Functions - Fundamentals and Order

K. Subramani¹

¹ Lane Department of Computer Science and Electrical Engineering West Virginia University

21 April 2016

Outline

- Fundamentals
 - Definition
 - Properties of Functions
 - Composition of Functions
 - Inverse Functions
 - Equivalent Sets

Outline

- Fundamentals
 - Definition
 - Properties of Functions
 - Composition of Functions
 - Inverse Functions
 - Equivalent Sets
- Order of magnitude of functions

entals

Properties of Functions Composition of Functions Inverse Functions Equivalent Sets

Outline

- Fundamentals
 - Definition
 - Properties of Functions
 - Composition of Functions
 - Inverse Functions
 - Equivalent Sets
- Order of magnitude of functions

Fundamentals
Order of magnitude of functions

tale

Properties of Functions Composition of Functions Inverse Functions Equivalent Sets

Definition

Fundamentals
Order of magnitude of functions

als

Properties of Functions Composition of Functions Inverse Functions Equivalent Sets

Definition

Some common functions

Some common functions

(i)
$$y = x^2$$
.

Some common functions

- (i) $y = x^2$.
- (ii) $y = \sqrt{x} \sin x$.

Some common functions

- (i) $y = x^2$.
- (ii) $y = \sqrt{x} \sin x$.

Definition

Some common functions

- (i) $y = x^2$.
- (ii) $y = \sqrt{x} \sin x$.

Definition

Let S and T denote two sets.

Some common functions

- (i) $y = x^2$.
- (ii) $y = \sqrt{x} \sin x$.

Definition

Let S and T denote two sets.

A function (mapping) from S to T (denoted by $f: S \to T$) is a subset of $S \times T$, in which each member of S appears exactly once as the first component of an ordered pair.

Some common functions

- (i) $y = x^2$.
- (ii) $y = \sqrt{x} \sin x$.

Definition

Let S and T denote two sets.

A function (mapping) from S to T (denoted by $f: S \to T$) is a subset of $S \times T$, in which each member of S appears exactly once as the first component of an ordered pair.

S is called the **domain** and T is called the **codomain** of the function.

Some common functions

- (i) $y = x^2$.
- (ii) $y = \sqrt{x} \sin x$.

Definition

Let S and T denote two sets.

A function (mapping) from S to T (denoted by $f: S \to T$) is a subset of $S \times T$, in which each member of S appears exactly once as the first component of an ordered pair.

S is called the **domain** and T is called the **codomain** of the function.

If
$$(s, t) \in f$$
, then we write $t = f(s)$;

Some common functions

- (i) $v = x^2$.
- (iii) $y = \sqrt{x} \sin x$.

Definition

Let S and T denote two sets.

A function (mapping) from S to T (denoted by $f: S \to T$) is a subset of $S \times T$, in which each member of S appears exactly once as the first component of an ordered pair.

S is called the **domain** and T is called the **codomain** of the function.

If $(s, t) \in f$, then we write t = f(s); t is the image of s under f and s is the pre-image of t under f.

Some common functions

- (i) $v = x^2$.
- (ii) $y = \sqrt{x} \sin x$.

Definition

Let S and T denote two sets.

A function (mapping) from S to T (denoted by $f: S \to T$) is a subset of $S \times T$, in which each member of S appears exactly once as the first component of an ordered pair.

S is called the **domain** and T is called the **codomain** of the function.

If $(s, t) \in f$, then we write t = f(s); t is the image of s under f and s is the pre-image of t under f.

For
$$A \subseteq S$$
, $f(A) = \{f(a) : a \in A\}$.

Fundamentals
Order of magnitude of functions

tala

Properties of Functions Composition of Functions Inverse Functions Equivalent Sets

Delinitio

Properties of Functions
Composition of Functions
nverse Functions
Equivalent Sets

Examples

Examples

(i) Is $f: \mathcal{N} \to \mathcal{N}$ a function, where $f(x) = \sqrt{x}$.

- (i) Is $f: \mathcal{N} \to \mathcal{N}$ a function, where $f(x) = \sqrt{x}$.
- (ii) Is $f: \mathcal{N} \to \mathcal{R}$ a function, where $f(x) = \sqrt{x}$.

- (i) Is $f: \mathcal{N} \to \mathcal{N}$ a function, where $f(x) = \sqrt{x}$.
- (ii) Is $f : \mathcal{N} \to \mathcal{R}$ a function, where $f(x) = \sqrt{x}$.
- (iii) Is $g:\mathcal{N} \to \mathcal{N}$ a function, where

- (i) Is $f: \mathcal{N} \to \mathcal{N}$ a function, where $f(x) = \sqrt{x}$.
- (ii) Is $f : \mathcal{N} \to \mathcal{R}$ a function, where $f(x) = \sqrt{x}$.
- (iii) Is $g: \mathcal{N} \to \mathcal{N}$ a function, where

$$g(x) = x$$
, if $x \le 5$

- (i) Is $f : \mathcal{N} \to \mathcal{N}$ a function, where $f(x) = \sqrt{x}$.
- (ii) Is $f : \mathcal{N} \to \mathcal{R}$ a function, where $f(x) = \sqrt{x}$.
- (iii) Is $g:\mathcal{N} \to \mathcal{N}$ a function, where

$$g(x) = x, \text{ if } x \le 5$$

= 10 - x, if 5 \le x \le 10

- (i) Is $f: \mathcal{N} \to \mathcal{N}$ a function, where $f(x) = \sqrt{x}$.
- (ii) Is $f : \mathcal{N} \to \mathcal{R}$ a function, where $f(x) = \sqrt{x}$.
- (iii) Is $g:\mathcal{N} \to \mathcal{N}$ a function, where

$$g(x) = x$$
, if $x \le 5$
= 10 - x, if $5 \le x \le 10$
= x, if $x \ge 11$

Examples

- (i) Is $f: \mathcal{N} \to \mathcal{N}$ a function, where $f(x) = \sqrt{x}$.
- (ii) Is $f : \mathcal{N} \to \mathcal{R}$ a function, where $f(x) = \sqrt{x}$.
- (iii) Is $g: \mathcal{N} \to \mathcal{N}$ a function, where

$$g(x) = x$$
, if $x \le 5$
= 10 - x, if $5 \le x \le 10$
= x, if $x \ge 11$

Note

Examples

- (i) Is $f: \mathcal{N} \to \mathcal{N}$ a function, where $f(x) = \sqrt{x}$.
- (ii) Is $f : \mathcal{N} \to \mathcal{R}$ a function, where $f(x) = \sqrt{x}$.
- (iii) Is $g: \mathcal{N} \to \mathcal{N}$ a function, where

$$g(x) = x$$
, if $x \le 5$
= 10 - x, if $5 \le x \le 10$
= x, if $x \ge 11$

Note

Functions can be defined on more than one variable.

Examples

- (i) Is $f: \mathcal{N} \to \mathcal{N}$ a function, where $f(x) = \sqrt{x}$.
- (ii) Is $f: \mathcal{N} \to \mathcal{R}$ a function, where $f(x) = \sqrt{x}$.
- (iii) Is $g: \mathcal{N} \to \mathcal{N}$ a function, where

$$g(x) = x$$
, if $x \le 5$
= 10 - x, if $5 \le x \le 10$
= x, if $x \ge 11$

Note

Functions can be defined on more than one variable.

For instance, $f(x, y) = x^2 + y^2$ is a function from $\mathcal{N} \times \mathcal{N} \to \mathcal{N}$.

Fundamentals
Order of magnitude of functions

tale

Properties of Functions Composition of Functions Inverse Functions Equivalent Sets

Function Fundamentals

als

Properties of Functions Composition of Functions Inverse Functions Equivalent Sets

Function Fundamentals

Definition

Function Fundamentals

Definition

Function Fundamentals

Definition

Two functions f and g are said to be equal, if,

they have the same domain,

Function Fundamentals

Definition

- they have the same domain,
- 2 the same co-domain,

Function Fundamentals

Definition

- they have the same domain,
- 2 the same co-domain, and,

Function Fundamentals

Definition

- they have the same domain,
- 2 the same co-domain, and,
- the same association of values in the co-domain with values in the domain.

Function Fundamentals

Definition

Two functions f and g are said to be equal, if,

- they have the same domain,
- 2 the same co-domain, and,
- the same association of values in the co-domain with values in the domain.

Function Fundamentals

Definition

Two functions f and g are said to be equal, if,

- they have the same domain,
- 2 the same co-domain, and,
- the same association of values in the co-domain with values in the domain.

Let
$$S = \{1, 2, 3\}$$
 and let $T = \{1, 4, 9\}$.

Function Fundamentals

Definition

Two functions f and g are said to be equal, if,

- they have the same domain,
- 2 the same co-domain, and,
- the same association of values in the co-domain with values in the domain.

Example

Let
$$S = \{1, 2, 3\}$$
 and let $T = \{1, 4, 9\}$.

Let $f: S \to T$ be defined as follows:

Definition

Two functions f and g are said to be equal, if,

- they have the same domain,
- 2 the same co-domain, and,
- the same association of values in the co-domain with values in the domain.

Let
$$S = \{1, 2, 3\}$$
 and let $T = \{1, 4, 9\}$.

Let
$$f: S \to T$$
 be defined as follows: $f = \{(1, 1), (2, 4), (3, 9)\}.$

Definition

Two functions f and g are said to be equal, if,

- they have the same domain,
- 2 the same co-domain, and,
- the same association of values in the co-domain with values in the domain.

Example

Let $S = \{1, 2, 3\}$ and let $T = \{1, 4, 9\}$.

Let $f: S \to T$ be defined as follows: $f = \{(1, 1), (2, 4), (3, 9)\}.$

The function $g: S \to T$ is defined as follows:

Definition

Two functions f and g are said to be equal, if,

- they have the same domain,
- 2 the same co-domain, and,
- the same association of values in the co-domain with values in the domain.

Example

Let $S = \{1, 2, 3\}$ and let $T = \{1, 4, 9\}$.

Let $f: S \to T$ be defined as follows: $f = \{(1, 1), (2, 4), (3, 9)\}.$

The function $g: S \to T$ is defined as follows:

$$g(n) = \frac{\sum_{k=1}^{n} (4 \cdot k - 2)}{2}$$

Definition

Two functions f and g are said to be equal, if,

- they have the same domain,
- 2 the same co-domain, and,
- the same association of values in the co-domain with values in the domain.

Example

Let $S = \{1, 2, 3\}$ and let $T = \{1, 4, 9\}$.

Let $f: S \to T$ be defined as follows: $f = \{(1, 1), (2, 4), (3, 9)\}.$

The function $g: S \to T$ is defined as follows:

$$g(n) = \frac{\sum_{k=1}^{n} (4 \cdot k - 2)}{2}$$

Is
$$f = g$$
?

Definition
Properties of Functions
Composition of Function
Inverse Functions
Equivalent Sets

Outline

- Fundamentals
 - Definition
 - Properties of Functions
 - Composition of Functions
 - Inverse Functions
 - Equivalent Sets
- Order of magnitude of functions

Fundamentals
Order of magnitude of functions

Definition
Properties of Functions
Composition of Functions
Inverse Functions
Equivalent Sets

Onto functions

Definition

Definition

Let $f: S \to T$ denote an arbitrary function.

Definition

Let $f: S \to T$ denote an arbitrary function.

Let
$$R = \{t \mid t \in T \text{ and } t = f(s), \text{ for some } s \in S\},$$

Definition

Let $f: S \to T$ denote an arbitrary function.

Let
$$R = \{t \mid t \in T \text{ and } t = f(s), \text{ for some } s \in S\}$$
, i.e., $R = f(S)$.

Definition

Let $f: S \to T$ denote an arbitrary function.

Let $R = \{t \mid t \in T \text{ and } t = f(s), \text{ for some } s \in S\}$, i.e., R = f(S).

R is called the range of *f*; clearly $R \subseteq T$.

Definition

Let $f: S \to T$ denote an arbitrary function.

Let $R = \{t \mid t \in T \text{ and } t = f(s), \text{ for some } s \in S\}$, i.e., R = f(S).

R is called the range of *f*; clearly $R \subseteq T$.

If R = T, then f is called an **onto** (or **surjective**) function.

Definition

Let $f: S \to T$ denote an arbitrary function.

Let $R = \{t \mid t \in T \text{ and } t = f(s), \text{ for some } s \in S\}$, i.e., R = f(S).

R is called the range of *f*; clearly $R \subseteq T$.

If R = T, then f is called an **onto** (or **surjective**) function.

Definition

Let $f: S \to T$ denote an arbitrary function.

Let $R = \{t \mid t \in T \text{ and } t = f(s), \text{ for some } s \in S\}$, i.e., R = f(S).

R is called the range of *f*; clearly $R \subseteq T$.

If R = T, then f is called an **onto** (or **surjective**) function.

Example

(i) Is $f: \Re_{\geq 0} \to \Re$ defined as $f(x) = \sqrt{x}$ surjective?

Definition

Let $f: S \to T$ denote an arbitrary function.

Let $R = \{t \mid t \in T \text{ and } t = f(s), \text{ for some } s \in S\}$, i.e., R = f(S).

R is called the range of *f*; clearly $R \subseteq T$.

If R = T, then f is called an **onto** (or **surjective**) function.

- (i) Is $f: \Re_{>0} \to \Re$ defined as $f(x) = \sqrt{x}$ surjective?
- (ii) Is $f: \Re_{\geq 0} \to \Re_{\geq 0}$ defined as $f(x) = \sqrt{x}$ surjective?

Definition

Let $f: S \to T$ denote an arbitrary function.

Let $R = \{t \mid t \in T \text{ and } t = f(s), \text{ for some } s \in S\}$, i.e., R = f(S).

R is called the range of f; clearly $R \subseteq T$.

If R = T, then f is called an **onto** (or **surjective**) function.

- (i) Is $f: \Re_{>0} \to \Re$ defined as $f(x) = \sqrt{x}$ surjective?
- (ii) Is $f: \Re_{>0} \to \Re_{>0}$ defined as $f(x) = \sqrt{x}$ surjective?
- (iii) Is $f: \Re \to \Re$ defined as $f(x) = x^2$ surjective?

Definition

Let $f: S \to T$ denote an arbitrary function.

Let $R = \{t \mid t \in T \text{ and } t = f(s), \text{ for some } s \in S\}$, i.e., R = f(S).

R is called the range of *f*; clearly $R \subseteq T$.

If R = T, then f is called an **onto** (or **surjective**) function.

- (i) Is $f: \Re_{>0} \to \Re$ defined as $f(x) = \sqrt{x}$ surjective?
- (ii) Is $f: \Re_{\geq 0} \to \Re_{\geq 0}$ defined as $f(x) = \sqrt{x}$ surjective?
- (iii) Is $f: \Re \to \Re$ defined as $f(x) = x^2$ surjective?
- (iv) Is $f: \Re \to \Re$ defined as $f(x) = x^3$ surjective?

Definition
Properties of Functions
Composition of Function
Inverse Functions
Equivalent Sets

Surjective Functions (contd.)

Definition
Properties of Functions
Composition of Function
Inverse Functions
Equivalent Sets

Surjective Functions (contd.)

Note

Surjective Functions (contd.)

Note

In order to show that a function $f: S \to T$ is surjective,

Surjective Functions (contd.)

Note

In order to show that a function $f:S\to T$ is surjective,

(i) Pick an arbitrary element $t \in T$.

Surjective Functions (contd.)

Note

In order to show that a function $f:S\to T$ is surjective,

- (i) Pick an arbitrary element t ∈ T.
- (ii) Show that there exists some $s \in S$, such that f(s) = t.

Fundamentals
Order of magnitude of functions

Definition
Properties of Functions
Composition of Functions
Inverse Functions
Equivalent Sets

One-one functions

Definition Properties of Functions Composition of Function Inverse Functions Equivalent Sets

One-one functions

Definition

efinition roperties of Functions omposition of Function overse Functions quivalent Sets

One-one functions

Definition

A function $f: S \rightarrow T$ is said to be **one-one** or **injective**,

Definition
Properties of Functions
Composition of Functions
Inverse Functions
Equivalent Sets

One-one functions

Definition

A function $f: S \to T$ is said to be **one-one** or **injective**, if distinct elements in S have distinct images in T.

Definition

A function $f: S \to T$ is said to be **one-one** or **injective**, if distinct elements in S have distinct images in T.

Definition

A function $f: S \to T$ is said to be **one-one** or **injective**, if distinct elements in S have distinct images in T.

Example

(i) Is $f: \Re \to \Re$ defined as $f(x) = x^2$ injective?

Definition

A function $f: S \to T$ is said to be **one-one** or **injective**, if distinct elements in S have distinct images in T.

- (i) Is $f: \Re \to \Re$ defined as $f(x) = x^2$ injective?
- (ii) Is $f: \Re \to \Re$ defined as $f(x) = x^3$ injective?

Definition

A function $f: S \to T$ is said to be **one-one** or **injective**, if distinct elements in S have distinct images in T.

Example

- (i) Is $f: \Re \to \Re$ defined as $f(x) = x^2$ injective?
- (ii) Is $f: \Re \to \Re$ defined as $f(x) = x^3$ injective?

Note

Definition

A function $f: S \to T$ is said to be **one-one** or **injective**, if distinct elements in S have distinct images in T.

Example

- (i) Is $f: \Re \to \Re$ defined as $f(x) = x^2$ injective?
- (ii) Is $f: \Re \to \Re$ defined as $f(x) = x^3$ injective?

Note

In order to show that a function $f: S \to T$ is injective,

Definition

A function $f: S \to T$ is said to be **one-one** or **injective**, if distinct elements in S have distinct images in T.

Example

- (i) Is $f: \Re \to \Re$ defined as $f(x) = x^2$ injective?
- (ii) Is $f: \Re \to \Re$ defined as $f(x) = x^3$ injective?

Note

In order to show that a function $f: S \to T$ is injective,

(i) Show that for arbitrarily chosen $a, b \in S$, $a \neq b \rightarrow f(a) \neq f(b)$.

Definition

A function $f: S \to T$ is said to be **one-one** or **injective**, if distinct elements in S have distinct images in T.

Example

- (i) Is $f: \Re \to \Re$ defined as $f(x) = x^2$ injective?
- (ii) Is $f: \Re \to \Re$ defined as $f(x) = x^3$ injective?

Note

In order to show that a function $f: S \to T$ is injective,

- (i) Show that for arbitrarily chosen $a, b \in S$, $a \neq b \rightarrow f(a) \neq f(b)$.
- (ii) Alternatively, show that for arbitrarily chosen $f(a), f(b) \in T$, $f(a) = f(b) \rightarrow a = b$.

Fundamentals
Order of magnitude of functions

Definition
Properties of Functions
Composition of Functions
Inverse Functions
Equivalent Sets

Bijections

efinition troperties of Functions composition of Function everse Functions quivalent Sets

Bijections

Definition

Definition Properties of Functions Composition of Functions Inverse Functions Equivalent Sets

Bijections

Definition

A function $f: S \to T$ is said to be **bijective**,

Definition
Properties of Functions
Composition of Function
Inverse Functions
Equivalent Sets

Bijections

Definition

A function $f: S \to T$ is said to be **bijective**, if it is both injective and surjective.

Bijections

Definition

A function $f: S \to T$ is said to be **bijective**, if it is both injective and surjective.

Example

Bijections

Definition

A function $f: S \to T$ is said to be **bijective**, if it is both injective and surjective.

Example

(i) Is $f: \Re \to \Re$ defined as $f(x) = x^2$ bijective?

Bijections

Definition

A function $f: S \to T$ is said to be **bijective**, if it is both injective and surjective.

Example

- (i) Is $f: \Re \to \Re$ defined as $f(x) = x^2$ bijective?
- (ii) Is $f: \Re \to \Re$ defined as $f(x) = x^3$ bijective?

Definition
Properties of Functions
Composition of Functions
Inverse Functions
Equivalent Sets

Outline

- Fundamentals
 - Definition
 - Properties of Functions
 - Composition of Functions
 - Inverse Functions
 - Equivalent Sets
- Order of magnitude of functions

efinition
coperties of Functions
copposition of Functions
verse Functions
quivalent Sets

Function composition

efinition operties of Functions omposition of Functions verse Functions quivalent Sets

Function composition

Definition

Definition

Let $f: S \to T$ and $g: T \to U$ denote two functions.

Definition

Let $f: S \to T$ and $g: T \to U$ denote two functions.

Then, the composition function, $g \circ f$ is a function from S to U defined as $(g \circ f)(s) = g(f(s))$.

Definition

Let $f: S \to T$ and $g: T \to U$ denote two functions.

Then, the composition function, $g \circ f$ is a function from S to U defined as $(g \circ f)(s) = g(f(s))$.

Note

Arbitrary functions cannot be composed.

Definition

Let $f: S \to T$ and $g: T \to U$ denote two functions.

Then, the composition function, $g \circ f$ is a function from S to U defined as $(g \circ f)(s) = g(f(s))$.

Note

Arbitrary functions cannot be composed.

The domains and ranges have to be compatible.

Definition

Let $f: S \to T$ and $g: T \to U$ denote two functions.

Then, the composition function, $g \circ f$ is a function from S to U defined as $(g \circ f)(s) = g(f(s))$.

Note

Arbitrary functions cannot be composed.

The domains and ranges have to be compatible.

Example

Let $f: \Re \to \Re$ be defined by $f(x) = x^2$ and $g: \Re \to \Re$ be defined by $g(x) = \lfloor x \rfloor$.

Definition

Let $f: S \to T$ and $g: T \to U$ denote two functions.

Then, the composition function, $g \circ f$ is a function from S to U defined as $(g \circ f)(s) = g(f(s))$.

Note

Arbitrary functions cannot be composed.

The domains and ranges have to be compatible.

Example

Definition

Let $f: S \to T$ and $g: T \to U$ denote two functions.

Then, the composition function, $g \circ f$ is a function from S to U defined as $(g \circ f)(s) = g(f(s))$.

Note

Arbitrary functions cannot be composed.

The domains and ranges have to be compatible.

Example

Let $f: \Re \to \Re$ be defined by $f(x) = x^2$ and $g: \Re \to \Re$ be defined by $g(x) = \lfloor x \rfloor$. Compute $(g \circ f)(2.3)$ and $(f \circ g)(2.3)$.

Solution: $(g \circ f)(2.3) =$

Definition

Let $f: S \to T$ and $g: T \to U$ denote two functions.

Then, the composition function, $g \circ f$ is a function from S to U defined as $(g \circ f)(s) = g(f(s))$.

Note

Arbitrary functions cannot be composed.

The domains and ranges have to be compatible.

Example

Let $f: \Re \to \Re$ be defined by $f(x) = x^2$ and $g: \Re \to \Re$ be defined by $g(x) = \lfloor x \rfloor$. Compute $(g \circ f)(2.3)$ and $(f \circ g)(2.3)$.

Solution: $(g \circ f)(2.3) = g(f(2.3)) =$

Definition

Let $f: S \to T$ and $g: T \to U$ denote two functions.

Then, the composition function, $g \circ f$ is a function from S to U defined as $(g \circ f)(s) = g(f(s))$.

Note

Arbitrary functions cannot be composed.

The domains and ranges have to be compatible.

Example

Let $f: \Re \to \Re$ be defined by $f(x) = x^2$ and $g: \Re \to \Re$ be defined by $g(x) = \lfloor x \rfloor$. Compute $(g \circ f)(2.3)$ and $(f \circ g)(2.3)$.

Solution: $(g \circ f)(2.3) = g(f(2.3)) = g(5.29) =$

Definition

Let $f: S \to T$ and $g: T \to U$ denote two functions.

Then, the composition function, $g \circ f$ is a function from S to U defined as $(g \circ f)(s) = g(f(s))$.

Note

Arbitrary functions cannot be composed.

The domains and ranges have to be compatible.

Example

Let $f: \Re \to \Re$ be defined by $f(x) = x^2$ and $g: \Re \to \Re$ be defined by $g(x) = \lfloor x \rfloor$. Compute $(g \circ f)(2.3)$ and $(f \circ g)(2.3)$.

Solution: $(g \circ f)(2.3) = g(f(2.3)) = g(5.29) = \lfloor 5.29 \rfloor = 0$

Definition

Let $f: S \to T$ and $g: T \to U$ denote two functions.

Then, the composition function, $g \circ f$ is a function from S to U defined as $(g \circ f)(s) = g(f(s))$.

Note

Arbitrary functions cannot be composed.

The domains and ranges have to be compatible.

Example

Let $f: \Re \to \Re$ be defined by $f(x) = x^2$ and $g: \Re \to \Re$ be defined by $g(x) = \lfloor x \rfloor$. Compute $(g \circ f)(2.3)$ and $(f \circ g)(2.3)$.

Solution: $(g \circ f)(2.3) = g(f(2.3)) = g(5.29) = \lfloor 5.29 \rfloor = 5.$

Definition

Let $f: S \to T$ and $g: T \to U$ denote two functions.

Then, the composition function, $g \circ f$ is a function from S to U defined as $(g \circ f)(s) = g(f(s))$.

Note

Arbitrary functions cannot be composed.

The domains and ranges have to be compatible.

Example

Solution:
$$(g \circ f)(2.3) = g(f(2.3)) = g(5.29) = \lfloor 5.29 \rfloor = 5.$$
 $(f \circ g)(2.3) =$

Definition

Let $f: S \to T$ and $g: T \to U$ denote two functions.

Then, the composition function, $g \circ f$ is a function from S to U defined as $(g \circ f)(s) = g(f(s))$.

Note

Arbitrary functions cannot be composed.

The domains and ranges have to be compatible.

Example

Solution:
$$(g \circ f)(2.3) = g(f(2.3)) = g(5.29) = \lfloor 5.29 \rfloor = 5.$$

 $(f \circ g)(2.3) = f(g(2.3)) =$

Definition

Let $f: S \to T$ and $g: T \to U$ denote two functions.

Then, the composition function, $g \circ f$ is a function from S to U defined as $(g \circ f)(s) = g(f(s))$.

Note

Arbitrary functions cannot be composed.

The domains and ranges have to be compatible.

Example

Solution:
$$(g \circ f)(2.3) = g(f(2.3)) = g(5.29) = \lfloor 5.29 \rfloor = 5.$$

 $(f \circ g)(2.3) = f(g(2.3)) = f(\lfloor 2.3 \rfloor) =$

Definition

Let $f: S \to T$ and $g: T \to U$ denote two functions.

Then, the composition function, $g \circ f$ is a function from S to U defined as $(g \circ f)(s) = g(f(s))$.

Note

Arbitrary functions cannot be composed.

The domains and ranges have to be compatible.

Example

Solution:
$$(g \circ f)(2.3) = g(f(2.3)) = g(5.29) = \lfloor 5.29 \rfloor = 5.$$
 $(f \circ g)(2.3) = f(g(2.3)) = f(\lfloor 2.3 \rfloor) = f(2) = f(2)$

Definition

Let $f: S \to T$ and $g: T \to U$ denote two functions.

Then, the composition function, $g \circ f$ is a function from S to U defined as $(g \circ f)(s) = g(f(s))$.

Note

Arbitrary functions cannot be composed.

The domains and ranges have to be compatible.

Example

Solution:
$$(g \circ f)(2.3) = g(f(2.3)) = g(5.29) = \lfloor 5.29 \rfloor = 5.$$
 $(f \circ g)(2.3) = f(g(2.3)) = f(\lfloor 2.3 \rfloor) = f(2) = 2^2 = 2^2$

Definition

Let $f: S \to T$ and $g: T \to U$ denote two functions.

Then, the composition function, $g \circ f$ is a function from S to U defined as $(g \circ f)(s) = g(f(s))$.

Note

Arbitrary functions cannot be composed.

The domains and ranges have to be compatible.

Example

Solution:
$$(g \circ f)(2.3) = g(f(2.3)) = g(5.29) = \lfloor 5.29 \rfloor = 5.$$
 $(f \circ g)(2.3) = f(g(2.3)) = f(\lfloor 2.3 \rfloor) = f(2) = 2^2 = 4.$

efinition roperties of Functions omposition of Functions werse Functions quivalent Sets

Function composition (contd.)

Lemma

Lemma

The composition of two injective functions is injective.

Lemma

The composition of two injective functions is injective.

Proof.

Lemma

The composition of two injective functions is injective.

Proof.

Let $f: S \to T$ and $g: T \to U$ denote two injective functions.

Lemma

The composition of two injective functions is injective.

Proof.

Let $f: S \to T$ and $g: T \to U$ denote two injective functions.

Let $s_1, s_2 \in S$.

Lemma

The composition of two injective functions is injective.

Proof.

Let $f: S \to T$ and $g: T \to U$ denote two injective functions.

Let $s_1, s_2 \in S$.

We need to show that if

Lemma

The composition of two injective functions is injective.

Proof.

Let $f: S \to T$ and $g: T \to U$ denote two injective functions.

Let $s_1, s_2 \in S$.

We need to show that if $(g \circ f)(s_1) = (g \circ f)(s_2)$, then $s_1 = s_2$.

Lemma

The composition of two injective functions is injective.

Proof.

Let $f: S \to T$ and $g: T \to U$ denote two injective functions.

Let $s_1, s_2 \in S$.

We need to show that if $(g \circ f)(s_1) = (g \circ f)(s_2)$, then $s_1 = s_2$.

Lemma

The composition of two injective functions is injective.

Proof.

Let $f: S \to T$ and $g: T \to U$ denote two injective functions.

Let $s_1, s_2 \in S$.

We need to show that if $(g \circ f)(s_1) = (g \circ f)(s_2)$, then $s_1 = s_2$.

$$(g \circ f)(s_1) = (g \circ f)(s_2)$$

Lemma

The composition of two injective functions is injective.

Proof.

Let $f: S \to T$ and $g: T \to U$ denote two injective functions.

Let $s_1, s_2 \in S$.

We need to show that if $(g \circ f)(s_1) = (g \circ f)(s_2)$, then $s_1 = s_2$.

$$(g \circ f)(s_1) = (g \circ f)(s_2)$$

 $\Rightarrow g(f(s_1)) = g(f(s_2))$

Lemma

The composition of two injective functions is injective.

Proof.

Let $f: S \to T$ and $g: T \to U$ denote two injective functions.

Let $s_1, s_2 \in S$.

We need to show that if $(g \circ f)(s_1) = (g \circ f)(s_2)$, then $s_1 = s_2$.

$$(g \circ f)(s_1) = (g \circ f)(s_2)$$

 $\Rightarrow g(f(s_1)) = g(f(s_2))$
 $\Rightarrow f(s_1) = f(s_2)$, since g is injective

Lemma

The composition of two injective functions is injective.

Proof.

Let $f: S \to T$ and $g: T \to U$ denote two injective functions.

Let $s_1, s_2 \in S$.

We need to show that if $(g \circ f)(s_1) = (g \circ f)(s_2)$, then $s_1 = s_2$.

As per the hypothesis,

$$(g \circ f)(s_1) = (g \circ f)(s_2)$$

 $\Rightarrow g(f(s_1)) = g(f(s_2))$
 $\Rightarrow f(s_1) = f(s_2)$, since g is injective
 $\Rightarrow s_1 = s_2$, since f is injective

Lemma

The composition of two injective functions is injective.

Proof.

Let $f: S \to T$ and $g: T \to U$ denote two injective functions.

Let $s_1, s_2 \in S$.

We need to show that if $(g \circ f)(s_1) = (g \circ f)(s_2)$, then $s_1 = s_2$.

As per the hypothesis,

$$\begin{array}{rcl} (g \circ f)(s_1) & = & (g \circ f)(s_2) \\ \Rightarrow g(f(s_1)) & = & g(f(s_2)) \\ \Rightarrow f(s_1) & = & f(s_2), \text{ since } g \text{ is injective} \\ \Rightarrow s_1 & = & s_2, \text{ since } f \text{ is injective} \\ \Rightarrow (g \circ f) & \text{is injective} \end{array}$$

efinition roperties of Functions omposition of Functions werse Functions quivalent Sets

Function composition (contd.)

efinition roperties of Functions omposition of Functions werse Functions quivalent Sets

Function composition (contd.)

Lemma

Lemma

The composition of two surjective function is surjective.

Lemma

The composition of two surjective function is surjective.

Proof.

Lemma

The composition of two surjective function is surjective.

Proof.

Let $f: S \to T$ and $g: T \to U$ denote two onto functions.

Lemma

The composition of two surjective function is surjective.

Proof.

Let $f: S \to T$ and $g: T \to U$ denote two onto functions.

Consider the composition $(g \circ f) : S \to U$.

Lemma

The composition of two surjective function is surjective.

Proof.

Let $f: S \to T$ and $g: T \to U$ denote two onto functions.

Consider the composition $(g \circ f) : S \to U$.

Pick an arbitrary element $u \in U$.

Lemma

The composition of two surjective function is surjective.

Proof.

Let $f: S \to T$ and $g: T \to U$ denote two onto functions.

Consider the composition $(g \circ f) : S \to U$.

Pick an arbitrary element $u \in U$.

Since g is surjective,

Lemma

The composition of two surjective function is surjective.

Proof.

Let $f: S \to T$ and $g: T \to U$ denote two onto functions.

Consider the composition $(g \circ f) : S \to U$.

Pick an arbitrary element $u \in U$.

Since g is surjective, there exists a $t \in T$, such that g(t) = u.

Lemma

The composition of two surjective function is surjective.

Proof.

Let $f: S \to T$ and $g: T \to U$ denote two onto functions.

Consider the composition $(g \circ f) : S \to U$.

Pick an arbitrary element $u \in U$.

Since g is surjective, there exists a $t \in T$, such that g(t) = u.

Since f is surjective, there exists an $s \in S$, such that f(s) = t.

Lemma

The composition of two surjective function is surjective.

Proof.

Let $f: S \to T$ and $g: T \to U$ denote two onto functions.

Consider the composition $(g \circ f) : S \to U$.

Pick an arbitrary element $u \in U$.

Since g is surjective, there exists a $t \in T$, such that g(t) = u.

Since f is surjective, there exists an $s \in S$, such that f(s) = t.

In other words, $(g \circ f)(s) = u$.

Lemma

The composition of two surjective function is surjective.

Proof.

Let $f: S \to T$ and $g: T \to U$ denote two onto functions.

Consider the composition $(g \circ f) : S \to U$.

Pick an arbitrary element $u \in U$.

Since g is surjective, there exists a $t \in T$, such that g(t) = u.

Since f is surjective, there exists an $s \in S$, such that f(s) = t.

In other words, $(g \circ f)(s) = u$.

Since u was arbitrarily chosen, it follows that $(g \circ f)$ is surjective.

Lemma

The composition of two surjective function is surjective.

Proof.

Let $f: S \to T$ and $g: T \to U$ denote two onto functions.

Consider the composition $(g \circ f) : S \to U$.

Pick an arbitrary element $u \in U$.

Since g is surjective, there exists a $t \in T$, such that g(t) = u.

Since f is surjective, there exists an $s \in S$, such that f(s) = t.

In other words, $(g \circ f)(s) = u$.

Since u was arbitrarily chosen, it follows that $(g \circ f)$ is surjective.

Theorem

Lemma

The composition of two surjective function is surjective.

Proof.

Let $f: S \to T$ and $g: T \to U$ denote two onto functions.

Consider the composition $(g \circ f) : S \to U$.

Pick an arbitrary element $u \in U$.

Since g is surjective, there exists a $t \in T$, such that g(t) = u.

Since f is surjective, there exists an $s \in S$, such that f(s) = t.

In other words, $(g \circ f)(s) = u$.

Since u was arbitrarily chosen, it follows that $(g \circ f)$ is surjective.

Theorem

The composition of two bijective functions is a bijective function.

Definition
Properties of Functions
Composition of Functions
Inverse Functions
Equivalent Sets

Outline

- Fundamentals
 - Definition
 - Properties of Functions
 - Composition of Functions
 - Inverse Functions
 - Equivalent Sets
- Order of magnitude of functions

Fundamentals
Order of magnitude of functions

efinition roperties of Functions omposition of Functions werse Functions quivalent Sets

Inverse functions

efinition roperties of Functions omposition of Functions verse Functions quivalent Sets

Inverse functions

Definition

Definition
Properties of Functions
Composition of Functions
Inverse Functions
Equivalent Sets

Inverse functions

Definition

The function $i_S:S\to S$ which maps each element of S to itself,

Definition
Properties of Functions
Composition of Functions
Inverse Functions
Equivalent Sets

Inverse functions

Definition

The function $i_S: S \to S$ which maps each element of S to itself, is called the identity function on S.

Definition

The function $i_S: S \to S$ which maps each element of S to itself, is called the identity function on S.

Observation

Definition

The function $i_S: S \to S$ which maps each element of S to itself, is called the identity function on S.

Observation

Let $f: S \to T$ denote a bijection.

Definition

The function $i_S: S \to S$ which maps each element of S to itself, is called the identity function on S.

Observation

Let $f: S \to T$ denote a bijection.

Since f is onto, corresponding to every element $t \in T$, there is some element $s \in S$, such that f(s) = t.

Definition

The function $i_S: S \to S$ which maps each element of S to itself, is called the identity function on S.

Observation

Let $f: S \to T$ denote a bijection.

Since f is onto, corresponding to every element $t \in T$, there is some element $s \in S$, such that f(s) = t.

Since f is injective, there is only one s such that f(s) = t.

Definition
Properties of Functions
Composition of Functions
Inverse Functions
Equivalent Sets

Inverse functions

Definition

The function $i_S: S \to S$ which maps each element of S to itself, is called the identity function on S.

Observation

Let $f: S \to T$ denote a bijection.

Since f is onto, corresponding to every element $t \in T$, there is some element $s \in S$, such that f(s) = t.

Since f is injective, there is only one s such that f(s) = t.

But this could be construed as the existence of a function $g: T \to S$, i.e., g(t) = s.

Definition

The function $i_S: S \to S$ which maps each element of S to itself, is called the identity function on S.

Observation

Let $f: S \to T$ denote a bijection.

Since f is onto, corresponding to every element $t \in T$, there is some element $s \in S$, such that f(s) = t.

Since f is injective, there is only one s such that f(s) = t.

But this could be construed as the existence of a function $g: T \to S$, i.e., g(t) = s.

Definition

The function $i_S: S \to S$ which maps each element of S to itself, is called the identity function on S.

Observation

Let $f: S \to T$ denote a bijection.

Since f is onto, corresponding to every element $t \in T$, there is some element $s \in S$, such that f(s) = t.

Since f is injective, there is only one s such that f(s) = t.

But this could be construed as the existence of a function $g: T \to S$, i.e., g(t) = s.

Note that g is also a bijective function!

Observe that

Definition

The function $i_S: S \to S$ which maps each element of S to itself, is called the identity function on S.

Observation

Let $f: S \to T$ denote a bijection.

Since f is onto, corresponding to every element $t \in T$, there is some element $s \in S$, such that f(s) = t.

Since f is injective, there is only one s such that f(s) = t.

But this could be construed as the existence of a function $g: T \to S$, i.e., g(t) = s.

Observe that
$$(g \circ f)(s) =$$

Definition

The function $i_S: S \to S$ which maps each element of S to itself, is called the identity function on S.

Observation

Let $f: S \to T$ denote a bijection.

Since f is onto, corresponding to every element $t \in T$, there is some element $s \in S$, such that f(s) = t.

Since f is injective, there is only one s such that f(s) = t.

But this could be construed as the existence of a function $g: T \to S$, i.e., g(t) = s.

Observe that
$$(g \circ f)(s) = g(f(s)) =$$

Definition

The function $i_S: S \to S$ which maps each element of S to itself, is called the identity function on S.

Observation

Let $f: S \to T$ denote a bijection.

Since f is onto, corresponding to every element $t \in T$, there is some element $s \in S$, such that f(s) = t.

Since f is injective, there is only one s such that f(s) = t.

But this could be construed as the existence of a function $g: T \to S$, i.e., g(t) = s.

Observe that
$$(g \circ f)(s) = g(f(s)) = g(t) =$$

Definition

The function $i_S: S \to S$ which maps each element of S to itself, is called the identity function on S.

Observation

Let $f: S \to T$ denote a bijection.

Since f is onto, corresponding to every element $t \in T$, there is some element $s \in S$, such that f(s) = t.

Since f is injective, there is only one s such that f(s) = t.

But this could be construed as the existence of a function $g: T \to S$, i.e., g(t) = s.

Observe that
$$(g \circ f)(s) = g(f(s)) = g(t) = s$$
, i.e.,

Definition
Properties of Functions
Composition of Functions
Inverse Functions
Equivalent Sets

Inverse functions

Definition

The function $i_S: S \to S$ which maps each element of S to itself, is called the identity function on S.

Observation

Let $f: S \to T$ denote a bijection.

Since f is onto, corresponding to every element $t \in T$, there is some element $s \in S$, such that f(s) = t.

Since f is injective, there is only one s such that f(s) = t.

But this could be construed as the existence of a function $g: T \to S$, i.e., g(t) = s.

Observe that
$$(g \circ f)(s) = g(f(s)) = g(t) = s$$
, i.e., $(g \circ f) = s$

Definition

The function $i_S: S \to S$ which maps each element of S to itself, is called the identity function on S.

Observation

Let $f: S \to T$ denote a bijection.

Since f is onto, corresponding to every element $t \in T$, there is some element $s \in S$, such that f(s) = t.

Since f is injective, there is only one s such that f(s) = t.

But this could be construed as the existence of a function $g: T \to S$, i.e., g(t) = s.

Observe that
$$(g \circ f)(s) = g(f(s)) = g(t) = s$$
, i.e., $(g \circ f) = i_S$.

Definition

The function $i_S: S \to S$ which maps each element of S to itself, is called the identity function on S.

Observation

Let $f: S \to T$ denote a bijection.

Since f is onto, corresponding to every element $t \in T$, there is some element $s \in S$, such that f(s) = t.

Since f is injective, there is only one s such that f(s) = t.

But this could be construed as the existence of a function $g: T \to S$, i.e., g(t) = s.

Note that g is also a bijective function!

Observe that $(g \circ f)(s) = g(f(s)) = g(t) = s$, i.e., $(g \circ f) = i_S$.

Similarly,

Definition

The function $i_S: S \to S$ which maps each element of S to itself, is called the identity function on S.

Observation

Let $f: S \to T$ denote a bijection.

Since f is onto, corresponding to every element $t \in T$, there is some element $s \in S$, such that f(s) = t.

Since f is injective, there is only one s such that f(s) = t.

But this could be construed as the existence of a function $g: T \to S$, i.e., g(t) = s.

Note that g is also a bijective function!

Observe that $(g \circ f)(s) = g(f(s)) = g(t) = s$, i.e., $(g \circ f) = i_S$.

Similarly, $(f \circ g) =$

Inverse functions

Definition

The function $i_S: S \to S$ which maps each element of S to itself, is called the identity function on S.

Observation

Let $f: S \to T$ denote a bijection.

Since f is onto, corresponding to every element $t \in T$, there is some element $s \in S$, such that f(s) = t.

Since f is injective, there is only one s such that f(s) = t.

But this could be construed as the existence of a function $g: T \to S$, i.e., g(t) = s.

Note that g is also a bijective function!

Observe that $(g \circ f)(s) = g(f(s)) = g(t) = s$, i.e., $(g \circ f) = i_S$.

Similarly, $(f \circ g) = i_T$.

efinition roperties of Functions omposition of Functions werse Functions quivalent Sets

Inverse functions (contd.)

Definition

Definition
Properties of Functions
Composition of Functions
Inverse Functions
Equivalent Sets

Inverse functions (contd.)

Definition

Let $f: S \to T$ denote a function.

Definition
Properties of Functions
Composition of Function
Inverse Functions
Equivalent Sets

Inverse functions (contd.)

Definition

Let $f: S \to T$ denote a function.

If there exists a function $g: \mathcal{T} \to \mathcal{S}$, such that $(g \circ f) = i_{\mathcal{S}}$

Definition

Let $f: S \to T$ denote a function.

If there exists a function $g: T \to S$, such that $(g \circ f) = i_S$ and $(f \circ g) = i_T$,

Definition
Properties of Functions
Composition of Functions
Inverse Functions
Equivalent Sets

Inverse functions (contd.)

Definition

Let $f: S \to T$ denote a function.

If there exists a function $g: T \to S$, such that $(g \circ f) = i_S$ and $(f \circ g) = i_T$, then g is called the inverse function of f and is denoted by f^{-1} .

Definition

Let $f: S \to T$ denote a function.

If there exists a function $g: T \to S$, such that $(g \circ f) = i_S$ and $(f \circ g) = i_T$, then g is called the inverse function of f and is denoted by f^{-1} .

Example

Definition

Let $f: S \to T$ denote a function.

If there exists a function $g: T \to S$, such that $(g \circ f) = i_S$ and $(f \circ g) = i_T$, then g is called the inverse function of f and is denoted by f^{-1} .

Example

Find the inverse of $f: \Re \to \Re$ defined as $f(x) = 3 \cdot x + 4$.

Definition
Properties of Functions
Composition of Functions
Inverse Functions
Equivalent Sets

Inverse functions (contd.)

Definition

Let $f: S \to T$ denote a function.

If there exists a function $g: T \to S$, such that $(g \circ f) = i_S$ and $(f \circ g) = i_T$, then g is called the inverse function of f and is denoted by f^{-1} .

Example

Find the inverse of $f: \Re \to \Re$ defined as $f(x) = 3 \cdot x + 4$.

Theorem

Definition

Let $f: S \to T$ denote a function.

If there exists a function $g: T \to S$, such that $(g \circ f) = i_S$ and $(f \circ g) = i_T$, then g is called the inverse function of f and is denoted by f^{-1} .

Example

Find the inverse of $f: \Re \to \Re$ defined as $f(x) = 3 \cdot x + 4$.

Theorem

 $f: S \to T$ is a bijection if and only if f^{-1} exists.

Definition

Let $f: S \to T$ denote a function.

If there exists a function $g: T \to S$, such that $(g \circ f) = i_S$ and $(f \circ g) = i_T$, then g is called the inverse function of f and is denoted by f^{-1} .

Example

Find the inverse of $f: \Re \to \Re$ defined as $f(x) = 3 \cdot x + 4$.

Theorem

 $f: S \to T$ is a bijection if and only if f^{-1} exists.

Exercise

Definition

Let $f: S \to T$ denote a function.

If there exists a function $g: T \to S$, such that $(g \circ f) = i_S$ and $(f \circ g) = i_T$, then g is called the inverse function of f and is denoted by f^{-1} .

Example

Find the inverse of $f: \Re \to \Re$ defined as $f(x) = 3 \cdot x + 4$.

Theorem

 $f: S \to T$ is a bijection if and only if f^{-1} exists.

Exercise

Argue that if a function $f: S \to T$ has an inverse function, then this inverse is unique.

Definition
Properties of Functions
Composition of Functions
Inverse Functions
Equivalent Sets

Outline

- Fundamentals
 - Definition
 - Properties of Functions
 - Composition of Functions
 - Inverse Functions
 - Equivalent Sets
- Order of magnitude of functions

Fundamentals
Order of magnitude of functions

efinition roperties of Functions omposition of Functions verse Functions quivalent Sets

Equivalent Sets

efinition roperties of Functions omposition of Functions verse Functions quivalent Sets

Equivalent Sets

Definition

Definition

A set S is equivalent to a set T, if there is a bijection $f: S \to T$.

Definition
Properties of Functions
Composition of Function
Inverse Functions
Equivalent Sets

Equivalent Sets

Definition

A set S is equivalent to a set T, if there is a bijection $f: S \to T$.

Two sets that are equivalent have the same cardinality.

Definition

A set S is equivalent to a set T, if there is a bijection $f: S \to T$.

Two sets that are equivalent have the same cardinality.

Exercise

Definition

A set S is equivalent to a set T, if there is a bijection $f: S \to T$.

Two sets that are equivalent have the same cardinality.

Exercise

Show that if S is a finite set, S is not equivalent to $\mathcal{P}(S)$.

Definition

A set S is equivalent to a set T, if there is a bijection $f: S \to T$.

Two sets that are equivalent have the same cardinality.

Exercise

Show that if S is a finite set, S is not equivalent to $\mathcal{P}(S)$.

Exercise

Definition

A set S is equivalent to a set T, if there is a bijection $f: S \to T$.

Two sets that are equivalent have the same cardinality.

Exercise

Show that if S is a finite set, S is not equivalent to $\mathcal{P}(S)$.

Exercise

Are \mathcal{Z} and \mathcal{N} equivalent?

Definition

A set S is equivalent to a set T, if there is a bijection $f: S \to T$.

Two sets that are equivalent have the same cardinality.

Exercise

Show that if S is a finite set, S is not equivalent to $\mathcal{P}(S)$.

Exercise

Are \mathcal{Z} and \mathcal{N} equivalent?

Theorem (Cantor)

Definition

A set S is equivalent to a set T, if there is a bijection $f: S \to T$.

Two sets that are equivalent have the same cardinality.

Exercise

Show that if S is a finite set, S is not equivalent to $\mathcal{P}(S)$.

Exercise

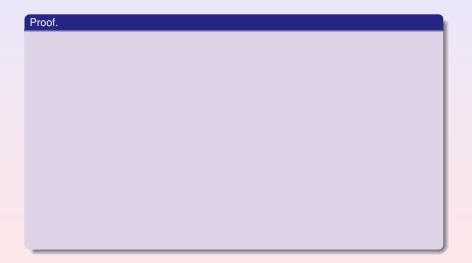
Are \mathcal{Z} and \mathcal{N} equivalent?

Theorem (Cantor)

For any set S, S and P(S) are not equivalent.

efinition roperties of Functions omposition of Functions werse Functions quivalent Sets

Proof of Cantor's theorem



Proof.

Assume that ${\mathcal S}$ and ${\mathcal P}({\mathcal S})$ are equivalent.

Proof.

Assume that S and $\mathcal{P}(S)$ are equivalent.

Let f be a bijection between S and P(S).

Proof.

Assume that S and $\mathcal{P}(S)$ are equivalent.

Let f be a bijection between S and $\mathcal{P}(S)$.

Pick $s \in S$.

Proof.

Assume that S and P(S) are equivalent.

Let f be a bijection between S and P(S).

Pick $s \in S$. $f(s) \in \mathcal{P}(S)$ and hence f(s) is a set containing some members of S.

Proof.

Assume that S and P(S) are equivalent.

Let f be a bijection between S and $\mathcal{P}(S)$.

Pick $s \in S$. $f(s) \in \mathcal{P}(S)$ and hence f(s) is a set containing some members of S.

Let
$$X = \{x \in S \mid x \not\in f(x)\}.$$

Proof.

Assume that S and P(S) are equivalent.

Let f be a bijection between S and $\mathcal{P}(S)$.

Pick $s \in S$. $f(s) \in \mathcal{P}(S)$ and hence f(s) is a set containing some members of S.

Let
$$X = \{x \in S \mid x \not\in f(x)\}.$$

Since
$$X \subseteq S$$
, $X \in \mathcal{P}(S)$.

Proof.

Assume that S and $\mathcal{P}(S)$ are equivalent.

Let f be a bijection between S and $\mathcal{P}(S)$.

Pick $s \in S$. $f(s) \in \mathcal{P}(S)$ and hence f(s) is a set containing some members of S.

Let $X = \{x \in \mathcal{S} \mid x \not\in f(x)\}.$

Since $X \subseteq S$, $X \in \mathcal{P}(S)$.

Therefore, X = f(y), for some $y \in S$, since f is a bijection!

Proof.

Assume that S and $\mathcal{P}(S)$ are equivalent.

Let f be a bijection between S and $\mathcal{P}(S)$.

Pick $s \in S$. $f(s) \in \mathcal{P}(S)$ and hence f(s) is a set containing some members of S.

Let
$$X = \{x \in \mathcal{S} \mid x \not\in f(x)\}.$$

Since $X \subseteq S$, $X \in \mathcal{P}(S)$.

Therefore, X = f(y), for some $y \in S$, since f is a bijection!

Does $y \in X$?

Proof.

Assume that S and $\mathcal{P}(S)$ are equivalent.

Let f be a bijection between S and $\mathcal{P}(S)$.

Pick $s \in S$. $f(s) \in \mathcal{P}(S)$ and hence f(s) is a set containing some members of S.

Let
$$X = \{x \in \mathcal{S} \mid x \not\in f(x)\}.$$

Since $X \subseteq S$, $X \in \mathcal{P}(S)$.

Therefore, X = f(y), for some $y \in S$, since f is a bijection!

Does $y \in X$?

If $y \in X$,

Proof.

Assume that S and $\mathcal{P}(S)$ are equivalent.

Let f be a bijection between S and $\mathcal{P}(S)$.

Pick $s \in S$. $f(s) \in \mathcal{P}(S)$ and hence f(s) is a set containing some members of S.

Let $X = \{x \in \mathcal{S} \mid x \not\in f(x)\}.$

Since $X \subseteq S$, $X \in \mathcal{P}(S)$.

Therefore, X = f(y), for some $y \in S$, since f is a bijection!

Does $y \in X$?

If $y \in X$, then by the definition of X,

Proof.

Assume that S and $\mathcal{P}(S)$ are equivalent.

Let f be a bijection between S and $\mathcal{P}(S)$.

Pick $s \in S$. $f(s) \in \mathcal{P}(S)$ and hence f(s) is a set containing some members of S.

Let $X = \{x \in \mathcal{S} \mid x \not\in f(x)\}.$

Since $X \subseteq S$, $X \in \mathcal{P}(S)$.

Therefore, X = f(y), for some $y \in S$, since f is a bijection!

Does $y \in X$?

If $y \in X$, then by the definition of X, $y \notin f(y)$,

Proof.

Assume that S and $\mathcal{P}(S)$ are equivalent.

Let f be a bijection between S and $\mathcal{P}(S)$.

Pick $s \in S$. $f(s) \in \mathcal{P}(S)$ and hence f(s) is a set containing some members of S.

Let $X = \{x \in \mathcal{S} \mid x \not\in f(x)\}.$

Since $X \subseteq S$, $X \in \mathcal{P}(S)$.

Therefore, X = f(y), for some $y \in S$, since f is a bijection!

Does $y \in X$?

If $y \in X$, then by the definition of X, $y \notin f(y)$, i.e., $y \notin X$!

Proof.

Assume that S and $\mathcal{P}(S)$ are equivalent.

Let f be a bijection between S and $\mathcal{P}(S)$.

Pick $s \in S$. $f(s) \in \mathcal{P}(S)$ and hence f(s) is a set containing some members of S.

Let $X = \{x \in \mathcal{S} \mid x \not\in f(x)\}.$

Since $X \subseteq S$, $X \in \mathcal{P}(S)$.

Therefore, X = f(y), for some $y \in S$, since f is a bijection!

Does $y \in X$?

If $y \in X$, then by the definition of X, $y \notin f(y)$, i.e., $y \notin X$!

If $y \not\in X$,

Proof.

Assume that S and $\mathcal{P}(S)$ are equivalent.

Let f be a bijection between S and $\mathcal{P}(S)$.

Pick $s \in S$. $f(s) \in \mathcal{P}(S)$ and hence f(s) is a set containing some members of S.

Let $X = \{x \in \mathcal{S} \mid x \not\in f(x)\}.$

Since $X \subseteq S$, $X \in \mathcal{P}(S)$.

Therefore, X = f(y), for some $y \in S$, since f is a bijection!

Does $y \in X$?

If $y \in X$, then by the definition of X, $y \notin f(y)$, i.e., $y \notin X$!

If $y \notin X$, then $y \notin f(y)$

Proof.

Assume that S and $\mathcal{P}(S)$ are equivalent.

Let f be a bijection between S and $\mathcal{P}(S)$.

Pick $s \in S$. $f(s) \in \mathcal{P}(S)$ and hence f(s) is a set containing some members of S.

Let $X = \{x \in \mathcal{S} \mid x \not\in f(x)\}.$

Since $X \subseteq S$, $X \in \mathcal{P}(S)$.

Therefore, X = f(y), for some $y \in S$, since f is a bijection!

Does $y \in X$?

If $y \in X$, then by the definition of X, $y \notin f(y)$, i.e., $y \notin X$!

If $y \notin X$, then $y \notin f(y)$ and hence, $y \in X$,

Proof.

Assume that S and $\mathcal{P}(S)$ are equivalent.

Let f be a bijection between S and $\mathcal{P}(S)$.

Pick $s \in S$. $f(s) \in \mathcal{P}(S)$ and hence f(s) is a set containing some members of S.

Let $X = \{x \in S \mid x \not\in f(x)\}.$

Since $X \subseteq S$, $X \in \mathcal{P}(S)$.

Therefore, X = f(y), for some $y \in S$, since f is a bijection!

Does $y \in X$?

If $y \in X$, then by the definition of X, $y \notin f(y)$, i.e., $y \notin X$!

If $y \notin X$, then $y \notin f(y)$ and hence, $y \in X$, by the definition of X!

Proof.

Assume that S and $\mathcal{P}(S)$ are equivalent.

Let f be a bijection between S and $\mathcal{P}(S)$.

Pick $s \in S$. $f(s) \in \mathcal{P}(S)$ and hence f(s) is a set containing some members of S.

Let $X = \{x \in \mathcal{S} \mid x \not\in f(x)\}.$

Since $X \subseteq S$, $X \in \mathcal{P}(S)$.

Therefore, X = f(y), for some $y \in S$, since f is a bijection!

Does $y \in X$?

If $y \in X$, then by the definition of X, $y \notin f(y)$, i.e., $y \notin X$!

If $y \notin X$, then $y \notin f(y)$ and hence, $y \in X$, by the definition of X!

In either case, there is a contradiction, which proves that S and $\mathcal{P}(S)$ are not equivalent.

Definition
Properties of Functions
Composition of Functions
Inverse Functions
Equivalent Sets

Consequences of Cantor's theorem

Definition
Properties of Functions
Composition of Function
Inverse Functions
Equivalent Sets

Consequences of Cantor's theorem

Corollary

Definition
Properties of Functions
Composition of Function
Inverse Functions
Equivalent Sets

Consequences of Cantor's theorem

Corollary

The set $\mathcal{P}(\mathcal{N})$ is not countable.

Corollary

The set $\mathcal{P}(\mathcal{N})$ is not countable.

Observation

Definition
Properties of Functions
Composition of Functions
Inverse Functions
Equivalent Sets

Consequences of Cantor's theorem

Corollary

The set $\mathcal{P}(\mathcal{N})$ is not countable.

Observation

How is ∞ related to

Corollary

The set $\mathcal{P}(\mathcal{N})$ is not countable.

Observation

How is ∞ related to $\infty + \infty$,

Corollary

The set $\mathcal{P}(\mathcal{N})$ is not countable.

Observation

How is ∞ related to $\infty + \infty$, $\infty \times \infty$,

Corollary

The set $\mathcal{P}(\mathcal{N})$ is not countable.

Observation

How is ∞ related to $\infty + \infty$, $\infty \times \infty$, 2^{∞} ?

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers.

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers.

In case of functions, we are interested in $rate\ of\ growth$, i.e., does function f grow at a faster rate than function g?

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers.

In case of functions, we are interested in $rate\ of\ growth$, i.e., does function f grow at a faster rate than function g?

Note

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers.

In case of functions, we are interested in $rate\ of\ growth$, i.e., does function f grow at a faster rate than function g?

Note

(i) Additive and multiplicative constants do not matter in rate of growth.

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers.

In case of functions, we are interested in $rate\ of\ growth$, i.e., does function f grow at a faster rate than function g?

Note

- (i) Additive and multiplicative constants do not matter in rate of growth.
- (ii) The starting point of measurement does not matter.

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers.

In case of functions, we are interested in $rate\ of\ growth$, i.e., does function f grow at a faster rate than function g?

Note

- (i) Additive and multiplicative constants do not matter in rate of growth.
- (ii) The starting point of measurement does not matter.
- (iii) We only care about functions from $\Re_{>0} \to \Re_{>0}$.

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers.

In case of functions, we are interested in $rate\ of\ growth$, i.e., does function f grow at a faster rate than function g?

Note

- (i) Additive and multiplicative constants do not matter in rate of growth.
- (ii) The starting point of measurement does not matter.
- (iii) We only care about functions from $\Re_{>0} \to \Re_{>0}$.

Example

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers.

In case of functions, we are interested in $rate\ of\ growth$, i.e., does function f grow at a faster rate than function g?

Note

- (i) Additive and multiplicative constants do not matter in rate of growth.
- (ii) The starting point of measurement does not matter.
- (iii) We only care about functions from $\Re_{>0} \to \Re_{>0}$.

Example

(i) Which function grows faster: $100 \cdot x^2$ or $\frac{1}{10^6} \cdot x^3$?

Motivation

Order theory enables us to compare functions, just as the theory of arithmetic enables us to compare numbers.

In case of functions, we are interested in $rate\ of\ growth$, i.e., does function f grow at a faster rate than function g?

Note

- (i) Additive and multiplicative constants do not matter in rate of growth.
- (ii) The starting point of measurement does not matter.
- (iii) We only care about functions from $\Re_{>0} \to \Re_{>0}$.

Example

- (i) Which function grows faster: $100 \cdot x^2$ or $\frac{1}{10^6} \cdot x^3$?
- (ii) Which function grows faster: $x^2 10$ or x + 10?

Definition

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then f = O(g), if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \le c \cdot g(x)$.

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then f = O(g), if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \le c \cdot g(x)$.

Definition

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then f = O(g), if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \le c \cdot g(x)$.

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then f = O(g), if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \le c \cdot g(x)$.

Definition

Let *f* and *g* be functions mapping non-negative reals to non-negative reals.

Then $f = \Omega(g)$, if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \ge c \cdot g(x)$.

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then f = O(g), if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \le c \cdot g(x)$.

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then $f = \Omega(g)$, if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \ge c \cdot g(x)$.

Definition

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then f = O(g), if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \le c \cdot g(x)$.

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then $f = \Omega(g)$, if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \ge c \cdot g(x)$.

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then f = O(g), if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \le c \cdot g(x)$.

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then $f = \Omega(g)$, if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) \ge c \cdot g(x)$.

Definition

Let f and g be functions mapping non-negative reals to non-negative reals.

Then f = o(g), if there exist constants c and n_0 such that for all $n \ge n_0$, $f(x) < c \cdot g(x)$.

Definition

Definition

Definition

Then
$$f = \Theta(g)$$
, if $f = O(g)$ and $g = O(f)$.

Definition

Then
$$f = \Theta(g)$$
, if $f = O(g)$ and $g = O(f)$.

(i) Let
$$f(x) = 2 \cdot x^2 - 2$$
 and $g(x) = \frac{1}{100} \cdot x^2 - 100$.

(i) Let
$$f(x) = 2 \cdot x^2 - 2$$
 and $g(x) = \frac{1}{100} \cdot x^2 - 100$. $f = \Theta(g)$.

- (i) Let $f(x) = 2 \cdot x^2 2$ and $g(x) = \frac{1}{100} \cdot x^2 100$. $f = \Theta(g)$.
- (ii) Let $f(x) = 2 \cdot x^2 2$ and $g(x) = \frac{1}{100} \cdot x 100$.

- (i) Let $f(x) = 2 \cdot x^2 2$ and $g(x) = \frac{1}{100} \cdot x^2 100$. $f = \Theta(g)$.
- (ii) Let $f(x) = 2 \cdot x^2 2$ and $g(x) = \frac{1}{100} \cdot x 100$. $f = \Omega(g)$.

- (i) Let $f(x) = 2 \cdot x^2 2$ and $g(x) = \frac{1}{100} \cdot x^2 100$. $f = \Theta(g)$.
- (ii) Let $f(x) = 2 \cdot x^2 2$ and $g(x) = \frac{1}{100} \cdot x 100$. $f = \Omega(g)$. Furthermore, g = o(f).

The limit test

The limit test

Let
$$I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
.

The limit test

Let
$$I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
. Then,

The limit test

Let f and g denote two functions mapping non-negative reals to non-negative reals.

Let
$$I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
. Then,

(i) If I is a positive constant,

The limit test

Let f and g denote two functions mapping non-negative reals to non-negative reals.

Let
$$I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
. Then,

(i) If *I* is a positive constant, then $f = \Theta(g)$.

The limit test

Let
$$I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
. Then,

- (i) If *I* is a positive constant, then $f = \Theta(g)$.
- (ii) If I = 0,

The limit test

Let
$$I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
. Then,

- (i) If *I* is a positive constant, then $f = \Theta(g)$.
- (ii) If I = 0, then f = o(g).

The limit test

Let
$$I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
. Then,

- (i) If *I* is a positive constant, then $f = \Theta(g)$.
- (ii) If I = 0, then f = o(g).
- (iii) If $I = \infty$,

The limit test

Let
$$I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
. Then,

- (i) If *I* is a positive constant, then $f = \Theta(g)$.
- (ii) If I = 0, then f = o(g).
- (iii) If $I = \infty$, then g = o(f).

The limit test

Let f and g denote two functions mapping non-negative reals to non-negative reals.

Let
$$I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
. Then,

- (i) If *I* is a positive constant, then $f = \Theta(g)$.
- (ii) If I = 0, then f = o(g).
- (iii) If $I = \infty$, then g = o(f).

Note

The limit test

Let f and g denote two functions mapping non-negative reals to non-negative reals.

Let
$$I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
. Then,

- (i) If *I* is a positive constant, then $f = \Theta(g)$.
- (ii) If I = 0, then f = o(g).
- (iii) If $I = \infty$, then g = o(f).

Note

If
$$\lim_{x\to\infty} f(x) = \infty$$
 and if $\lim_{x\to\infty} g(x) = \infty$, then,

The limit test

Let f and g denote two functions mapping non-negative reals to non-negative reals.

Let
$$I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
. Then,

- (i) If *I* is a positive constant, then $f = \Theta(g)$.
- (ii) If I = 0, then f = o(g).
- (iii) If $I = \infty$, then g = o(f).

Note

If
$$\lim_{x\to\infty} f(x) = \infty$$
 and if $\lim_{x\to\infty} g(x) = \infty$, then,

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

The limit test

Let f and g denote two functions mapping non-negative reals to non-negative reals.

Let
$$I = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
. Then,

- (i) If *I* is a positive constant, then $f = \Theta(g)$.
- (ii) If I = 0, then f = o(g).
- (iii) If $I = \infty$, then g = o(f).

Note

If $\lim_{x\to\infty} f(x) = \infty$ and if $\lim_{x\to\infty} g(x) = \infty$, then,

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

The above rule is called L'Hospital's rule.

(i) Show that
$$x = o(x^2)$$
.

- (i) Show that $x = o(x^2)$.
- (ii) Show that $x = o(x \cdot \log x)$.

- (i) Show that $x = o(x^2)$.
- (ii) Show that $x = o(x \cdot \log x)$.
- (iii) Show that $\log x = o(x)$.