicate logic is both difficult and confusing. Practice helps
(and so does prayer!)

Subramani CS 220 - Discrete Mathematics



Recap

Predicate Logic

Motivation

Limited expressive power of propositional logic.

Important Notions

(i) Expressions involve predicates and not propositions.

(ii) Expressions are prefixed with quantifiers (∀x) or (∃x).

Order of Quantification is important in determining the semantics of the
expression.

(iii) The truth of an expression depends upon the domain of interpretation. A given
statement could be true in one interpretation and false in another, e.g.,
(∀x)[P(x) ∨ Q(x)].

(iv) A predicate expression is valid if it is true in all possible interpretations. Given that
the number of interpretations is infinite, there is no algorithm for testing validity.
However, there are some useful rules, which help us most of the time.

(v) A predicate expression without quantifiers can be treated as a propositional
expression, e.g., P(x) → (Q(x) → P(x)) can be thought of as P → (Q → P).

(vi) Converting English to predicate logic is both difficult and confusing. Practice helps
(and so does prayer!)

Subramani CS 220 - Discrete Mathematics



Recap

Predicate Logic

Motivation

Limited expressive power of propositional logic.

Important Notions

(i) Expressions involve predicates and not propositions.

(ii) Expressions are prefixed with quantifiers (∀x) or (∃x).

Order of Quantification is important in determining the semantics of the
expression.

(iii) The truth of an expression depends upon the domain of interpretation. A given
statement could be true in one interpretation and false in another, e.g.,
(∀x)[P(x) ∨ Q(x)].

(iv) A predicate expression is valid if it is true in all possible interpretations. Given that
the number of interpretations is infinite, there is no algorithm for testing validity.
However, there are some useful rules, which help us most of the time.

(v) A predicate expression without quantifiers can be treated as a propositional
expression, e.g., P(x) → (Q(x) → P(x)) can be thought of as P → (Q → P).

(vi) Converting English to predicate logic is both difficult and confusing. Practice helps
(and so does prayer!)

Subramani CS 220 - Discrete Mathematics



Recap

Predicate Logic

Motivation

Limited expressive power of propositional logic.

Important Notions

(i) Expressions involve predicates and not propositions.

(ii) Expressions are prefixed with quantifiers (∀x) or (∃x).

Order of Quantification is important in determining the semantics of the
expression.

(iii) The truth of an expression depends upon the domain of interpretation. A given
statement could be true in one interpretation and false in another, e.g.,
(∀x)[P(x) ∨ Q(x)].

(iv) A predicate expression is valid if it is true in all possible interpretations. Given that
the number of interpretations is infinite, there is no algorithm for testing validity.
However, there are some useful rules, which help us most of the time.

(v) A predicate expression without quantifiers can be treated as a propositional
expression, e.g., P(x) → (Q(x) → P(x)) can be thought of as P → (Q → P).

(vi) Converting English to predicate logic is both difficult and confusing. Practice helps
(and so does prayer!)

Subramani CS 220 - Discrete Mathematics



Recap

Predicate Logic

Motivation

Limited expressive power of propositional logic.

Important Notions

(i) Expressions involve predicates and not propositions.

(ii) Expressions are prefixed with quantifiers (∀x) or (∃x).

Order of Quantification is important in determining the semantics of the
expression.

(iii) The truth of an expression depends upon the domain of interpretation. A given
statement could be true in one interpretation and false in another, e.g.,
(∀x)[P(x) ∨ Q(x)].

(iv) A predicate expression is valid if it is true in all possible interpretations. Given that
the number of interpretations is infinite, there is no algorithm for testing validity.
However, there are some useful rules, which help us most of the time.

(v) A predicate expression without quantifiers can be treated as a propositional
expression, e.g., P(x) → (Q(x) → P(x)) can be thought of as P → (Q → P).

(vi) Converting English to predicate logic is both difficult and confusing. Practice helps
(and so does prayer!)

Subramani CS 220 - Discrete Mathematics



Recap

Predicate Logic

Motivation

Limited expressive power of propositional logic.

Important Notions

(i) Expressions involve predicates and not propositions.

(ii) Expressions are prefixed with quantifiers (∀x) or (∃x).

Order of Quantification is important in determining the semantics of the
expression.

(iii) The truth of an expression depends upon the domain of interpretation. A given
statement could be true in one interpretation and false in another, e.g.,
(∀x)[P(x) ∨ Q(x)].

(iv) A predicate expression is valid if it is true in all possible interpretations. Given that
the number of interpretations is infinite, there is no algorithm for testing validity.
However, there are some useful rules, which help us most of the time.

(v) A predicate expression without quantifiers can be treated as a propositional
expression, e.g., P(x) → (Q(x) → P(x)) can be thought of as P → (Q → P).

(vi) Converting English to predicate logic is both difficult and confusing. Practice helps
(and so does prayer!)

Subramani CS 220 - Discrete Mathematics



Recap

Predicate Logic

Motivation

Limited expressive power of propositional logic.

Important Notions

(i) Expressions involve predicates and not propositions.

(ii) Expressions are prefixed with quantifiers (∀x) or (∃x).

Order of Quantification is important in determining the semantics of the
expression.

(iii) The truth of an expression depends upon the domain of interpretation.

A given
statement could be true in one interpretation and false in another, e.g.,
(∀x)[P(x) ∨ Q(x)].

(iv) A predicate expression is valid if it is true in all possible interpretations. Given that
the number of interpretations is infinite, there is no algorithm for testing validity.
However, there are some useful rules, which help us most of the time.

(v) A predicate expression without quantifiers can be treated as a propositional
expression, e.g., P(x) → (Q(x) → P(x)) can be thought of as P → (Q → P).

(vi) Converting English to predicate logic is both difficult and confusing. Practice helps
(and so does prayer!)

Subramani CS 220 - Discrete Mathematics



Recap

Predicate Logic

Motivation

Limited expressive power of propositional logic.

Important Notions

(i) Expressions involve predicates and not propositions.

(ii) Expressions are prefixed with quantifiers (∀x) or (∃x).

Order of Quantification is important in determining the semantics of the
expression.

(iii) The truth of an expression depends upon the domain of interpretation. A given
statement could be true in one interpretation and false in another,

e.g.,
(∀x)[P(x) ∨ Q(x)].

(iv) A predicate expression is valid if it is true in all possible interpretations. Given that
the number of interpretations is infinite, there is no algorithm for testing validity.
However, there are some useful rules, which help us most of the time.

(v) A predicate expression without quantifiers can be treated as a propositional
expression, e.g., P(x) → (Q(x) → P(x)) can be thought of as P → (Q → P).

(vi) Converting English to predicate logic is both difficult and confusing. Practice helps
(and so does prayer!)

Subramani CS 220 - Discrete Mathematics



Recap

Predicate Logic

Motivation

Limited expressive power of propositional logic.

Important Notions

(i) Expressions involve predicates and not propositions.

(ii) Expressions are prefixed with quantifiers (∀x) or (∃x).

Order of Quantification is important in determining the semantics of the
expression.

(iii) The truth of an expression depends upon the domain of interpretation. A given
statement could be true in one interpretation and false in another, e.g.,
(∀x)[P(x) ∨ Q(x)].

(iv) A predicate expression is valid if it is true in all possible interpretations. Given that
the number of interpretations is infinite, there is no algorithm for testing validity.
However, there are some useful rules, which help us most of the time.

(v) A predicate expression without quantifiers can be treated as a propositional
expression, e.g., P(x) → (Q(x) → P(x)) can be thought of as P → (Q → P).

(vi) Converting English to predicate logic is both difficult and confusing. Practice helps
(and so does prayer!)

Subramani CS 220 - Discrete Mathematics



Recap

Predicate Logic

Motivation

Limited expressive power of propositional logic.

Important Notions

(i) Expressions involve predicates and not propositions.

(ii) Expressions are prefixed with quantifiers (∀x) or (∃x).

Order of Quantification is important in determining the semantics of the
expression.

(iii) The truth of an expression depends upon the domain of interpretation. A given
statement could be true in one interpretation and false in another, e.g.,
(∀x)[P(x) ∨ Q(x)].

(iv) A predicate expression is valid if it is true in all possible interpretations.

Given that
the number of interpretations is infinite, there is no algorithm for testing validity.
However, there are some useful rules, which help us most of the time.

(v) A predicate expression without quantifiers can be treated as a propositional
expression, e.g., P(x) → (Q(x) → P(x)) can be thought of as P → (Q → P).

(vi) Converting English to predicate logic is both difficult and confusing. Practice helps
(and so does prayer!)

Subramani CS 220 - Discrete Mathematics



Recap

Predicate Logic

Motivation

Limited expressive power of propositional logic.

Important Notions

(i) Expressions involve predicates and not propositions.

(ii) Expressions are prefixed with quantifiers (∀x) or (∃x).

Order of Quantification is important in determining the semantics of the
expression.

(iii) The truth of an expression depends upon the domain of interpretation. A given
statement could be true in one interpretation and false in another, e.g.,
(∀x)[P(x) ∨ Q(x)].

(iv) A predicate expression is valid if it is true in all possible interpretations. Given that
the number of interpretations is infinite, there is no algorithm for testing validity.

However, there are some useful rules, which help us most of the time.

(v) A predicate expression without quantifiers can be treated as a propositional
expression, e.g., P(x) → (Q(x) → P(x)) can be thought of as P → (Q → P).

(vi) Converting English to predicate logic is both difficult and confusing. Practice helps
(and so does prayer!)

Subramani CS 220 - Discrete Mathematics



Recap

Predicate Logic

Motivation

Limited expressive power of propositional logic.

Important Notions

(i) Expressions involve predicates and not propositions.

(ii) Expressions are prefixed with quantifiers (∀x) or (∃x).

Order of Quantification is important in determining the semantics of the
expression.

(iii) The truth of an expression depends upon the domain of interpretation. A given
statement could be true in one interpretation and false in another, e.g.,
(∀x)[P(x) ∨ Q(x)].

(iv) A predicate expression is valid if it is true in all possible interpretations. Given that
the number of interpretations is infinite, there is no algorithm for testing validity.
However, there are some useful rules, which help us most of the time.

(v) A predicate expression without quantifiers can be treated as a propositional
expression, e.g., P(x) → (Q(x) → P(x)) can be thought of as P → (Q → P).

(vi) Converting English to predicate logic is both difficult and confusing. Practice helps
(and so does prayer!)

Subramani CS 220 - Discrete Mathematics



Recap

Predicate Logic

Motivation

Limited expressive power of propositional logic.

Important Notions

(i) Expressions involve predicates and not propositions.

(ii) Expressions are prefixed with quantifiers (∀x) or (∃x).

Order of Quantification is important in determining the semantics of the
expression.

(iii) The truth of an expression depends upon the domain of interpretation. A given
statement could be true in one interpretation and false in another, e.g.,
(∀x)[P(x) ∨ Q(x)].

(iv) A predicate expression is valid if it is true in all possible interpretations. Given that
the number of interpretations is infinite, there is no algorithm for testing validity.
However, there are some useful rules, which help us most of the time.

(v) A predicate expression without quantifiers can be treated as a propositional
expression, e.g.,

P(x) → (Q(x) → P(x)) can be thought of as P → (Q → P).

(vi) Converting English to predicate logic is both difficult and confusing. Practice helps
(and so does prayer!)

Subramani CS 220 - Discrete Mathematics



Recap

Predicate Logic

Motivation

Limited expressive power of propositional logic.

Important Notions

(i) Expressions involve predicates and not propositions.

(ii) Expressions are prefixed with quantifiers (∀x) or (∃x).

Order of Quantification is important in determining the semantics of the
expression.

(iii) The truth of an expression depends upon the domain of interpretation. A given
statement could be true in one interpretation and false in another, e.g.,
(∀x)[P(x) ∨ Q(x)].

(iv) A predicate expression is valid if it is true in all possible interpretations. Given that
the number of interpretations is infinite, there is no algorithm for testing validity.
However, there are some useful rules, which help us most of the time.

(v) A predicate expression without quantifiers can be treated as a propositional
expression, e.g., P(x) → (Q(x) → P(x)) can be thought of as P → (Q → P).

(vi) Converting English to predicate logic is both difficult and confusing. Practice helps
(and so does prayer!)

Subramani CS 220 - Discrete Mathematics



Recap

Predicate Logic

Motivation

Limited expressive power of propositional logic.

Important Notions

(i) Expressions involve predicates and not propositions.

(ii) Expressions are prefixed with quantifiers (∀x) or (∃x).

Order of Quantification is important in determining the semantics of the
expression.

(iii) The truth of an expression depends upon the domain of interpretation. A given
statement could be true in one interpretation and false in another, e.g.,
(∀x)[P(x) ∨ Q(x)].

(iv) A predicate expression is valid if it is true in all possible interpretations. Given that
the number of interpretations is infinite, there is no algorithm for testing validity.
However, there are some useful rules, which help us most of the time.

(v) A predicate expression without quantifiers can be treated as a propositional
expression, e.g., P(x) → (Q(x) → P(x)) can be thought of as P → (Q → P).

(vi) Converting English to predicate logic is both difficult and confusing.

Practice helps
(and so does prayer!)

Subramani CS 220 - Discrete Mathematics



Recap

Predicate Logic

Motivation

Limited expressive power of propositional logic.

Important Notions

(i) Expressions involve predicates and not propositions.

(ii) Expressions are prefixed with quantifiers (∀x) or (∃x).

Order of Quantification is important in determining the semantics of the
expression.

(iii) The truth of an expression depends upon the domain of interpretation. A given
statement could be true in one interpretation and false in another, e.g.,
(∀x)[P(x) ∨ Q(x)].

(iv) A predicate expression is valid if it is true in all possible interpretations. Given that
the number of interpretations is infinite, there is no algorithm for testing validity.
However, there are some useful rules, which help us most of the time.

(v) A predicate expression without quantifiers can be treated as a propositional
expression, e.g., P(x) → (Q(x) → P(x)) can be thought of as P → (Q → P).

(vi) Converting English to predicate logic is both difficult and confusing. Practice helps

(and so does prayer!)

Subramani CS 220 - Discrete Mathematics



Recap

Predicate Logic

Motivation

Limited expressive power of propositional logic.

Important Notions

(i) Expressions involve predicates and not propositions.

(ii) Expressions are prefixed with quantifiers (∀x) or (∃x).

Order of Quantification is important in determining the semantics of the
expression.

(iii) The truth of an expression depends upon the domain of interpretation. A given
statement could be true in one interpretation and false in another, e.g.,
(∀x)[P(x) ∨ Q(x)].

(iv) A predicate expression is valid if it is true in all possible interpretations. Given that
the number of interpretations is infinite, there is no algorithm for testing validity.
However, there are some useful rules, which help us most of the time.

(v) A predicate expression without quantifiers can be treated as a propositional
expression, e.g., P(x) → (Q(x) → P(x)) can be thought of as P → (Q → P).

(vi) Converting English to predicate logic is both difficult and confusing. Practice helps
(and so does prayer!)

Subramani CS 220 - Discrete Mathematics



Recap

A conversion example

Example

Convert the following English statements to Predicate Logic.

(i) John loves only Mary.

(ii) Only John loves Mary.

Use J(x) for “x is John”, M(y) for “y is Mary” and L(x , y) for “x loves y .”

Subramani CS 220 - Discrete Mathematics



Recap

A conversion example

Example

Convert the following English statements to Predicate Logic.

(i) John loves only Mary.

(ii) Only John loves Mary.

Use J(x) for “x is John”, M(y) for “y is Mary” and L(x , y) for “x loves y .”

Subramani CS 220 - Discrete Mathematics



Recap

A conversion example

Example

Convert the following English statements to Predicate Logic.

(i) John loves only Mary.

(ii) Only John loves Mary.

Use J(x) for “x is John”, M(y) for “y is Mary” and L(x , y) for “x loves y .”

Subramani CS 220 - Discrete Mathematics



Recap

A conversion example

Example

Convert the following English statements to Predicate Logic.

(i) John loves only Mary.

(ii) Only John loves Mary.

Use J(x) for “x is John”, M(y) for “y is Mary” and L(x , y) for “x loves y .”

Subramani CS 220 - Discrete Mathematics



Recap

A conversion example

Example

Convert the following English statements to Predicate Logic.

(i) John loves only Mary.

(ii) Only John loves Mary.

Use J(x) for “x is John”, M(y) for “y is Mary” and L(x , y) for “x loves y .”

Subramani CS 220 - Discrete Mathematics



Recap

A conversion example

Example

Convert the following English statements to Predicate Logic.

(i) John loves only Mary.

(ii) Only John loves Mary.

Use J(x) for “x is John”, M(y) for “y is Mary” and L(x , y) for “x loves y .”

Subramani CS 220 - Discrete Mathematics



Recap

Solution

Problem 1

1 John loves only Mary.

2 Formal rewriting: For any thing, if it is John, if it loves anything, then that thing is
Mary.

3 Predicate expression:

(∀x) [J(x) → (∀y)(L(x , y) → M(y))]

Subramani CS 220 - Discrete Mathematics



Recap

Solution

Problem 1

1 John loves only Mary.

2 Formal rewriting: For any thing, if it is John, if it loves anything, then that thing is
Mary.

3 Predicate expression:

(∀x) [J(x) → (∀y)(L(x , y) → M(y))]

Subramani CS 220 - Discrete Mathematics



Recap

Solution

Problem 1

1 John loves only Mary.

2 Formal rewriting: For any thing, if it is John, if it loves anything, then that thing is
Mary.

3 Predicate expression:

(∀x) [J(x) → (∀y)(L(x , y) → M(y))]

Subramani CS 220 - Discrete Mathematics



Recap

Solution

Problem 1

1 John loves only Mary.

2 Formal rewriting: For any thing, if it is John, if it loves anything, then that thing is
Mary.

3 Predicate expression:

(∀x) [J(x) → (∀y)(L(x , y) → M(y))]

Subramani CS 220 - Discrete Mathematics



Recap

Solution

Problem 1

1 John loves only Mary.

2 Formal rewriting:

For any thing, if it is John, if it loves anything, then that thing is
Mary.

3 Predicate expression:

(∀x) [J(x) → (∀y)(L(x , y) → M(y))]

Subramani CS 220 - Discrete Mathematics



Recap

Solution

Problem 1

1 John loves only Mary.

2 Formal rewriting: For any thing, if it is John, if it loves anything, then that thing is
Mary.

3 Predicate expression:

(∀x) [J(x) → (∀y)(L(x , y) → M(y))]

Subramani CS 220 - Discrete Mathematics



Recap

Solution

Problem 1

1 John loves only Mary.

2 Formal rewriting: For any thing, if it is John, if it loves anything, then that thing is
Mary.

3 Predicate expression:

(∀x) [J(x) → (∀y)(L(x , y) → M(y))]

Subramani CS 220 - Discrete Mathematics



Recap

Solution

Problem 1

1 John loves only Mary.

2 Formal rewriting: For any thing, if it is John, if it loves anything, then that thing is
Mary.

3 Predicate expression:

(∀x) [J(x)

→ (∀y)(L(x , y) → M(y))]

Subramani CS 220 - Discrete Mathematics



Recap

Solution

Problem 1

1 John loves only Mary.

2 Formal rewriting: For any thing, if it is John, if it loves anything, then that thing is
Mary.

3 Predicate expression:

(∀x) [J(x) → (∀y)(L(x , y) → M(y))]

Subramani CS 220 - Discrete Mathematics



Recap

Solution (contd.)

Problem 2

1 Only John loves Mary.

2 Formal rewriting: For any thing, if it is Mary, then if anything loves it, then that thing
is John.

3 Predicate expression:

(∀x) [M(x) → (∀y)(L(y , x) → J(y))]

Subramani CS 220 - Discrete Mathematics



Recap

Solution (contd.)

Problem 2

1 Only John loves Mary.

2 Formal rewriting: For any thing, if it is Mary, then if anything loves it, then that thing
is John.

3 Predicate expression:

(∀x) [M(x) → (∀y)(L(y , x) → J(y))]

Subramani CS 220 - Discrete Mathematics



Recap

Solution (contd.)

Problem 2

1 Only John loves Mary.

2 Formal rewriting: For any thing, if it is Mary, then if anything loves it, then that thing
is John.

3 Predicate expression:

(∀x) [M(x) → (∀y)(L(y , x) → J(y))]

Subramani CS 220 - Discrete Mathematics



Recap

Solution (contd.)

Problem 2

1 Only John loves Mary.

2 Formal rewriting: For any thing, if it is Mary, then if anything loves it, then that thing
is John.

3 Predicate expression:

(∀x) [M(x) → (∀y)(L(y , x) → J(y))]

Subramani CS 220 - Discrete Mathematics



Recap

Solution (contd.)

Problem 2

1 Only John loves Mary.

2 Formal rewriting:

For any thing, if it is Mary, then if anything loves it, then that thing
is John.

3 Predicate expression:

(∀x) [M(x) → (∀y)(L(y , x) → J(y))]

Subramani CS 220 - Discrete Mathematics



Recap

Solution (contd.)

Problem 2

1 Only John loves Mary.

2 Formal rewriting: For any thing, if it is Mary, then if anything loves it, then that thing
is John.

3 Predicate expression:

(∀x) [M(x) → (∀y)(L(y , x) → J(y))]

Subramani CS 220 - Discrete Mathematics



Recap

Solution (contd.)

Problem 2

1 Only John loves Mary.

2 Formal rewriting: For any thing, if it is Mary, then if anything loves it, then that thing
is John.

3 Predicate expression:

(∀x) [M(x) → (∀y)(L(y , x) → J(y))]

Subramani CS 220 - Discrete Mathematics



Recap

Solution (contd.)

Problem 2

1 Only John loves Mary.

2 Formal rewriting: For any thing, if it is Mary, then if anything loves it, then that thing
is John.

3 Predicate expression:

(∀x) [M(x)

→ (∀y)(L(y , x) → J(y))]

Subramani CS 220 - Discrete Mathematics



Recap

Solution (contd.)

Problem 2

1 Only John loves Mary.

2 Formal rewriting: For any thing, if it is Mary, then if anything loves it, then that thing
is John.

3 Predicate expression:

(∀x) [M(x) → (∀y)(L(y , x) → J(y))]

Subramani CS 220 - Discrete Mathematics



Recap

Validity (Rules)

Rules

(i) Universal instantiation.

(ii) Existential instantiation.

(iii) Universal generalization.

(iv) Existential generalization.

(v) All the equivalence and inference rules of propositional logic.

(vi) Temporary hypothesis.

Technique

(i) Strip of quantifiers.

(ii) Use propositional logic.

(iii) Re-insert quantifiers as needed.

Subramani CS 220 - Discrete Mathematics



Recap

Validity (Rules)

Rules

(i) Universal instantiation.

(ii) Existential instantiation.

(iii) Universal generalization.

(iv) Existential generalization.

(v) All the equivalence and inference rules of propositional logic.

(vi) Temporary hypothesis.

Technique

(i) Strip of quantifiers.

(ii) Use propositional logic.

(iii) Re-insert quantifiers as needed.

Subramani CS 220 - Discrete Mathematics



Recap

Validity (Rules)

Rules

(i) Universal instantiation.

(ii) Existential instantiation.

(iii) Universal generalization.

(iv) Existential generalization.

(v) All the equivalence and inference rules of propositional logic.

(vi) Temporary hypothesis.

Technique

(i) Strip of quantifiers.

(ii) Use propositional logic.

(iii) Re-insert quantifiers as needed.

Subramani CS 220 - Discrete Mathematics



Recap

Validity (Rules)

Rules

(i) Universal instantiation.

(ii) Existential instantiation.

(iii) Universal generalization.

(iv) Existential generalization.

(v) All the equivalence and inference rules of propositional logic.

(vi) Temporary hypothesis.

Technique

(i) Strip of quantifiers.

(ii) Use propositional logic.

(iii) Re-insert quantifiers as needed.

Subramani CS 220 - Discrete Mathematics



Recap

Validity (Rules)

Rules

(i) Universal instantiation.

(ii) Existential instantiation.

(iii) Universal generalization.

(iv) Existential generalization.

(v) All the equivalence and inference rules of propositional logic.

(vi) Temporary hypothesis.

Technique

(i) Strip of quantifiers.

(ii) Use propositional logic.

(iii) Re-insert quantifiers as needed.

Subramani CS 220 - Discrete Mathematics



Recap

Validity (Rules)

Rules

(i) Universal instantiation.

(ii) Existential instantiation.

(iii) Universal generalization.

(iv) Existential generalization.

(v) All the equivalence and inference rules of propositional logic.

(vi) Temporary hypothesis.

Technique

(i) Strip of quantifiers.

(ii) Use propositional logic.

(iii) Re-insert quantifiers as needed.

Subramani CS 220 - Discrete Mathematics



Recap

Validity (Rules)

Rules

(i) Universal instantiation.

(ii) Existential instantiation.

(iii) Universal generalization.

(iv) Existential generalization.

(v) All the equivalence and inference rules of propositional logic.

(vi) Temporary hypothesis.

Technique

(i) Strip of quantifiers.

(ii) Use propositional logic.

(iii) Re-insert quantifiers as needed.

Subramani CS 220 - Discrete Mathematics



Recap

Validity (Rules)

Rules

(i) Universal instantiation.

(ii) Existential instantiation.

(iii) Universal generalization.

(iv) Existential generalization.

(v) All the equivalence and inference rules of propositional logic.

(vi) Temporary hypothesis.

Technique

(i) Strip of quantifiers.

(ii) Use propositional logic.

(iii) Re-insert quantifiers as needed.

Subramani CS 220 - Discrete Mathematics



Recap

Validity (Rules)

Rules

(i) Universal instantiation.

(ii) Existential instantiation.

(iii) Universal generalization.

(iv) Existential generalization.

(v) All the equivalence and inference rules of propositional logic.

(vi) Temporary hypothesis.

Technique

(i) Strip of quantifiers.

(ii) Use propositional logic.

(iii) Re-insert quantifiers as needed.

Subramani CS 220 - Discrete Mathematics



Recap

Validity (Rules)

Rules

(i) Universal instantiation.

(ii) Existential instantiation.

(iii) Universal generalization.

(iv) Existential generalization.

(v) All the equivalence and inference rules of propositional logic.

(vi) Temporary hypothesis.

Technique

(i) Strip of quantifiers.

(ii) Use propositional logic.

(iii) Re-insert quantifiers as needed.

Subramani CS 220 - Discrete Mathematics



Recap

Validity (Rules)

Rules

(i) Universal instantiation.

(ii) Existential instantiation.

(iii) Universal generalization.

(iv) Existential generalization.

(v) All the equivalence and inference rules of propositional logic.

(vi) Temporary hypothesis.

Technique

(i) Strip of quantifiers.

(ii) Use propositional logic.

(iii) Re-insert quantifiers as needed.

Subramani CS 220 - Discrete Mathematics



Recap

Validity (Rules)

Rules

(i) Universal instantiation.

(ii) Existential instantiation.

(iii) Universal generalization.

(iv) Existential generalization.

(v) All the equivalence and inference rules of propositional logic.

(vi) Temporary hypothesis.

Technique

(i) Strip of quantifiers.

(ii) Use propositional logic.

(iii) Re-insert quantifiers as needed.

Subramani CS 220 - Discrete Mathematics



Recap

Validity (Rules)

Rules

(i) Universal instantiation.

(ii) Existential instantiation.

(iii) Universal generalization.

(iv) Existential generalization.

(v) All the equivalence and inference rules of propositional logic.

(vi) Temporary hypothesis.

Technique

(i) Strip of quantifiers.

(ii) Use propositional logic.

(iii) Re-insert quantifiers as needed.

Subramani CS 220 - Discrete Mathematics



Recap

Validity (Rules)

Rules

(i) Universal instantiation.

(ii) Existential instantiation.

(iii) Universal generalization.

(iv) Existential generalization.

(v) All the equivalence and inference rules of propositional logic.

(vi) Temporary hypothesis.

Technique

(i) Strip of quantifiers.

(ii) Use propositional logic.

(iii) Re-insert quantifiers as needed.

Subramani CS 220 - Discrete Mathematics



Recap

Rules of Negation

Example

Prove that
[(∃x)A(x)]′ → (∀x)[A(x)]′

Proof.

Consider the following proof sequence:

(i) [(∃x)A(x)]′ hypothesis.

(ii) A(x) temporary hypothesis.

(iii) (∃x)A(x) (ii), eg.

(iv) A(x) → (∃x)A(x) temporary hypothesis discharged.

(v) [A(x)]′ (i), (iv), Modus Tollens.

(vi) (∀x)[A(x)]′ (v), ug.

Subramani CS 220 - Discrete Mathematics



Recap

Rules of Negation

Example

Prove that
[(∃x)A(x)]′ → (∀x)[A(x)]′

Proof.

Consider the following proof sequence:

(i) [(∃x)A(x)]′ hypothesis.

(ii) A(x) temporary hypothesis.

(iii) (∃x)A(x) (ii), eg.

(iv) A(x) → (∃x)A(x) temporary hypothesis discharged.

(v) [A(x)]′ (i), (iv), Modus Tollens.

(vi) (∀x)[A(x)]′ (v), ug.

Subramani CS 220 - Discrete Mathematics



Recap

Rules of Negation

Example

Prove that

[(∃x)A(x)]′ → (∀x)[A(x)]′

Proof.

Consider the following proof sequence:

(i) [(∃x)A(x)]′ hypothesis.

(ii) A(x) temporary hypothesis.

(iii) (∃x)A(x) (ii), eg.

(iv) A(x) → (∃x)A(x) temporary hypothesis discharged.

(v) [A(x)]′ (i), (iv), Modus Tollens.

(vi) (∀x)[A(x)]′ (v), ug.

Subramani CS 220 - Discrete Mathematics



Recap

Rules of Negation

Example

Prove that
[(∃x)A(x)]′ → (∀x)[A(x)]′

Proof.

Consider the following proof sequence:

(i) [(∃x)A(x)]′ hypothesis.

(ii) A(x) temporary hypothesis.

(iii) (∃x)A(x) (ii), eg.

(iv) A(x) → (∃x)A(x) temporary hypothesis discharged.

(v) [A(x)]′ (i), (iv), Modus Tollens.

(vi) (∀x)[A(x)]′ (v), ug.

Subramani CS 220 - Discrete Mathematics



Recap

Rules of Negation

Example

Prove that
[(∃x)A(x)]′ → (∀x)[A(x)]′

Proof.

Consider the following proof sequence:

(i) [(∃x)A(x)]′ hypothesis.

(ii) A(x) temporary hypothesis.

(iii) (∃x)A(x) (ii), eg.

(iv) A(x) → (∃x)A(x) temporary hypothesis discharged.

(v) [A(x)]′ (i), (iv), Modus Tollens.

(vi) (∀x)[A(x)]′ (v), ug.

Subramani CS 220 - Discrete Mathematics



Recap

Rules of Negation

Example

Prove that
[(∃x)A(x)]′ → (∀x)[A(x)]′

Proof.

Consider the following proof sequence:

(i) [(∃x)A(x)]′ hypothesis.

(ii) A(x) temporary hypothesis.

(iii) (∃x)A(x) (ii), eg.

(iv) A(x) → (∃x)A(x) temporary hypothesis discharged.

(v) [A(x)]′ (i), (iv), Modus Tollens.

(vi) (∀x)[A(x)]′ (v), ug.

Subramani CS 220 - Discrete Mathematics



Recap

Rules of Negation

Example

Prove that
[(∃x)A(x)]′ → (∀x)[A(x)]′

Proof.

Consider the following proof sequence:

(i) [(∃x)A(x)]′ hypothesis.

(ii) A(x) temporary hypothesis.

(iii) (∃x)A(x) (ii), eg.

(iv) A(x) → (∃x)A(x) temporary hypothesis discharged.

(v) [A(x)]′ (i), (iv), Modus Tollens.

(vi) (∀x)[A(x)]′ (v), ug.

Subramani CS 220 - Discrete Mathematics



Recap

Rules of Negation

Example

Prove that
[(∃x)A(x)]′ → (∀x)[A(x)]′

Proof.

Consider the following proof sequence:

(i) [(∃x)A(x)]′ hypothesis.

(ii) A(x) temporary hypothesis.

(iii) (∃x)A(x) (ii), eg.

(iv) A(x) → (∃x)A(x) temporary hypothesis discharged.

(v) [A(x)]′ (i), (iv), Modus Tollens.

(vi) (∀x)[A(x)]′ (v), ug.

Subramani CS 220 - Discrete Mathematics



Recap

Rules of Negation

Example

Prove that
[(∃x)A(x)]′ → (∀x)[A(x)]′

Proof.

Consider the following proof sequence:

(i) [(∃x)A(x)]′ hypothesis.

(ii) A(x) temporary hypothesis.

(iii) (∃x)A(x) (ii), eg.

(iv) A(x) → (∃x)A(x) temporary hypothesis discharged.

(v) [A(x)]′ (i), (iv), Modus Tollens.

(vi) (∀x)[A(x)]′ (v), ug.

Subramani CS 220 - Discrete Mathematics



Recap

Rules of Negation

Example

Prove that
[(∃x)A(x)]′ → (∀x)[A(x)]′

Proof.

Consider the following proof sequence:

(i) [(∃x)A(x)]′ hypothesis.

(ii) A(x) temporary hypothesis.

(iii) (∃x)A(x) (ii), eg.

(iv) A(x) → (∃x)A(x) temporary hypothesis discharged.

(v) [A(x)]′ (i), (iv), Modus Tollens.

(vi) (∀x)[A(x)]′ (v), ug.

Subramani CS 220 - Discrete Mathematics



Recap

Rules of Negation

Example

Prove that
[(∃x)A(x)]′ → (∀x)[A(x)]′

Proof.

Consider the following proof sequence:

(i) [(∃x)A(x)]′ hypothesis.

(ii) A(x) temporary hypothesis.

(iii) (∃x)A(x) (ii), eg.

(iv) A(x) → (∃x)A(x) temporary hypothesis discharged.

(v) [A(x)]′ (i), (iv), Modus Tollens.

(vi) (∀x)[A(x)]′ (v), ug.

Subramani CS 220 - Discrete Mathematics



Recap

Rules of Negation

Example

Prove that
[(∃x)A(x)]′ → (∀x)[A(x)]′

Proof.

Consider the following proof sequence:

(i) [(∃x)A(x)]′ hypothesis.

(ii) A(x) temporary hypothesis.

(iii) (∃x)A(x) (ii), eg.

(iv) A(x) → (∃x)A(x) temporary hypothesis discharged.

(v) [A(x)]′ (i), (iv), Modus Tollens.

(vi) (∀x)[A(x)]′ (v), ug.

Subramani CS 220 - Discrete Mathematics



Recap

Rules of Negation

Example

Prove that
[(∃x)A(x)]′ → (∀x)[A(x)]′

Proof.

Consider the following proof sequence:

(i) [(∃x)A(x)]′ hypothesis.

(ii) A(x) temporary hypothesis.

(iii) (∃x)A(x) (ii), eg.

(iv) A(x) → (∃x)A(x) temporary hypothesis discharged.

(v) [A(x)]′ (i), (iv), Modus Tollens.

(vi) (∀x)[A(x)]′ (v), ug.

Subramani CS 220 - Discrete Mathematics



Recap

Exercises

Exercise

Prove that the following arguments are valid:
1 (∃x)[P(x) → Q(x)] → [(∀x)P(x) → (∃x)Q(x)].
2 [(∃x)P(x) ∧ (∀x)(P(x) → Q(x))] → (∃x)Q(x).
3 [(∀x)P(x) ∧ (∃x)Q(x)] → [(∃x)(P(x) ∧ Q(x))].
4 Everyone with red hair has freckles.

Someone has red hair and big feet.

Everybody who does not have green eyes does not have big feet.

Therefore, someone has green eyes and freckles.

(Hint: Use R(x), F (x), B(x), and G(x) for people with red hair, freckles, big feet
and green eyes respectively.)

Subramani CS 220 - Discrete Mathematics



Recap

Exercises

Exercise

Prove that the following arguments are valid:
1 (∃x)[P(x) → Q(x)] → [(∀x)P(x) → (∃x)Q(x)].
2 [(∃x)P(x) ∧ (∀x)(P(x) → Q(x))] → (∃x)Q(x).
3 [(∀x)P(x) ∧ (∃x)Q(x)] → [(∃x)(P(x) ∧ Q(x))].
4 Everyone with red hair has freckles.

Someone has red hair and big feet.

Everybody who does not have green eyes does not have big feet.

Therefore, someone has green eyes and freckles.

(Hint: Use R(x), F (x), B(x), and G(x) for people with red hair, freckles, big feet
and green eyes respectively.)

Subramani CS 220 - Discrete Mathematics


	Recap

